API src

Found 135 results.

Related terms

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Globale Relevanz von Gashydrat-gefüllten Rissen für Hangstabilität

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Globale Relevanz von Gashydrat-gefüllten Rissen für Hangstabilität" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 4 Dynamik des Ozeanbodens: Marine Geodynamik.Submarine Hangrutschungen stellen ein bedeutendes Risiko für Offshore-Infrastrukturen und Küstengebiete dar, da sie zum Beispiel gefährliche Tsunamis auslösen können, wie der Storegga Slide vor der Küste Norwegens. Neben anderen Präkonditionierung für Hangrutschungen, wie steile Hangneigung oder Überdruck in den Porenräumen der Sedimente verursach im Zusammenhang mit Eiszeiten, wurde die Auflösung von Gashydraten in vielen Studien diskutiert. Die weltweite räumliche Überscheidungen von submarinen Hangrutschungen und Gashydratvorkommen hat zu der Hypothese geführt, dass die Auflösung von Gashydraten in Zeiten von Meeresspiegelsenkung oder Erderwärmung eine Hangrutschung auslösen kann. Dieser Prozess entfernt die zementierenden Gasyhdrate aus den Porenräumen und das frei werdende Gas verursacht zusätzlichen Überdruck . Obwohl Studien mithilfe von numerischen Modellierungen gezeigt haben, dass diese Hypothese realistisch ist, konnte die Forschung keine geologischen oder geophysikalischen Beweise dafür finden, dass dieser Prozess wirklich eine Hangrutschung ausgelöst hat. Außerdem zeigen verschiedene Studien, dass viele submarine Hangrutschungen retrogressiv sind und auf dem mittleren bis unteren Kontinentalhang ausgelöst werden. Diese Beobachtung lässt vermuten, dass andere Prozesse die Rutschungen auslösen. Davon abgesehen gibt es keinen Zweifel, dass Gashydrate die geotechnischen Eigenschaften von Sedimenten stark beeinflussen. Daher ist es wichtig ihren Einfluss auf die Hangstabilität weiter zu untersuchen und neue Hypothesen zu testen. Das übergeordnete wissenschaftliche Ziel dieses Antrags ist es, (1) die globale Relevanz von Gashydratgefüllten Rissen für Hangstabilität zu ergründen und (2) den Einfluss von Scherfestigkeitsvariationen auf Störungsverläufe und Stressmerkmale, wie z.B. Bohrlochausbrüche, zu verstehen. Bis jetzt war es nicht möglich gewesen, den Zusammenhang zwischen Gashydraten und Hangstabilität herzustellen, da ein umfangreicher Datensatz aus geotechnischen, geologischen und geophysikalischen Daten aus einem Gebiet mit Gashydrate verursachten Rutschungen nicht verfügbar war. Die IODP Expedition 372 hat dies geändert. Uns stehen jetzt Logging-While-Drilling Daten und Sedimentkerne von dieser Expedition zur Verfügung, genauso wie ein hochauflösender 3D Seismik Datensatz, der mit dem GEOMAR P-Cable System im Jahre 2014 aufgezeichnet wurde. Diese Daten im Zusammenhang mit einer Scherzelle für Gashydrathaltige Sedimente auf dem neusten Stand der Technik am GEOMAR, die es erlaubt die Deformation der Probe live mit einem 4D X-ray CT zu beobachten, wird es uns ermöglichen, einen Entscheidenden Schritt vorwärts in der Gashydrat- und Hangstabilitätsforschung zu machen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Koordinationsfonds

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Koordinationsfonds" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Bundesanstalt für Geowissenschaften und Rohstoffe.Das International Ocean Discovery Program (IODP) ist ein zehnjähriges globales Vorhaben zur Erkundung der Bereiche unter den Meeresböden durch Tiefbohrungen. Es hat im Oktober 2013 begonnen und baut auf früheren wissenschaftlichen Ozean-Bohrprogrammen, namentlich dem Deep Sea Drilling Project (DSDP, 1968 - 83), dem Ocean Drilling Program (ODP, 1983 - 2003) und dem Integrated Ocean Drilling Program (IODP, 2003 - 2013), auf. Die wissenschaftlichen Ziele des neuen Bohrprogramms sind im Wissenschaftsplan 'Illuminating Earth's Past Present and Future' zusammengefasst. Darin sind vier Forschungsschwerpunkte festgelegt, die ihrerseits in insgesamt 14 verschiedene wissenschaftliche 'Herausforderungen' unterteilt sind:1) 'Climate and Ocean Change': Eine der wichtigsten wissenschaftlichen Herausforderungen ist es unser Verständnis für Änderungsraten und Ursachen globaler Klimaereignisse sowie deren Folgen zu verbessern. Die Erbohrung und Untersuchung von hochauflösenden Paläoklima-Archiven aus der Tiefsee erlauben Klimaänderungen und deren Rahmenbedingungen besser zu fassen und als Analogmodelle für den aktuellen Klimawandel sowie als Grundlage für numerische Modelle zur Vorhersage zukünftige Kimaänderungen heranzuziehen.2) 'Biosphere Frontiers': Eine weitere Herausforderung ist die Erforschung von Leben tief unterhalb des Meeresbodens, wo Mikroben isoliert von der photosynthetischen Welt an den Grenzbereichen theoretisch möglicher Lebensräume existieren. Die Erforschung dieser extremen Lebensräume erlaubt unter anderem Rückschlüsse auf die Entstehung des Lebens auf der Erde, da zu dieser Zeit ähnlich extreme Bedingungen herrschten. Eine weitere wichtige Herausforderung im Rahmen dieses Schwerpunktes ist die Beziehung zwischen Biodiversität und schnellen Umweltveränderungen. Ihre Erforschung ermöglicht Vorhersagen, wie der derzeitige Umweltwandel die marine Biodiversität und die marinen Ökosysteme beeinflussen könnte.3) 'Earth Connections': In diesem Schwerpunkt wird auf die geochemischen Austauschprozesse zwischen der festen Erde, den Ozeanen und der Atmosphäre fokussiert. Eine wichtige Herausforderung sind Bohrungen in den Erdmantel. Dieses größte geochemische Reservoir der Erde ist immer noch weitgehend unerforscht. Weitere Herausforderungen sind unter anderem ein besseres Verständnis für die Produktion ozeanischer Kruste sowie die involvierten Alterationsprozesse voran zu treiben.4) 'Earth in Motion': Dieser Schwerpunkt fokussiert auf kurzfristige geodynamische Prozesse von unmittelbarer gesellschaftlicher Relevanz. Hierunter fallen z.B. Prozesse im Zusammenhang mit Erdbeben, Erdrutschen und Tsunamis. Ebenfalls unter diesen Schwerpunkt fallen Herausforderungen wie ein Verständnis für die Bildung und Stabilität von Gashydraten und das Potential für die Sequestierung großer Mengen Kohlendioxid in Gesteinen der Tiefsee sowie die Installation von Bohrlochobservatorien.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP)

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Bundesanstalt für Geowissenschaften und Rohstoffe.Das International Ocean Discovery Program (IODP) ist ein zehnjähriges globales Vorhaben zur Erkundung der Bereiche unter den Meeresböden durch Tiefbohrungen. Es hat im Oktober 2013 begonnen und baut auf früheren wissenschaftlichen Ozean-Bohrprogrammen, namentlich dem Deep Sea Drilling Project (DSDP, 1968 - 83), dem Ocean Drilling Program (ODP, 1983 - 2003) und dem Integrated Ocean Drilling Program (IODP, 2003 - 2013), auf. Die wissenschaftlichen Ziele des neuen Bohrprogramms sind im Wissenschaftsplan 'Illuminating Earth's Past Present and Future' zusammengefasst. Darin sind vier Forschungsschwerpunkte festgelegt, die ihrerseits in insgesamt 14 verschiedene wissenschaftliche 'Herausforderungen' unterteilt sind:1) 'Climate and Ocean Change': Eine der wichtigsten wissenschaftlichen Herausforderungen ist es unser Verständnis für Änderungsraten und Ursachen globaler Klimaereignisse sowie deren Folgen zu verbessern. Die Erbohrung und Untersuchung von hochauflösenden Paläoklima-Archiven aus der Tiefsee erlauben Klimaänderungen und deren Rahmenbedingungen besser zu fassen und als Analogmodelle für den aktuellen Klimawandel sowie als Grundlage für numerische Modelle zur Vorhersage zukünftige Kimaänderungen heranzuziehen.2) 'Biosphere Frontiers': Eine weitere Herausforderung ist die Erforschung von Leben tief unterhalb des Meeresbodens, wo Mikroben isoliert von der photosynthetischen Welt an den Grenzbereichen theoretisch möglicher Lebensräume existieren. Die Erforschung dieser extremen Lebensräume erlaubt unter anderem Rückschlüsse auf die Entstehung des Lebens auf der Erde, da zu dieser Zeit ähnlich extreme Bedingungen herrschten. Eine weitere wichtige Herausforderung im Rahmen dieses Schwerpunktes ist die Beziehung zwischen Biodiversität und schnellen Umweltveränderungen. Ihre Erforschung ermöglicht Vorhersagen, wie der derzeitige Umweltwandel die marine Biodiversität und die marinen Ökosysteme beeinflussen könnte.3) 'Earth Connections': In diesem Schwerpunkt wird auf die geochemischen Austauschprozesse zwischen der festen Erde, den Ozeanen und der Atmosphäre fokussiert. Eine wichtige Herausforderung sind Bohrungen in den Erdmantel. Dieses größte geochemische Reservoir der Erde ist immer noch weitgehend unerforscht. Weitere Herausforderungen sind unter anderem ein besseres Verständnis für die Produktion ozeanischer Kruste sowie die involvierten Alterationsprozesse voran zu treiben.4) 'Earth in Motion': Dieser Schwerpunkt fokussiert auf kurzfristige geodynamische Prozesse von unmittelbarer gesellschaftlicher Relevanz. Hierunter fallen z.B. Prozesse im Zusammenhang mit Erdbeben, Erdrutschen und Tsunamis. Ebenfalls unter diesen Schwerpunkt fallen Herausforderungen wie ein Verständnis für die Bildung und Stabilität von Gashydraten und das Potential für die Sequestierung großer Mengen Kohlendioxid in Gesteinen der Tiefsee sowie die Installation von Bohrlochobservatorien.

3D structural geological model of the Mallik Anticline, Canadian Arctic

Dataset on laboratory pilot-scale simulations: CH4-CO2 exchange in gas hydrate-bearing sediments within GFZ´s Large Reservoir Simulator (LARS)

SO266 - TAIDRILL: Einfluss tektonischer Prozesse auf die Hydratverteilung und -dynamik

Das Projekt "SO266 - TAIDRILL: Einfluss tektonischer Prozesse auf die Hydratverteilung und -dynamik" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Bremen, Zentrum für marine Umweltwissenschaften.

M3: Zukunftsweisendes Sonar-Monitoring von klimaschädlichem Methan an Gasemissionen des Meeresbodens - Ein Beitrag zum Verständnis globalen Wandels

Das Projekt "M3: Zukunftsweisendes Sonar-Monitoring von klimaschädlichem Methan an Gasemissionen des Meeresbodens - Ein Beitrag zum Verständnis globalen Wandels" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Bremen, Zentrum für marine Umweltwissenschaften.Methan wirkt als starkes Treibhausgas, wenn es in die Atmosphäre gelangt. In den vergangenen Jahren wurden an vielen Kontinentalrändern weltweit submarine Methanquellen am Meeresboden mit Methanhydratabbau in den Sedimenten aufgrund von Temperaturerhöhungen in Zusammenhang gebracht. Ziel des Vorhabens ist es, das Wechselspiel von Gasblasenaustritten und Vorkommen von Gashydraten in einer Schlüsselregion, dem Hydratrücken nordwestlich der USA zu verstehen und die Menge an austretenden Gas zu bestimmen. Dazu sollen Sonar-Systeme sowie eine Kamera und eine CTD (Messung von Temperatur, Salzgehalt, Sauerstoff) am Meeresboden installiert und an das NSF finanzierte Tiefseekabelnetzwerk, der Ocean Observatory Initiative (OOI) angeschlossen werden. Damit sind langfristige Methanemissionsmessungen auf dem südlichen Hydratrücken erstmals möglich und werden hier vorgeschlagen. Gesamtziel des Vorhabens ist es, mittels modernster Sonarsysteme die Veränderungen der Gasblasenaustritte in Echtzeit zu dokumentieren und die Menge an austretenden Methan abzuschätzen. Das Projekt ist eine technologische Innovation und bindet sich ein in ein weltweit einmaliges Vorhaben, die Veränderungen in der Tiefsee mittels verkabelter Observatorien kontinuierlich zu beobachten. Es ist geplant zwei Sonarsysteme am Meeresboden zu installieren, um die Gasblasenaustritte am Hydratrücken kontinuierlich zu registrieren und zu quantifizieren. Die hochwertigen Geräte müssen in Rahmenkonstruktionen integriert und mit elektronischen Zusatzkomponenten für die Einbindung in das OOI Tiefseenetzwerk versehen werden. Die Geräte werden mit Hilfe eines Tauchroboters am Meeresboden installiert und in das Tiefseenetzwerk eingebunden, damit ist die kontinuierliche Messung in Echtzeit möglich. Weiterhin soll eine Visualisierung der Sonardaten in Echtzeit im Internet realisiert werden. Die kontinuierlichen Messungen am Meeresboden werden ergänzt durch Begleituntersuchungen im Rahmen von Schiffsexpeditionen.

SUGAR_II_B: Submarine Gashydrat-Lagerstätten - Erdgasproduktion und CO2-Speicherung, Vorhaben: B3 - Erschließung von Gashydrat-Lagerstätten; B3-3 Anpassung konventioneller Coiled Tubing Bohrtechnik zur Erschließung von Gashydratvorkommen

Das Projekt "SUGAR_II_B: Submarine Gashydrat-Lagerstätten - Erdgasproduktion und CO2-Speicherung, Vorhaben: B3 - Erschließung von Gashydrat-Lagerstätten; B3-3 Anpassung konventioneller Coiled Tubing Bohrtechnik zur Erschließung von Gashydratvorkommen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Hochschule Bochum, Bochum University of Applied Sciences, Institut für Wasser und Umwelt, Labor für Geothermie und Umwelttechnik.Das übergeordnete Projektziel der Hochschule Bochum besteht in der Anpassung von konventioneller Coiled-Tubing Bohrtechnik aus dem Erdöl-/Erdgasbereich an die besonderen Rahmenbedingungen bei der Erkundung und Erschließung von Gashydratreservoirs. Hierzu zählen Komponentenentwicklungen bei a) der Antriebstechnik (Motoren, Hämmer), b) der CT-basierten Stimulationstechnik und c) der Rohre. Ein wichtiges Augenmerk liegt dabei auch auf dem Sektor neuer Werkstoffe (z.B. Thermoplastic Composite Pipes). Die Entwicklungen sollen im Übergangsbereich vom Labor- zum Technikumsmaßstab (Demonstrator) erfolgen. Dazu werden die angepassten oder neu entwickelten CT-Komponenten unter betriebsnahen Bedingungen im in-situ Labor der Hochschule Bochum getestet. Beim Einsatz von Coiled Tubing Bohrtechnik zur Erschließung von Gashydratlagerstätten werden viel Know-how und technische Neuerungen / Weiterentwicklungen aus den Disziplinen Coiled Tubing drilling, Coil Materialien und deren Herstellung, hydraulische DTH Mudhammertechnik, Mud Motoren, und Bohrtechnik eingefordert und symbiotisch miteinander gekoppelt. Insbesondere der Einsatz neuer Materialien für Coils, hier z.B. TCP (Thermoplaste, Komposite), und deren Verhalten beim Bohren incl. der Erschließung von Gashydratlagerstätten mittels Druck, Dampf, Chemikalien etc. stehen unter anderem im Mittelpunkt dieses Forschungsprojektes.

Vorhaben: Untersuchung des Zusammenspiels von Hangdestabilisierung mit tektonischer Versteilung und Gashydratumwandlung II^SO 247 - SLAMZ: Wissenschaftliches Bohren am konvergenten Hikurangi-Plattenrand, Vorhaben: Untersuchung des Zusammenspiels von Hangdestabilisierung mit tektonischer Versteilung und Gashydratumwandlung I

Das Projekt "Vorhaben: Untersuchung des Zusammenspiels von Hangdestabilisierung mit tektonischer Versteilung und Gashydratumwandlung II^SO 247 - SLAMZ: Wissenschaftliches Bohren am konvergenten Hikurangi-Plattenrand, Vorhaben: Untersuchung des Zusammenspiels von Hangdestabilisierung mit tektonischer Versteilung und Gashydratumwandlung I" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Bremen, Zentrum für marine Umweltwissenschaften.Ziele: Das Verbundprojekt SO247 - SLAMZ (Slide activity on the Hikurangi margin, New Zealand) wird in zwei verschiedenen Arbeitsgebieten, zum einen an einem sogenannten Akkretionsrücken und zum anderen in einem Rutschgebiet versuchen, die komplexen Ursachen und Prozesse in Zusammenhang mit tektonischen Bewegungen und dem Vorkommen von Gashydraten als Auslösen für Rutschungen zu klären. Submarine Rutschungen stellen ein erhebliches Gefahrenpotential für küstennahe Siedlungen dar, da sie Auslöser für Flutwellen sein können. Das Teilprojekt des MARUM trägt mit seiner Expertise in Bezug auf die Bohrungen mit dem Meeresbodenbohrgerät MeBo200 und Wärmestromdichtemessungen zum Verbundprojekt bei. Aufgabe der Universität Jena ist es, Sedimentuntersuchungen (Wärmeleitfähigkeit) und numerische Simulationen durchzuführen.

SO 247 - SLAMZ: Wissenschaftliches Bohren am konvergenten Hikurangi-Plattenrand, Vorhaben: Untersuchung des Zusammenspiels von Hangdestabilisierung mit tektonischer Versteilung und Gashydratumwandlung II

Das Projekt "SO 247 - SLAMZ: Wissenschaftliches Bohren am konvergenten Hikurangi-Plattenrand, Vorhaben: Untersuchung des Zusammenspiels von Hangdestabilisierung mit tektonischer Versteilung und Gashydratumwandlung II" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften, Lehrstuhl für Angewandte Geologie.Ziele: Das Verbundprojekt SO247 - SLAMZ (Slide activity on the Hikurangi margin, New Zealand) wird in zwei verschiedenen Arbeitsgebieten, zum einen an einem sogenannten Akkretionsrücken und zum anderen in einem Rutschgebiet versuchen, die komplexen Ursachen und Prozesse in Zusammenhang mit tektonischen Bewegungen und dem Vorkommen von Gashydraten als Auslösen für Rutschungen zu klären. Submarine Rutschungen stellen ein erhebliches Gefahrenpotential für küstennahe Siedlungen dar, da sie Auslöser für Flutwellen sein können. Das Teilprojekt des MARUM trägt mit seiner Expertise in Bezug auf die Bohrungen mit dem Meeresbodenbohrgerät MeBo200 und Wärmestromdichtemessungen zum Verbundprojekt bei. Aufgabe der Universität Jena ist es, Sedimentuntersuchungen (Wärmeleitfähigkeit) und numerische Simulationen durchzuführen.

1 2 3 4 512 13 14