The increasing proportion of carbon fibre reinforced plastics (CFRP) in different branches of industry will result in an increasingly larger quantity of CFRP wastes in future. With regard to improved management of natural resources, it is necessary to add these fibres that require energy-intensive production to effective recycling management. But high-quality material recycling is only ecoefficient if the recycled fibres can be used to produce new high-quality and marketable products. Tests carried out up to now indicate that very good results can be expected for large-scale recycling of carbon fibres by means of pyrolysis. The waste pyrolysis plant (WPP) operated in Burgau is the only large-scale pyrolysis plant for municipal wastes in Germany. Use of this plant to treat CFRP wastes represents a unique opportunity for the whole Southern German economy and in particular the Augsburg economic region. In a study funded by the Bavarian State Ministry of the Environment and Health ('Bayerisches Staatsministerium für Umwelt und Gesundheit'), the specific implementation options for the recovery of carbon fibres from composites by means of large-scale pyrolysis have been under investigation since November 2010. To this end, in the first step a development study was carried out, which in particular examined the options for modifying the Burgau WPP for the recycling of CFRP. The knowledge acquired from the pyrolysis tests, the fibre tests and the economic feasibility study confirmed the positive assessment of the overall concept of CFRP recycling in Burgau. As an overall result, unlimited profitability was found for all scenarios with regard to investments in CFRP recycling in Burgau WPP. The work on the development study was carried out by bifa Umweltinstitut GmbH together with the Augsburg-based 'function integrated lightweight construction project group ('Funktionsintegrierter Leichtbau' - FIL) of the Fraunhofer Institute for Chemical Technology (ICT). Methods: analysis and moderation of social processes, economy and management consulting, process engineering
Leistungsfähiges Pflanzgut mit guter Boden- und Klimaanpassung bildet die Grundlage der einer umweltgerechten Pflanzenproduktion. Dies trifft in gleicher Weise auf den Weinbau zu. Neben der Globalisierung der Märkte gehört sicherlich die Klimaveränderung zu den größten Herausforderungen der Gegenwart. Das größte Problem sind in zunehmendem Maß eine wärmere Witterung kombiniert mit Starkregenereignisse während der Traubenreifung und die dadurch ausgelöste Traubenfäule. Wegen der besonderen Bedeutung von Weinlandschaften für Tourismus und Wirtschaft kommt dem Weinanbau hierbei eine besondere gesellschaftliche Bedeutung zu. Die Sicherung der Produktion von gesunden Trauben steht daher an erster Stelle. Ein lockerer Traubenaufbau durch längere Beerenstielchen und/oder kleinere Beeren sowie festere Beerenschale können den Fäulnisbefall stark reduzieren. Sie sind damit ein hervorragendes Resistenzmerkmal und können den Einsatz von Spezial-Botrytiziden erheblich vermindern. Solche Formen der apparenten Resistenz sind sehr stabil, da der Pathogen sie nur schwer überwinden kann und daher hervorragend für langlebige Kulturpflanzen, wie die Weinrebe geeignet. Das Fachgebiet entwickelt von den traditionell in Deutschland angebauten Rebsorten Klone mit lockerem Traubenaufbau und damit einhergehender hoher Resistenz gegen Traubenfäulen. Hierzu wird Zuchtmaterial, das im Rahmen dieses oder weiterer Projekte gesammelt wurde, auf seine Widerstandsfähigkeit gegen Traubenfäulen und weitere weinbaulich relevante Eigenschaften getestet. Ziel ist die Entwicklung von Klonen traditioneller Rebsorten mit hoher Traubenfäuleresistenz kombiniert mit einem stabilen Ertrag und hoher Trauben und Weinqualität, um deutschen Winzern entsprechendes Pflanzgut zur Verfügung zu stellen und damit einerseits die Applikation von Fungiziden zu reduzieren und gleichzeitig die Konkurrenzfähigkeit der heimischen Produktion an ihren traditionellen Standorten sichern zu helfen.
Eine hohe Resistenz gegen Bodenpathogene, gute Standortanpassung und Veredlungsaffinität sind die entscheidenden Merkmale von Unterlagen. Bei der Pathogenresistenz ist bei Reben die Widerstandsfähigkeit gegen die Reblaus Daktulosphaira vitifoiae essentiell, da die europäische Kulturrebe Vitis vinifera L über keinerlei Resistenzen verfügt und nur an wenigen Standorten ein wurzelechter Anbau möglich ist. Klimaveränderungen erfordern neue Unterlagen mit hoher Reblausfestigkeit und besserer Standortanpassung. Aufgrund der derzeitigen Szenarien werden sowohl Trockenresistenz als auch Toleranz gegen hohe Kalkgehalte insbesondere in Verbindung mit hohem Bodenwassergehalte zukünftig von Bedeutung sein. Hierfür werden entsprechende Kreuzungen vorgenommen, die Sämlinge aufgezogen, auf ihre Reblausfestigkeit getestet und anschießend Prüfungen der Wurzelungs- und Veredlungsfähigkeit vorgenommen. Anschließend wird die Witterungs- und Bodenanpassung der Zuchtstämme insbesondere auf Trocken- und Kalkstandorten untersucht. Ziel ist die Entwicklung verschiedener Unteralgen, die eine vollständige Reblausresistenz mit hohen Trockenheits- und/oder Kalktoleranz kombinieren.
The project aims to theorize the scalar organization of natural resource governance in the European Union. This research agenda is inspired by critical geographers' work on the politics of scale. The research will examine an analytical framework derived from theories of institutional change and multi-level govern-ance to fill this theoretical gap. Furthermore, it will review conceptualizations of the state in institutional economics, evaluate their adequacy to capture the role of the state in the dynamics identified, and develop them further. The described processes may imply shifts in administrative levels, shifts in relations between different levels and changes in spatial delimitations of competent jurisdictions that result, for example, from decentralization or the introduction of river basin oriented administrative structures. The research investigates the implications of two European Directives: the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). They both have potentially great significance for the organization of marine and water governance at the level of Member States and below, and adhere to similar regulatory ideas for achieving good ecological status of waters. A multiple case study on changes in the scalar reorganization of marine and water governance that result from the implementation of the Directives will be carried out. It will rely on qualitative and quantitative data gathering based on semi-structured interviews and review of secondary and tertiary sources looking at Portugal, Spain, and Germany. It specifically addresses the role of social ecological transactions, the structure of decision making processes and the role of changes in contextual factors (such as ideologies, interdependent institutions and technology).
This project focuses on the long-term stability (or otherwise) of vegetation, based on a series of multi-proxy records in southern South America. We will build a network of sites suitable for high-resolution reconstructions of changes in vegetation since the Last Glacial Maximum, and use these to test a null hypothesis that changes in vegetation over the past 14,000 years are driven by internal dynamics rather than external forcing factors. The extent to which the null hypothesis can be falsified will reveal the degree to which we can expect to be able to predict how vegetation is affected by external events, including future climate change. The southern fringes of the South American landmass provide a rare opportunity to examine the development of moorland vegetation with sparse tree cover in a wet, cool temperate climate of the Southern Hemisphere. We present a record of changes in vegetation over the past 17,000 years, from a lake in extreme southern Chile (Isla Santa Inés, Magallanes region, 53°38.97S; 72°25.24W; Fontana, Bennett 2012: The Holocene), where human influence on vegetation is negligible. The western archipelago of Tierra del Fuego remained treeless for most of the Lateglacial period. Nothofagus may have survived the last glacial maximum at the eastern edge of the Magellan glaciers from where it spread southwestwards and established in the region at around 10,500 cal. yr BP. Nothofagus antarctica was likely the earlier colonizing tree in the western islands, followed shortly after by Nothofagus betuloides. At 9000 cal. yr BP moorland communities expanded at the expense of Nothofagus woodland. Simultaneously, Nothofagus species shifted to dominance of the evergreen Nothofagus betuloides and the Magellanic rain forest established in the region. Rapid and drastic vegetation changes occurred at 5200 cal. yr BP, after the Mt Burney MB2 eruption, including the expansion and establishment of Pilgerodendron uviferum and the development of mixed Nothofagus-Pilgerodendron-Drimys woodland. Scattered populations of Nothofagus, as they occur today in westernmost Tierra del Fuego may be a good analogue for Nothofagus populations during the Lateglacial in eastern sites. Climate, dispersal barriers and/or fire disturbance may have played a role controlling the postglacial spread of Nothofagus. Climate change during the Lateglacial and early Holocene was a prerequisite for the expansion of Nothofagus populations and may have controlled it at many sites in Tierra del Fuego. The delayed arrival at the site, with respect to the Holocene warming, may be due to dispersal barriers and/or fire disturbance at eastern sites, reducing the size of the source populations. The retreat of Nothofagus woodland after 9000 cal. yr BP may be due to competitive interactions with bog communities. Volcanic disturbance had a positive influence on the expansion of Pilgerodendron uviferum and facilitated the development of mixed Nothofagus-Pilgerodendron-Drimys woodland.
Agriculture is the major contributor of nitrogen to ecosystems, both by organic and inorganic fertilizers. Percolation of nitrate to groundwater and further transport to surface waters is assumed to be one of the major pathways in the fate of this nitrogen. The quantification of groundwater and associated nitrate flux to streams is still challenging. In particular because we lack understanding of the spatial distribution and temporal variability of groundwater and associated NO3- fluxes. In this preliminary study we will focus on the identification and quantification of groundwater and associated nitrate fluxes by combining high resolution distributed fiber-optic temperature sensing (DTS) with in situ UV photometry (ProPS). DTS is a new technique that is capable to measure temperature over distances of km with a spatial resolution of ca1 m and an accuracy of 0.01 K. It has been applied successfully to identify and quantify sources of groundwater discharge to streams. ProPS is a submersible UV process photometer, which uses high precision spectral analyses to provide single substance concentrations, in our case NO3-, at minute intervals and a detection limit of less than 0.05 mg l-1 (ca.0.01 mg NO3--Nl-1). We will conduct field experiments using artificial point sources of lateral inflow to test DTS and ProPS based quantification approaches and estimate their uncertainty. The selected study area is the Schwingbach catchment in Hessen, Germany, which has a good monitoring infrastructure. Preliminary research on hydrological fluxes and field observations indicate that the catchment favors the intended study.
This project proposes to explore the potential of sedimentary sequences from arid Southern Levant to record past environmental and climate changes that can be compared with the evolution of human societies during the Holocene. The Levant, crucible of history, actually possesses very few archives of past climate change in its most arid parts, which restricts the possibility to compare, on a regional scale, environmental variation and the evolution of human communities through time. The region is characterised by contrasted bioclimatic conditions, from Mediterranean-type to arid. Most of the known records of environmental change are located in the moister, Mediterranean zones of the region, where increased water availability permits the presence - or the better preservation - of high-resolution and continuous archives of past climates. However, the potential of the arid environments of the Southern Levant (roughly corresponding to modern Israel, Palestine, and Jordan) to harbour records of Holocene (last ca. 11,500 years) climate change, is far from being exploited to its full extend. Following the unique discovery of Holocene organic, peat-like deposits in the rain-shadow of the Dead Sea area in Jordan, this project proposes to investigate the potential of this currently arid region to record past environmental and climate change. The organic sequences present in the mountain slopes East of the Dead Sea have been shown to contain very good pollen information. Results from a preliminary pollen study provided in particular evidence for the periodic extension of Mediterranean-type forest vegetation, from the upper Mediterranean plateaus down to the study area. These organic sequences can be further exploited to generate more precisely dated (mainly through radiocarbon techniques) and higher-resolution records of climate and environmental change for the Holocene. Pollen data will be complemented by a series of other proxies: charcoal studies indicating recurrent fires, spores and fungi revealing past grazing activities, diatom assemblages showing changes in the water quality, increased detrital content marking periods of enhanced erosion. All these results can then be integrated into dynamic models of local environmental changes and vegetation response. Furthermore, the same area contains multiple sequences of spring carbonates (tufa / travertine) waiting to be studied. The stable isotopic (oxygen and carbon) composition of spring carbonates can provide a good record of past climate change, as it registers variations in environmental factors such as temperature, parent-water composition (itself related to the source and amount of rainfall), and evaporation. The presence of carbonate sequences near organic sequences on the edge of the Dead Sea, offers an unprecedented occasion to directly compare the isotopic variations of carbonate series with environmental variations recorded in the peaty archives.
The Land and Soils Working Group of the International Resource Panel is preparing a comprehensive review of the challenges and opportunities facing land and soil management from the local to global level. Global land use and soil management are both connected and complementary aspects of agriculture, forestry and built-up land development with consequences on food, energy, material and water security. Global land use change is currently characterised by the expansion of agricultural land and built-up areas along with land degradation and the polices which support these processes. Expansion is taking place at the expense of global forests, savannahs and grasslands while degradation is the result of soil erosion, nutrient depletion, water scarcity, salinity and the disruption of biological cycles, putting the best quality soils of the world under risk. As world dietary habits change, international trade and a rising consumption of goods are fuelling the demand for land. Globalisation is increasing the distance between production and consumption, so that consumer decisions to buy products and the detrimental impacts which may be associated with those products are drifting apart. The result is an increasing competition for land with unintended and unrecognised side-effects. Policy is therefore challenged to follow a double approach: tackling both the field level of sustainable extraction and the global level of sustainable use. This project explores the connections, trade-offs, and relationships between land use, soil management and resource security more deeply. It proposes developing a safe operating space for global land use and safe operating practices for soil management that could work together towards ensuring a long-lasting and sustainable supply of products for food, feed, fuel and materials.
The aim of this project is to address fundamental issues regarding the interaction of marine renewable energy devices with the flow and the environment and also to look at the economical implications of tidal energy extraction from the estuary and related environmental cost. This project brings together experts from two highly regarded civil engineering departments with a long track record in their respective areas of expertise, to provide answers to fundamental questions regarding marine renewable energy. Wales is well suited as a case study in the marine energy sector with considerable natural marine energy potential, a good base of heavy industrial companies to build devices, a number of relatively large ports with good facilities, strong university and governmental support, and a strong commitment to this area in the 'Wales Energy Route Map'. Several marine renewable concepts are in the planning stage around the Welsh coastline at present. A tidal barrage across the Bristol Channel and tidal stream turbines are the two most promising technologies and these two scenarios will be used as case studies in this project. In this study investigations will be carried out to ascertain how energy devices will impact on the water levels and velocities in the Bristol Channel which, in turn, will affect the suspended sediment concentration distributions, the general water quality characteristics and therefore the benthic ecology and the general hydro-ecology of the estuary. This will be achieved by: (a) refining Cardiff Universitys estuarine model DIVAST to predict the impact of a tidal barrage and operating tidal stream turbines on the hydrodynamic, sediment transport and water quality characteristic distributions in the Bristol channel, (b) refining Universität Stuttgarts CASiMiR, WASKRA and Input-Output modelling tools and approaches to assess the influences of new tidal energy structures on habitats, to describe the tidal energy production and dependencies between economical and ecological aspects of the system and (c) analysing and linking the output from all modelling approaches creating a generic integrated physical, environmental and economical impact assessment approach of tidal renewables.
Objective: The BRITA proposal on Eco-buildings aims to increase the market penetration of innovative and effective retrofit solutions to improve energy and implement renewables, with moderate additional costs. In the first place, this will be realised by the exemplary retrofit of 9 demonstration public buildings in the four participating European region (North, Central, South, East). By choosing public buildings of different types such as colleges, cultural centres, nursery homes, student houses, churches etc. for implementing the measures it will awareness and sensitise society on energy conservation. Secondly, the research work packages will include the socio-economic research such as the identification of real project-planning needs and financing strategies, the assessment of design guidelines, the development of an internet-based knowledge tool on retrofit measures and case studies and a quality control-tool box to secure a good long-term performance of the building and the systems.
| Origin | Count |
|---|---|
| Bund | 44 |
| Type | Count |
|---|---|
| Förderprogramm | 44 |
| License | Count |
|---|---|
| offen | 44 |
| Language | Count |
|---|---|
| Deutsch | 7 |
| Englisch | 40 |
| Resource type | Count |
|---|---|
| Keine | 38 |
| Webseite | 6 |
| Topic | Count |
|---|---|
| Boden | 40 |
| Lebewesen und Lebensräume | 40 |
| Luft | 31 |
| Mensch und Umwelt | 44 |
| Wasser | 35 |
| Weitere | 44 |