API src

Found 1801 results.

Related terms

Versorgungsbereiche Gebäudewärme und überwiegende Heizungsarten 2005 (Umweltatlas)

Die Daten verdeutlichen die auch im Kraftwerksbereich in den letzten Jahren vorgenommenen Angleichungen beim Energieträgereinsatz in der Stadt. Das "Rückrat" des Energieträgereinsatzes in den Berliner Kraftwerken stellen Steinkohle und Erdgas.

Modellentwicklung zur regionalen Vorhersage der N2O-Emissionen aus bodenchemischen und bodenphysikalischen Parametern unter spezieller Berücksichtigung des oberflächennahen N2O-Gehaltes in Böden

Bisherige Ansätze zu Modellierung von Lachgasemissionen haben noch zu keinen zufriedenstellenden Ergebnissen geführt bzw. die Validierung von Modellen steht noch aus, da u.a. die Bestimmung der Gasdiffusion im Oberboden sowie der Gasübergang in Atmosphäre schwierig bestimmbar ist. Wir stellen für diesen Schritt einen empirischen Modellansatz zur Vorhersage von Lachgasemissionen aus oberflächennahen N2O-Gehalten des Bodens vor, der im Rahmen des Projektes zu einer allgemeinen Anwendbarkeit weiterentwickelt werden soll. Hierbei werden über empirische Transferfaktoren, die in Abhängigkeit von Bodenart, Wassergehalt und Temperatur ermittelt werden, die Emissionen aus Gasgehalten im Boden berechnet. Zur einfachen Bestimmung des N2O-Gehaltes im Oberboden steht ein in unserem Hause entwickeltes neuartiges Bodenprobenahmegerät zur Verfügung. Die Einfachheit der Probenahme und gleichzeitige Erfassung von Gas im Boden sowie den steuernden Größen Nmin und DOC, erlaubt zudem ein Monitoring der Spurengasemissionen auf regionaler Ebene sowie die Validierung bestehender Modelle.

Schmelzreaktor zur Aufarbeitung industrieller Reststoffe mit niedrigem Zinkgehalt

In einer Zinksekundaerhuette werden in einem neu entwickelten Schmelzreaktor zinkarme Reststoffe, vorwiegend aus der Zinkmetallurgie, mit Zinkgehalten kleiner 15 Prozent direkt aufgearbeitet. Fluechtige Metalle, hauptsaechlich Zink und Blei werden hierbei in einem oxidischen Filterstaub stark angereichert und die restlichen Bestandteile zu einer als Baustoff verwendbaren Schlacke verschmolzen. Damit wird erstmals ein grosstechnisches, wirtschaftlich arbeitendes Aufarbeitungsverfahren fuer metallarme Vorstoffe fuer die Verhuettung von Nichteisenmetallen geschaffen. Der Schmelzreaktor besteht aus einer wassergekuehlten, zylindrischen Brennkammer mit vertikaler Achse. Er ist durch ein Uebergangsstueck mit dem Schlackenabsetzherd verbunden. Hohe Temperaturen der Schmelze und das bei der unterstoechiometrischen Verbrennung des eingetragenen Kohlenstoffs gebildete CO bewirken, dass das in der Beschickung befindliche Zink als Zinkdampf in die Gasphase uebergeht. Der Zinkdampf wird mit dem Abgasstrom aus dem Reaktor ausgetragen und gelangt nach dem Absetzherd in die Nachverbrennungskammer. Durch Zugabe einer definierten Luftmenge verbrennen Zinkdampf und CO vollstaendig zu Zinkoxid und Kohlendioxid. Die staubhaltigen Abgase (Oxidanfall ca. 6.000 t/a) des Schmelzreaktors werden mittels Gewebefilter entstaubt. Das abgeschiedene Oxid wird fuer den weiteren Transport abgefuellt. Rd. 3.000 t/a Mischoxid werden direkt in die Muffeloefen der Zinksekundaerhuette eingetragen.

Messungen von vulkanischen Schwefel- und Kohlenstoffemissionen mit hoher Zeitauflösung

Dies ist ein Antrag auf Reisekosten für eine Reise von Deutschland nach Argentinien zum Besuch der Vulkane Copahue and Peteroa, dort planen wir zusammen mit Forschern aus Argentinien in-situ Messungen von vulkanischem SO2 mit einem neuartigen Instrument. In Kombination mit in-situ CO2 Messungen erwarten wir einen Datensatz von CO2/SO2 Verhältnissen mit bisher unerreichter Genauigkeit und Zeitauflösung.Obwohl Fernerkundungsmessungen von SO2 sich mittlerweile in der Vulkanologie weit verbreitet haben, stellen bodengebundene und Flugzeug-getragene in-situ-Messungen immer noch eine wichtige Quelle ergänzender Information dar. Heutzutage werden in-situ Messungen von SO2 häufig mittels elektrochemischer Sensoren vorgenommen, diese weisen allerdings eine Reihe von Nachteilen auf, insbesondere (1) relativ lange Ansprechzeiten (ca. 20 s und mehr), (2) Interferenzen durch eine Reihe anderer reaktiver Gase, die sich in Vulkanfahnen finden (und die schwer zu quantifizieren bzw. unbekannt sind), (3) Die Notwendigkeit häufiger Kalibration. Wir lösen diese Probleme mit einem neuentwickelten, optischen in-situ SO2-Sensor Prototypen, der nach dem Prinzip der nicht-dispersiven UV-Absorption arbeitet (PITSA, Portable in-situ Sulfurdioxide Analyser). Die preisgünstige Anwendung des Prinzips für SO2 - Messungen wurde durch die Entwicklung von UV-LEDs ermöglicht. Die Probenluft wird durch eine Glasröhre gesaugt und dort der kollimierten Strahlung einer UV-LED (ca. 290nm) ausgesetzt, in diesem Wellenlängenbereich absorbiert (von den relevanten Vulkangasen) praktisch nur SO2. Daher ist die Abschwächung der Strahlungsintensität nach Durchgang durch die Messzelle ein Mass für den SO2-Gehalt der Messluft. Das PITSA Instrument wird mit einem kommerziellen CO2 Sensor kombiniert, damit werden SO2 und CO2 Messungen mit 0.1 ppm bzw. 1 ppm Genauigkeit möglich. Dadurch eröffnen sich neue Möglichkeiten in der Vulkanologie.

Kartierung von Klimagasen mittels spektroskopischer Messung von reflektiertem Sonnenlicht

Urbane Emissionen von Kohlendioxid (CO2) und Methan (CH4) machen einen Großteil der Treibhausgasemissionen weltweit aus. Deshalb sind Städte auch Vorreiter bei der Entwicklung von Emissionsreduktionsmaßnahmen zur Mitigation des Klimawandels. Solche Maßnahmen müssen durch räumlich und zeitlich hochaufgelöste, vollständige, verlässliche und verifizierte Informationen begleitet und in Bezug auf ihre Effizienz überprüft werden. Unter den Beobachtungsmethoden für Treibhausgase gibt es allerdings eine Lücke im Bereich der horizontalen, flächendeckenden Kartierung auf der Skala einiger Kilometer. Dort braucht es eine Technik, die die Empfindlichkeitslücke zwischen lokalen in-situ Messungen und regional-integrierenden Säulenmessungen durch Fernerkundungsmessungen füllt.Hier schlage ich vor, urbane Treibhausgasquellen mit einer innovativen und portablen Technik zu studieren, die die CO2 und CH4 Konzentrationsfelder flächendeckend kartieren kann und so die Beobachtungslücke erfasst. Die erste Studienregion ist der Großraum Los Angeles, wo sich die CO2 und CH4 Emissionen auf mehr als 100 MtCO2/a und 300 ktCH4/a belaufen, was die Region zu einer der größten, lokalisierten Quellen weltweit macht. Los Angeles wurde in der Vergangenheit vielfältig in Bezug auf seine Treibhausgasquellen untersucht, indem beispielsweise Inventarisierungen durchgeführt und durch atmosphärische Messungen bewertet wurden. Ein herausragendes Experiment läuft gerade im Rahmen des CLARS-FTS (California Laboratory for Atmospheric Remote Sensing - Fourier Transform Spectrometer) – ein Spektrometer, das auf Mt. Wilson stationiert ist und reflektiertes Sonnenlicht aus dem Los Angeles Stadtgebiet einfängt. Wir haben eine portable Variante dieses Instruments entwickelt und schlagen nun vor beide Instrumente gemeinsam mit kalifornischen Partnern bei einer Feldkampagne zu betreiben.Dabei ist es unser Ziel das neue portable Observatorium zu validieren und für zukünftige Langfristvorhaben zu empfehlen. Dazu wollen wir innovative Beobachtungsmuster wie die Definition von Zoom-Regionen oder die Verwendung von gekreuzten Lichtwegen ausprobieren, um die räumliche und zeitliche Auflösung zu optimieren. Zudem werden wir die Genauigkeiten verbessern, indem wir einen neuen Ansatz der Strahlungstransportmodellierung implementieren, der simultan mit der Gasbestimmung auch die Streuung an atmosphärischen Partikeln berücksichtigt. Für die Fallstudie Los Angeles werden wir die Variabilität und die Gradienten der CO2 und CH4 Konzentrationen auf ihre Konsistenz mit den Emissionsinventaren überprüfen und untersuchen, bis zu welchem Grad sich die Einflüsse des meteorologischen Transports, der regionalen Advektion, episodischer Ereignisse und der urbanen Biosphäre unterscheiden lassen.

Mobilisierung von Eisen in Vulkanasche während des Transports in Eruptionssäulen

Vulkanische Asche wurde vor kurzem als eines potenziellen Düngemittel für Ozeanoberfläche identifiziert worden. Jedoch werden die Prozesse, die Umwandlung von unlöslichen zu löslichen Eisen ermöglichen Fe-Verbindungen in der Asche wenig verstanden bisher. Diese Studie untersucht die vulkanische Wolke Kontrollen auf Asche Eisenlöslichkeit. Ich kombiniere Vulkanausbruch Spalte Modellierung mit hohen, mittleren und niedrigen Temperaturen chemische Reaktionen in Eruption Wolken, um besser einschränken Vulkanasche Eisen Mobilisierung unter Berücksichtigung der Wechselwirkung verschiedener Arten in einem Fest-Flüssig-Gas-System. Zuerst benutze ich ATHAM die Plum Dynamik und Mikrophysik lösen. Zweitens, entwickle ich eine Chemie und Thermodynamik Code, der die Umgebungsbedingungen (in-plume Temperatur, Druck, Feuchtigkeit usw.) bekommt von den ATHAM Ausgänge und simuliert die gas-ash/aerosol Interaktionen mit speziellem Fokus auf Eisen-Chemie. Dieses Modell basiert auf einer Reihe von gekoppelten Massenbilanzgleichungen für verschiedene Arten der Eruptionssäule. Begriffe, die in diesen Gleichungen basieren auf physikalisch-chemischen Wechselwirkungen von gasförmigen, flüssigen und festen Arten parametriert. Einige der wichtigsten Prozesse in dieser Studie nicht berücksichtigt sind: Gas-Scavenging durch Asche, Wasser und Eis, Auflösung von Asche in der flüssigen Phase und Eisen wässrigen Chemie. Eine Reihe von Laborexperimenten auf Asche wird auch als die Ergebnisse der Modellierung gegen echte Ascheproben und Beobachtung zu bewerten. Schließlich schlage ich die günstige vulkanischen Einstellung und in-plume Prozesse für Asche Eisen Mobilisierung.

Impuls- und Energieflüsse in Gegenwart von oberflächenaktiven Substanzen

Unsere Motivation basiert auf der Tatsache, dass bei schwachen bis mäßigen Windgeschwindigkeiten die gekoppelten viskosen Luft-Wasser-Schichten auf beiden Seiten der Mikroschickt an der Wasseroberfläche (surface microlayer, SML) den Großteil der Windspannung tragen, die wiederum stark von den Oberflächenwellen moduliert wird. Dynamische Prozesse auf Skalen von Millimetern bis wenigen Zentimetern werden durch den Windstress angetrieben und sind von zentraler Bedeutung für ein tiefes Verständnis der SML-Dynamik und der Austauschprozesse zwischen Ozean und Atmosphäre. Wenn monomolekulare Oberflächenfilme an der Meeresoberfläche (marine Monolayers) die (mehrschichtige/ Mikrometer-) SML bedecken, dämpfen sie kleinskalige Oberflächenwellen, wodurch diese Austauschprozesse beeinflusst werden. Während die allgemeine Wirkung von Monolayern auf die kleinskalige Oberflächenrauheit, auf den Windstress und auf Gasflüsse grundsätzlich bekannt ist, fehlt es noch an Wissen über ihren Einfluss auf Prozesse, die auf sehr kleinen Längenskalen in der Größenordnung von Millimetern und darunter ablaufen. Im Teilprojekt 2.2 der Forschungsgruppe BASS werden wir diese Lücke durch eine Reihe von Laborexperimenten am Windwellenkanal der Universität Hamburg schließen, in denen modernste Beobachtungstechniken einen bisher nicht erreichten Einblick in kleinskalige Dynamiken innerhalb der SML und ihrer unmittelbare Umgebung liefern werden. Die Relevanz für die Forschungsgruppe BASS ergibt sich aus der Untersuchung von Transport-, Akkumulations- und Austauschprozessen innerhalb der SML, die hauptsächlich von kleinskaligen Dynamiken an der Meeresoberfläche getrieben werden und somit von ihnen abhängen. Um diese Prozesse zu verstehen, ist eine gründliche Kenntnis der kleinräumigen Oberflächenwellen- und oberflächennahen Strömungsfelder sowie der Turbulenzmuster sowohl ober- als auch unterhalb der (dynamischen) Wasseroberfläche erforderlich. Ihre Untersuchung erfordert Messungen auf räumlichen Skalen im Millimeterbereich und darunter, sowie Experimente unter kontrollierten (Wind- und Wellen-) Bedingungen, die nur in Laboreinrichtungen wie dem Windwellenkanal der Universität Hamburg möglich sind. Innerhalb dieses Teilprojekts werden wir kleinräumige (cm bis sub-mm) physikalische Prozesse an der rauen Luft-Wasser-Grenzfläche untersuchen, die von anderen Teilprojekten untersuchte Austauschprozesse modulieren und kontrollieren, und die durch monomolekulare Oberflächenfilme verändert werden, die häufig in Küstengewässern anzutreffen sind.

Untersuchung der Bedingungen zum Auftreten von Blitzen während vulkanischer Eruptionen

Vulkanische Eruptionen faszinieren die Menschen seit jeher, insbesondere wenn sie mit spektakulären Blitzen in Eruptionswolken einhergehen. Dieses Phänomen wurde erstmals durch Plinius den Jüngeren bei der 79 AD Eruption des Vesuvs beschrieben und heutzutage gibt es zahlreiche ausgezeichnete Fotos von Blitzen während vulkanischer Eruptionen. Das verstärkte wissenschaftliche Interesse beruht darauf, dass Blitze relativ einfach mittels Antennen zu registrieren sind und so u.U. als Mitigationswerkzeug und zur Abschätzung der Eruptionsgröße genutzt werden könnten. Zudem legen die Miller-Ureys Experimente nahe, dass Blitze in Vulkaneruptionen die Transformation der aus vulkanischen Gasen bestehenden primordialen Atmosphäre in komplexe organische Verbindungen begünstigt haben können.Bisher sind dedizierte Modelle zur Erklärung der Blitze in vulkanischen Eruptionen jedoch nach wie vor selten. Verschiedene elektrostatische Prozesse wie Triboelektrifikation und bruchinduzierte Ladungstrennung wurden zwar schon genauer untersucht, aber in vielen Modellen wird die Eruptionswolke hinsichtlich der Blitzentstehung immer noch mit einer dreckigen Gewitterwolke verglichen, obwohl die Gemeinsamkeiten beider Wolken eher klein sind. Mittels dieses Antrags soll die Entstehung von Blitzen in Eruptionswolken durch eine neuartige Kombination von Geländemessungen, Laborexperimenten und begleitenden numerischen Modellen untersucht werden. Bei den Geländemessungen kommen Doppler Radar, Hochgeschwindigkeitsvideos, Messungen des elektrischen Feldes sowie seismische und akustische Messungen zum Einsatz, um die auftretenden Blitze eindeutig physikalischen Bedingungen in der Eruptionswolke zuzuordnen. Diese Messungen sollen am Vulkan Sakurajima in Japan durchgeführt werden, der für seine häufigen vulkanischen Eruptionen sowie das Auftreten von Blitzen bekannt ist. Die Geländedaten dokumentieren die prä-eruptiven Bedingungen, die Eruptionsgeschwindigkeiten vor und während der Blitze, die Positionen der Blitze und dazugehörige elektrische Felder, sowie Korngrößenverteilungen der Asche. Diese Daten werden durch detaillierte Laborversuche in sog. Shock tubes ergänzt, in denen sowohl natürlich als auch synthetisch hergestellte Asche verwendet wird. Untersucht werden u.a. die elektrischen Eigenschaften der Asche und der Zusammenhang zwischen den Versuchsbedingungen und dem Auftreten von Blitzen. Letztlich werden wir ein bestehendes Eruptionssäulenmodell um die Berücksichtigung der elektrischen Eigenschaften der Aschepartikel erweitern. Hiermit sollen unsere Modellvorstellungen zur Entstehung von Blitzen untersucht werden, insbesondere warum einige Eruptionen keine Blitze aufweisen während sich andere durch heftige Blitztätigkeit auszeichnen. Unsere Gelände- und Labordaten zusammen mit den numerischen Modellen werden die Bedingungen zum Auftreten vulkanischer Blitze klar eingrenzen und somit wird sich auch abschätzen lassen, inwieweit Blitze als Warnsystem genutzt werden können.

Photochemische Stabilitaet einfacher Nitrosaminverbindungen unter atmosphaerischen Bedingungen

Nitrosamine sind ausgesprochen starke Karzinogene. Ihre Bildung im Magen durch die mit der Nahrung oder Pharmakas aufgenommenen Vorstufen gilt als gesichert. In Loesungen zersetzen sie sich beim Bestrahlen mit Sonnenlicht relativ schnell. Das Vorkommen von Nitrosaminen in der Atmosphaere und damit ihr Einatmen wurde bisher nicht in Erwaegung gezogen, da man auch unter diesen Bedingungen mit einer schnellen photochemischen Zersetzung durch das Sonnenlicht rechnete. Dieser Aufnahme stehen die 1975 in der Atemluft einiger amerikanischer Grosstaedte entdeckten Nitrosaminkonzentrationen entgegen. Bis Heute liegen jedoch keine detaillierten Untersuchungen ueber das Verhalten der Nitrosamine unter atmosphaerischen Bedingungen (Gasphase) vor. Die Aufklaerung des physikalisch-chemischen Verhaltens der Nitrosamine in der Gasphase koennte der Krebsforschung und dem Gesetzgeber neue Erkenntnisse und Entscheidungshilfen geben.

Reaktive Halogene in einer simulierten Vulkanfahne

Vulkanische Gasemissionen sind bedeutsam für die lokale sowie globale Atmosphärenchemie. Die Entdeckung der Halogenchemie in Vulkanfahnen brachte neue Erkenntnisse über die Dynamik von Vulkanen und gibt möglicherweise Aufschluss über deren Eruptionspotential. Mehrere Feldmessungen führten zu großen Erfolgen in der Erforschung von reaktiven Halogenspezies (z. B. BrO, OClO, ClO). Jedoch ergaben sich auch viele Unklarheiten über die zugrundeliegenden Mechanismen und Umweltparameter wie Spurengas- und Aerosolzusammensetzung der Vulkanfahne, relative Feuchte oder der Bedeutung von potentieller NOX Emission. Der Einfluss sowie die Bedeutung dieser Parameter bezüglich der Halogenaktivierung (Umwandlung von Halogeniden in reaktive Halogenspezies (RHS)) ist essentiell für die Interpretation der Messdaten, um, z.B. (1) Rückschlüsse über die magmatischen Prozesse zu ziehen und Vorhersagen über Eruptionen mithilfe des Verhältnisses BrO zu SO2 zu machen, oder (2) den Einfluss auf die Zerstörung von Ozon, die Oxidation von Quecksilber oder die Verringerung der Lebensdauer von Methan in der Atmosphäre zu quantifizieren. Dieses Projekt soll dazu dienen, anhand eines vereinfachten Modells einer Vulkanfahne (SiO2 und Schwefelaerosole, H2O, CO2, SO2, HCl, HBr) unter kontrollierten Bedingungen die vulkanische Halogenchemie besser zu verstehen. Dazu soll in einer aus Teflon bestehenden Atmosphärensimulationskammer an der Universität Bayreuth Messungen durchgeführt werden. Die zur Messung der kritischen Parameter benötigten Instrumente können leicht in das Kammersystem integriert werden. RHS (BrO, ClO, OClO) werden mittels eines White Systems (Multi-Reflektionszelle) und Cavity Enhanced-DOAS nachgewiesen. Zum Nachweis anderer Halogenspezies (Br2, Cl2, HOBr und BrCl) wird FAPA-MS (Flowing Atmospheric-Pressure Afterglow Mass Spectrometry) verwendet. SO2, CO2, NOX und O3 werden mittels standardisierter Gasanalysatoren gemessen. Die Analyse der Zusammensetzung von Aerosolen insbesondere deren aufgenommene Menge an Halogenen wird durch Filterproben sowie Ionenchromatographie und SEM-EDX (Scanning Electron Microscope - Energy Dispersive X-ray Detector) gewährleistet. Die Kombination der verschiedenen Messtechniken ermöglicht die Erforschung von bisher schlecht Verstandenen heterogenen Reaktionen, welche höchstwahrscheinlich die Halogenaktivierung beeinflussen. Insbesondere die Einflüsse von (1) NOX und O3, (2) Ausgangsverhältnis HCl zu HBr, (3) relative Feuchte sowie (4) die Zusammensetzung der Vulkanaschepartikel (in Hinblick auf komplexere, reale Vulkanasche) auf die RHS Chemie, insbesondere des Mechanismus der sog. 'Brom-Explosion', werden innerhalb des vorgeschlagenen Projektes untersucht. Die Messergebnisse werden, gestützt durch das Chemie Box Modell CAABA/MECCA, in einem größeren Kontext interpretiert und werden helfen die natürlichen Vulkanprozesse besser zu verstehen.

1 2 3 4 5179 180 181