API src

Found 413 results.

Die oberflaechliche Kontamination von Koernerfruechten bei direkter Trocknung mit Propangas und Heizoel EL (Fe, Mn, Cu, Zn, Mo, Cr, Ni, Se, Cd, Pb, As, Hg, S, F, NO2, NO3)

Das Projekt "Die oberflaechliche Kontamination von Koernerfruechten bei direkter Trocknung mit Propangas und Heizoel EL (Fe, Mn, Cu, Zn, Mo, Cr, Ni, Se, Cd, Pb, As, Hg, S, F, NO2, NO3)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hohenheim, Agrarwissenschaften (300) Institut für Tierernährung (450).Nachweis aller im Rauchgas/Luftgemisch von Fluessiggas- und Leichtoelbrennern auftretenden Stoffe (Pb, F, CrIII, CrVI, Zn, Se, Ni, As, Hg, Cd, Mo, Sn, Cu, SO2, Hf, NOx, polycyklische Aromate) bei Variation von Luftmenge, Gas- bzw. Oelmenge und Brennereinstellung. Ermittlung der Ablagerungen aus diesem Rauchgas/Luftgemisch auf Koernerschuettungen in Satz- und Durchlauftrocknern.

KlimPro: Vernetzungs- und Transferprojekt, Teilprojekt 3: Räumliche Analysen, Infrastrukturen; Branchenvertreter Gas und NE-Metall

Das Projekt "KlimPro: Vernetzungs- und Transferprojekt, Teilprojekt 3: Räumliche Analysen, Infrastrukturen; Branchenvertreter Gas und NE-Metall" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Gas- und Wärme-Institut Essen e.V..

Klimaschutz: Hohlleiterbasierte Spurengasanalyse von Methan

Das Projekt "Klimaschutz: Hohlleiterbasierte Spurengasanalyse von Methan" wird/wurde ausgeführt durch: DBI Gas- und Umwelttechnik GmbH.

Faseroptischer Gassensor auf Basis von Metal Organic Frameworks zum Einsatz in Transformatorenöl für predicti-ve Maintenance in Hochspannungsanlagen

Das Projekt "Faseroptischer Gassensor auf Basis von Metal Organic Frameworks zum Einsatz in Transformatorenöl für predicti-ve Maintenance in Hochspannungsanlagen" wird/wurde ausgeführt durch: Ostbayerische Technische Hochschule Regensburg, Fakultät Allgemeinwissenschaften und Mikrosystemtechnik, Kompetenzzentrum Nanochem.Im Zuge der Energiewende findet ein Übergang von wenigen Kraftwerken mit gleichmäßiger Energieerzeugung hin zu zahlreichen Kraftwerken mit variabler Energieerzeugung. Dieser Wandel stellt neue Herausforderungen an die Netzregulierung und -überwachung. Im Verbundvorhaben 'TrafoMOF' wird aus diesem Grund ein faseroptischer Gassensor auf Basis von Metal Organic Frameworks (kurz: MOFs) entwickelt. Zielanwendung für diesen Sensor ist die 'Dissolved Gas Analysis' (kurz: DGA) in Isoliermedien von Hochspannungsanlagen. Die Alterung der Isoliermedien ist die Hauptursache für Ausfälle von Hochspannungsanlagen. Durch die Detektion von Zersetzungsprodukten der Isoliermedien kann eine Aussage über den Fortschritt der Alterung getroffen und damit die Betriebsfähigkeit der Hochspannungsanlage beurteilt werden. Im Fokus der Analysen stehen die Zersetzungsprodukte Methan, Ethan, Ethen, Ethin, Wasserstoff, Methanol, Kohlendioxid und die Stoffgruppe der Furane. Durch den Einsatz MOFs ist es möglich sensorische Dünnschichten zu erzeugen, die hochgradig selektiv auf jeweils eines der zu analysierenden Zersetzungsprodukte ansprechen. Bei den MOFs handelt es sich um eine vielfältige Gruppe mikroporöser Stoffe, die andere Moleküle in ihre Mikroporen einlagern. Hierdurch ändern sich die Stoffeigenschaften der MOFs, was genutzt wird, um die Lichtführungseigenschaften von Glasfasern zu modulieren. Diese Sensortechnik erreicht einen neuen Stand der Technik im Feld der Sensorik für Hochspannungsanlagen. Durch die generierten Messergebnisse werden neue Möglichkeiten für Netzregulierung und -überwachung geschaffen.

Faseroptischer Gassensor auf Basis von Metal Organic Frameworks zum Einsatz in Transformatorenöl für predicti-ve Maintenance in Hochspannungsanlagen, Teilvorhaben: Weiterentwicklung von MOF-Suspensionen zu einer MOF-Tinte und Entwicklung eines Applikationsverfahrens

Das Projekt "Faseroptischer Gassensor auf Basis von Metal Organic Frameworks zum Einsatz in Transformatorenöl für predicti-ve Maintenance in Hochspannungsanlagen, Teilvorhaben: Weiterentwicklung von MOF-Suspensionen zu einer MOF-Tinte und Entwicklung eines Applikationsverfahrens" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: prometho GmbH.Im Zuge der Energiewende findet ein Übergang von wenigen Kraftwerken mit gleichmäßiger Energieerzeugung hin zu zahlreichen Kraftwerken mit variabler Energieerzeugung. Dieser Wandel stellt neue Herausforderungen an die Netzregulierung und -überwachung. Im Verbundvorhaben 'TrafoMOF' wird aus diesem Grund ein faseroptischer Gassensor auf Basis von Metal Organic Frameworks (kurz: MOFs) entwickelt. Zielanwendung für diesen Sensor ist die 'Dissolved Gas Analysis' (kurz: DGA) in Isoliermedien von Hochspannungsanlagen. Die Alterung der Isoliermedien ist die Hauptursache für Ausfälle von Hochspannungsanlagen. Durch die Detektion von Zersetzungsprodukten der Isoliermedien kann eine Aussage über den Fortschritt der Alterung getroffen und damit die Betriebsfähigkeit der Hochspannungsanlage beurteilt werden. Im Fokus der Analysen stehen die Zersetzungsprodukte Methan, Ethan, Ethen, Ethin, Wasserstoff, Methanol, Kohlendioxid und die Stoffgruppe der Furane. Durch den Einsatz MOFs ist es möglich sensorische Dünnschichten zu erzeugen, die hochgradig selektiv auf jeweils eines der zu analysierenden Zersetzungsprodukte ansprechen. Bei den MOFs handelt es sich um eine vielfältige Gruppe mikroporöser Stoffe, die andere Moleküle in ihre Mikroporen einlagern. Hierdurch ändern sich die Stoffeigenschaften der MOFs, was genutzt wird, um die Lichtführungseigenschaften von Glasfasern zu modulieren. Diese Sensortechnik erreicht einen neuen Stand der Technik im Feld der Sensorik für Hochspannungsanlagen. Durch die generierten Messergebnisse werden neue Möglichkeiten für Netzregulierung und -überwachung geschaffen.

Klimaschutz: Hohlleiterbasierte Spurengasanalyse von Methan, Teilprojekt 4: Entwicklung des neuartigen metallisierten Großkern-Hohlleiters für den Spektralbereich zwischen 1,5 und 3,5 µm und dessen Einbindung in eine gasdichte optische Messzelle

Das Projekt "Klimaschutz: Hohlleiterbasierte Spurengasanalyse von Methan, Teilprojekt 4: Entwicklung des neuartigen metallisierten Großkern-Hohlleiters für den Spektralbereich zwischen 1,5 und 3,5 µm und dessen Einbindung in eine gasdichte optische Messzelle" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: fiberware Generalunternehmen für Nachrichtentechnik GmbH.

Faseroptischer Gassensor auf Basis von Metal Organic Frameworks zum Einsatz in Transformatorenöl für predicti-ve Maintenance in Hochspannungsanlagen, Teilvorhaben: Definition applikationsnaher Parameter sowie Software- und Hardware-Design für Technologiedemonstrator

Das Projekt "Faseroptischer Gassensor auf Basis von Metal Organic Frameworks zum Einsatz in Transformatorenöl für predicti-ve Maintenance in Hochspannungsanlagen, Teilvorhaben: Definition applikationsnaher Parameter sowie Software- und Hardware-Design für Technologiedemonstrator" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: MESSKO GmbH.Im Zuge der Energiewende findet ein Übergang von wenigen Kraftwerken mit gleichmäßiger Energieerzeugung hin zu zahlreichen Kraftwerken mit variabler Energieerzeugung. Dieser Wandel stellt neue Herausforderungen an die Netzregulierung und -überwachung. Im Verbundvorhaben 'TrafoMOF' wird aus diesem Grund ein faseroptischer Gassensor auf Basis von Metal Organic Frameworks (kurz: MOFs) entwickelt. Zielanwendung für diesen Sensor ist die 'Dissolved Gas Analysis' (kurz: DGA) in Isoliermedien von Hochspannungsanlagen. Die Alterung der Isoliermedien ist die Hauptursache für Ausfälle von Hochspannungsanlagen. Durch die Detektion von Zersetzungsprodukten der Isoliermedien kann eine Aussage über den Fortschritt der Alterung getroffen und damit die Betriebsfähigkeit der Hochspannungsanlage beurteilt werden. Im Fokus der Analysen stehen die Zersetzungsprodukte Methan, Ethan, Ethen, Ethin, Wasserstoff, Methanol, Kohlendioxid und die Stoffgruppe der Furane. Durch den Einsatz MOFs ist es möglich sensorische Dünnschichten zu erzeugen, die hochgradig selektiv auf jeweils eines der zu analysierenden Zersetzungsprodukte ansprechen. Bei den MOFs handelt es sich um eine vielfältige Gruppe mikroporöser Stoffe, die andere Moleküle in ihre Mikroporen einlagern. Hierdurch ändern sich die Stoffeigenschaften der MOFs, was genutzt wird, um die Lichtführungseigenschaften von Glasfasern zu modulieren. Diese Sensortechnik erreicht einen neuen Stand der Technik im Feld der Sensorik für Hochspannungsanlagen. Durch die generierten Messergebnisse werden neue Möglichkeiten für Netzregulierung und -überwachung geschaffen.

Faseroptischer Gassensor auf Basis von Metal Organic Frameworks zum Einsatz in Transformatorenöl für predicti-ve Maintenance in Hochspannungsanlagen, Teilvorhaben: Entwicklung von Metal Organic Frameworks zur Dispergierung in Tintenform und anschließenden Herstellung sensorischer Dünnschichten

Das Projekt "Faseroptischer Gassensor auf Basis von Metal Organic Frameworks zum Einsatz in Transformatorenöl für predicti-ve Maintenance in Hochspannungsanlagen, Teilvorhaben: Entwicklung von Metal Organic Frameworks zur Dispergierung in Tintenform und anschließenden Herstellung sensorischer Dünnschichten" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Ostbayerische Technische Hochschule Regensburg, Fakultät Allgemeinwissenschaften und Mikrosystemtechnik, Kompetenzzentrum Nanochem.Im Zuge der Energiewende findet ein Übergang von wenigen Kraftwerken mit gleichmäßiger Energieerzeugung hin zu zahlreichen Kraftwerken mit variabler Energieerzeugung. Dieser Wandel stellt neue Herausforderungen an die Netzregulierung und -überwachung. Im Verbundvorhaben 'TrafoMOF' wird aus diesem Grund ein faseroptischer Gassensor auf Basis von Metal Organic Frameworks (kurz: MOFs) entwickelt. Zielanwendung für diesen Sensor ist die 'Dissolved Gas Analysis' (kurz: DGA) in Isoliermedien von Hochspannungsanlagen. Die Alterung der Isoliermedien ist die Hauptursache für Ausfälle von Hochspannungsanlagen. Durch die Detektion von Zersetzungsprodukten der Isoliermedien kann eine Aussage über den Fortschritt der Alterung getroffen und damit die Betriebsfähigkeit der Hochspannungsanlage beurteilt werden. Im Fokus der Analysen stehen die Zersetzungsprodukte Methan, Ethan, Ethen, Ethin, Wasserstoff, Methanol, Kohlendioxid und die Stoffgruppe der Furane. Durch den Einsatz MOFs ist es möglich sensorische Dünnschichten zu erzeugen, die hochgradig selektiv auf jeweils eines der zu analysierenden Zersetzungsprodukte ansprechen. Bei den MOFs handelt es sich um eine vielfältige Gruppe mikroporöser Stoffe, die andere Moleküle in ihre Mikroporen einlagern. Hierdurch ändern sich die Stoffeigenschaften der MOFs, was genutzt wird, um die Lichtführungseigenschaften von Glasfasern zu modulieren. Diese Sensortechnik erreicht einen neuen Stand der Technik im Feld der Sensorik für Hochspannungsanlagen. Durch die generierten Messergebnisse werden neue Möglichkeiten für Netzregulierung und -überwachung geschaffen.

Klimaschutz: Hohlleiterbasierte Spurengasanalyse von Methan, Teilprojekt 1: Entwicklung von Methoden und Verfahren zur Methan-Spurengas-basierten Gasleckdetektion sowie Validierung der Messmimik im akkreditierten Gaslabor mittels GC-MS

Das Projekt "Klimaschutz: Hohlleiterbasierte Spurengasanalyse von Methan, Teilprojekt 1: Entwicklung von Methoden und Verfahren zur Methan-Spurengas-basierten Gasleckdetektion sowie Validierung der Messmimik im akkreditierten Gaslabor mittels GC-MS" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: DBI Gas- und Umwelttechnik GmbH.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Prozesse der Wasserstoffgenese während seismischer Zyklen in aktiven Störungszonen (ProHydroGen)

Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Prozesse der Wasserstoffgenese während seismischer Zyklen in aktiven Störungszonen (ProHydroGen)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Wir planen die Nutzung eines U-Tube-KASMA Systems, welches von Prof. Tullis Onstott (Princeton University) in einem 600 m tiefen Bohrloch installiert wird, das eine aktive Störungszone im Roodepoort Quarzit in 3400 m Tiefe in der 'Moab Khotsong gold mine' antrifft. Das Bohrloch ist Teil des ICDP-finanzierten Projektes DSeis und dient der Beobachtung von seismisch ausgelösten in situ geochemischen und isotopischen Änderungen tiefer Fluide sowie mikrobiellen Aktivitäten. Die Kombination unsers Gas-Monitoring-Systems mit der U-Tube-KASMA Installation ergibt die einmalige Möglichkeit, minimal veränderte Geofluide aus einer tiefen aktiven Störungszone zu beproben.Während seismischer Ereignisse entlang der Verwerfungszone erwarten wir die Freisetzung von Geogasen, insbesondere H2, der als Energiequelle für tiefes mikrobielles Leben dienen kann. Das Geogas (inkl. H2 und O3) sollen kontinuierlich mit spezifischen Sensoren eines portablen gasanalytischen Systems detektiert werden, welches direkt an den Gasseparator des automatischen U-Tube-KASMA angeschlossen ist. Durch die chemische und isotopische Charakterisierung der Fluide vor und nach seismischer Aktivität hoffen wir die Herkunft und Genese von H2 aufklären zu können; letztere beruht auf Spaltung der O-H Bindungen von Wasser. In Kombination mit Daten zur Permeabilität und Porosität der Störungszone werden diese Ergebnisse helfen, verschiedene Migrationsmechanismen des Fluids, vom Entstehungsort bis zum Zielhorizont, zu verstehen. Dabei stellt sich die Frage, ob schwache seismische Ereignisse die Konnektivität isoliert bestehender Fluide durch Bildung neuer Wegsamkeiten erhöhen, oder ob frische Mineraloberflächen für Wasser-Gesteinsreaktionen erzeugt werden, die mechano-chemisch neu synthetisierten H2 freisetzen. Die Echtzeit-Analyse der U-Tube Proben vor Ort kann zeigen, wie schnell Änderungen in der Untergrund Gaschemie aufgrund seismischer Aktivität stattfinden. Ein weiteres Ziel ist die Identifizierung der seismischen Momente und der Abstand und die Orientierung des Erdbebenherdes zur Störungszone und dem Bohrloch. Die Probenahme und Analyse in Isotopen-Laboratorien ermöglicht die Abschätzung, in welchem Ausmaß sich die H/D-Isotopie von H2 und CH4, sowie 13CCO2 und 13CCH4 ändert. Es soll geprüft werden, ob sie aus der gleichen Quelle stammen und ob der Isotopenaustausch zwischen diesen Spezies im thermodynamischen Gleichgewicht ist.Edelgasisotopenmessungen erlauben es, die Residenzzeiten der Kluftfluide zu berechnen und könnten die Frage lösen, ob gemessene H2/He-Verhältnisse mit der berechneten radiolytisch/radiogenen Produktionsrate übereinstimmen. Die Daten der gaschemischen Messungen sind wichtige Eingangsparameter für physikalisch-chemische Modelle zur Beschreibung des geochemischen Verhaltens der Fluide. In Kombination mit seismischen Karten tragen sie zur genaueren Bestimmung des globalen Vorkommens von gas-chemischen Produktionsprozessen in Störungszonen bei.

1 2 3 4 540 41 42