The new urban sprawl metric, named "Weighted Urban Proliferation“ (WUP) is based on the following definition of urban sprawl: the more area is built over in a given landscape (amount of built-up area) and the more dispersed this built-up area is in the landscape (spatial configuration), and the higher the uptake of built-up area per inhabitant or job (lower utilisation intensity in the built-up area), the higher the degree of urban sprawl. Weighted Urban Proliferation (WUP) metric has three components: the percentage of built-up areas (PBA), the dispersion of the built-up areas (DIS), and land uptake per person (LUP).
This dataset is the new version of the Effective Mesh Density (seff) 2016 dataset with improved input data, for the year 2009. This new dataset uses the Copernicus Imperviousness and the TomTom TeleAtlas datasets as fragmenting geometries. The Effective Mesh Density (seff) is a measure of the degree to which movement between different parts of the landscape is interrupted by a Fragmentation Geometry (FG). FGs are defined as the presence of impervious surfaces and traffic infrastructure, including medium sized roads. The more FGs fragment the landscape, the higher the effective mesh density hence the higher the fragmentation. The geographic coverage of the dataset is EEA39 except these countries: Albania, Bosnia and Herzegovina, Cyprus, Iceland, Kosovo (UNSCR 1244/99), Montenegro, North Macedonia, Romania, Serbia and Türkiye. An important consequence of landscape fragmentation is the increased isolation of ecosystem patches that breaks the structural connections and decreases resilience and ability of habitats to provide various ecosystem services. Fragmentation also influences human communities, agriculture, recreation and overall quality of life. Monitoring how fragmentation decreases landscape quality and changes the visual perception of landscapes provides information for policy measures that aim at improving ecosystem condition and restoration as well as maintaining the attractiveness of landscapes for recreational activities.
Dieser Datensatz beinhaltet die Baudenkmale im Landkreis Vorpommern-Greifswald.
Die Europäische Kommission hat 2018 ihre langfristige strategische Vision für die Klimapolitik "Ein sauberer Planet für alle" veröffentlicht, in der verschiedene Pfade für einen Übergang zum Erreichen von Netto-Null-Treibhausgasemissionen im gesamten Energiesektor und in der Wirtschaft bis 2050 aufgezeigt werden. Die Vision betont, dass ein Netto-Null-Ziel bis 2050 für alle Sektoren, einschließlich der bebauten Umwelt, eine große Herausforderung darstellt. Es ist das Ziel dieses Papiers, die EU Kommissionsinitiative Renovation Wave als zentrales Puzzlestück zu beschreiben und zu analysieren, welche auch Haupttreiber der angestrebten Überarbeitung der Energy-Performance of Buildings Directive (EPBD) im Jahr 2021 ist. Zum einen wird die Renovation Wave in den Kontext der übergreifenden EU-Politiklandschaft gestellt, zum anderen werden Ambitionen, Ziele und Politikoptionen mit den allgemeinen Ambitionen und den Aussagen der Wissenschaft verglichen. Hauptziel der Renovation Wave ist es, die aktuellen Renovierungsraten von öffentlichen und privaten Gebäuden bis 2030 mindestens zu verdoppeln und tiefergehende Renovierungen zu fördern. Zusammen mit einer sehr ehrgeizigen Dekarbonisierung der Wärmebereitstellung soll dies die Senkung direkter Treibhausgasemissionen im Gebäudesektor bis 2030 um 60 % (ggü. dem Niveau von 2015) ermöglichen, wie es auch im EU-Klimazielplan 2030 festgelegt ist. Neben Elementen in der EPBD sollten auch die RED- und EED-Revisionen sowie die Kohlenstoffbepreisung dafür sorgen, dass der angemessene Rahmen für die sehr ambitionierte Dekarbonisierung gegeben ist. Derzeit entsprechen die Fortschritte und Aktivitäten vor Ort und auf dem Sanierungsmarkt keineswegs dem, was in der Strategie als zielkonform definiert ist, weder in Bezug auf die Qualität noch auf die Quantität der Sanierungen. Die Umsetzung im Markt wird zeigen, ob die Strategie erfolgreich angewendet werden kann. Quelle: Forschungsbericht
Den Großteil des anthropogenen Materiallagers bildet die gebaute Umwelt. Dies trifft insbesondere für nichtmetallische Mineralien zu. In Deutschland wächst dieses Materiallager weiter an und verändert sich dabei in der Zusammensetzung. Zukünftig werden die Mengen abgehender Baumaterialmengen deutlich zunehmen. Hieraus erwächst eine besondere Verantwortung im Baubereich, Materialien im Kreislauf zu führen, dadurch Rohstoffe zu schonen und zugleich einen Beitrag zum Klimaschutz zu leisten. Dies erfordert gemeinsame Anstrengungen aller, die diese Materialströme beeinflussen können - vom Investor und Bauherrn des einzelnen Gebäudes bis hin zu den Verantwortlichen der Abfallwirtschaft, der Abfall- und Baustoffindustrie sowie Akteuren mit Verantwortung für nachhaltigkeitsorientierte Querschnittsaufgaben. Fehlende Informationen behindern bislang die effektive Umsetzung des Konzeptes der Kreislaufwirtschaft im Bauwesen. Informationsgrundlagen sind umso wirksamer, je zielgenauer sie die tatsächlichen Informationsbedarfe von Akteuren bedienen. Ziel des Vorhabens ist es daher, Konzeptionen zu zwei Instrumenten zur Dokumentation von Materialflüssen und Materialbeständen zu entwickeln und zu erproben: (1) Materialinventare für Einzelbauwerke und (2) Materialkataster für Bauwerksbestände von Regionen. Hieraus wird ein dualer Ansatz entwickelt, der unterschiedliche Handlungsebenen adressiert. Aufbauend auf gemeinsamen Grundlagen werden die Konzepte für die Instrumente entworfen und mit Hilfe von Fallbeispielen konkretisiert. Mit den Ergebnissen liegen differenzierte Konzepte zur Erstellung von Materialinventaren und Materialkatastern vor. Diese weisen jeweils spezifische Stärken auf, die dazu beitragen, den Kreislaufgedanken beim Planen und Bauen insgesamt zu unterstützen. Durch die Zusammenführung von beiden zu einem ganzheitlichen Konzept für ein Informationsmanagementsystem können weitere Potenziale gehoben werden. Materialinventare ergänzen die empirische Informationsbasis von Materialkatastern, wodurch sich deren Aussagekraft und Anwendbarkeit grundlegend erweitert. Die Anwendung regionaler Materialkataster zur Bewältigung gesamtgesellschaftlicher Aufgaben trägt zu einer stärkeren gesellschaftlichen Wahrnehmung der Bedeutung der Bauwerke als Nachfrager von Materialien sowie als Materiallager und dessen Unterstützung zur Rohstoffsicherung bei. Für eine Einführung und verstärkte Nutzung von Materialkatastern sowie Materialinventaren herrschen derzeit günstige Voraussetzungen. Im Kontext von Themen wie Ressourceneffizienz und Circular Economy wächst bei Politik, Wirtschaft und Planung das Interesse an Angaben zu den in Bauwerken verbauten Materialien und den damit in Anspruch genommenen Primärrohstoffen ebenso wie an Informationen zu dem erwarteten stofflichen Output beim Ersatz von Bauteilen und dem Rückbau von Bauwerken. Mit den vorliegenden Konzepten wird ein Rahmen vorgelegt, dieses Interesse im Sinne einer Stärkung von Ressourcen- und Klimaschutz zu bedienen und weiter zu steigern. Quelle: Forschungsbericht
The Urban Sprawl datasets shows the physically expanding urban areas - the spatial arrangement of built-up areas and their utilization. The European Environment Agency (EEA) has described sprawl as the physical pattern of low-density expansion of large urban areas, under market conditions, mainly into the surrounding agricultural areas. Sprawl is the leading edge of urban growth and implies little planning control of land subdivision urban sprawl metrics .
The worlds industrialised nations have accumulated a wealth of assets in the form of buildings, infrastructure and other durable goods. These assets constitute a valuable reservoir of secondary raw materials. This "anthropogenic material stockŁ should be understood as a future capital stock that must be systematically managed and exploited. Yet this capital stock has hitherto been largely ignored in discussions on resource efficiency, which instead have focused on inputs of primary raw materials. This is partly due to insufficient knowledge of the size and constitution of this material stock as well as its dynamics. Therefore, a project was set up by Germanys Federal Environment Agency to provide the missing information. Project results offer a comprehensive view of material stocks, inflows and outflows connected to durable goods. Thus we note an annual per capitagrowth in Germanys anthropogenic material stock of 10 t. In the last 50 years an estimated 42 billion tons of material has been added to the anthropogenic stock. Not all of this can be classified to primary groups of goods. Around 28 million tons of material has been consumed by buildings, infrastructure, building services as well as durable consumer goods. Of this figure, over 99% can be located in the built environment. This mass is approximately 79 times larger than the material mass currently consumed every year by these sectors. Annual outflow from the stock is around 0.8%. The annual rate of growth of the observed stock of goods is 0.5%. The various figures can be further broken down according to individual groups of goods and material groups. This knowledge provides the necessary foundation for the long-term monitoring of the anthropogenic stock and, moreover, is an important step in the evidence-based development of a model to incorporate and to improve closed-loop material flows as well as to support politics of securing supply of raw materials.Quelle: http://www.sciencedirect.com
Arlt, G., Hennersdorf, J., Lehmann, I. & Xuan Thinh, N. 2005: Auswirkungen städtischer Nutzungsstrukturen auf Grünflächen und Grünvolumen. IÖR Schriften. Nr. 47. Dresden. F+B Forschung und Beratung für Wohnen, Immobilien und Umwelt GmbH 2020: Berliner Mietspiegel 2019 – Grundlagendaten für den empirischen Mietspiegel und Aktualisierung des Wohnlagenverzeichnisses zum Berliner Mietspiegel 2019 – Methodenbericht; Gutachten im Auftrag der Senatsverwaltung für Stadtentwicklung und Wohnen Berlin. Download: www.stadtentwicklung.berlin.de/wohnen/mietspiegel/de/download/Mietspiegel2019_Berlin_Ergebnisbericht.pdf (Zugriff: 24.05.2022) Frick, A., Wagner, K., Kiefer, T. & S. Tervooren 2020: Wo fehlt Grün? – Defizitanalyse von Grünvolumen in Städten. In Meinel, G., Schumacher, U., Behnisch, M. & T. Krüger (Hrsg.): Flächennutzungsmonitoring XII. IÖR Schriften. Band 78. Rhombos Verlag. Berlin. Download (DOI): doi.org/10.26084/12dfns-p023 (Zugriff: 02.05.2022) Gill, S. E., Handley, J. F., Ennos, A. R. & Pauleit, S. 2007: Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environment, 33 (1), 115-133. doi:10.2148/benv.33.1.115. Download: www.researchgate.net/publication/253064021_Adapting_Cities_for_Climate_Change_The_Role_of_the_Green_Infrastructure (Zugriff am: 02.05.2022) Landeshauptstadt Potsdam 2010: Gutachten zum Integrierten Klimaschutzkonzept 2010. Download: www.potsdam.de/sites/default/files/documents/IntegriertesKlimaschutzkonzept2010.pdf (Zugriff am: 07.04.2022) Landeshauptstadt Potsdam 2018: Umweltmonitoring Potsdam. Erhebung und Auswertung von Umweltindikatoren. Umwelt analysieren und verstehen. Download: vv.potsdam.de/vv/Umweltmonitoring_-_Flyer_Dez2018.pdf (Zugriff am: 07.04.2022) Mathey, J., Rößler, S., Lehmann, I., Bräuer, A., Goldberg, V., Kurbjuhn, C. & Westbeld, A. 2011: Noch wärmer, noch trockener? Stadtnatur und Freiraumstrukturen im Klimawandel. Abschlussbericht zum F+E-Vorhaben “Noch wärmer, noch trockener? Stadtnatur und Freiraumstrukturen im Klimawandel”. Bonn-Bad Godesberg: Bundesamt für Naturschutz, Naturschutz und Biologische Vielfalt Heft 111. Meinel, G., Hecht, R. & Buchroithner, M. 2006a: Die Bestimmung städtischen Grünvolumens – Nutzen, Methodik und Ergebnisbewertung. In: Strobl, J., Blaschke, Th., Griesebner, G. (Hrsg.): Angewandte Geoinformatik 2006. Beiträge zum 18. AGIT-Symposium Salzburg. S. 430-437. Heidelberg. Meinel, G., Krüger, T., Eichler, L., Wurm, M., Tenikl, J., Frick, A., Wagner, K., Fina, S. 2022: Wie grün sind deutsche Städte? – Fernerkundliche Erfassung und stadträumlich-funktionale Differenzierung der Grünausstattung von Städten in Deutschland (Erfassung der urbanen Grünausstattung). BBSR-Online-Publikation Ausgabe: 03/2022. Download: www.bbsr.bund.de/BBSR/DE/veroeffentlichungen/bbsr-online/2022/bbsr-online-03-2022-dl.pdf?__blob=publicationFile&v=3 (Zugriff am: 07.04.2022) Reusswig, F., Becker, C., Lass, W., Haag, L., Hirsch¬feld, J., Knorr, A., Lüdeke, M. K. B., Neuhaus, A., Pankoke, C., Rupp, J., Walther, C., Walz, S., Weyer, G., Wiesemann, E. 2016: Anpassung an die Folgen des Klimawandels in Berlin (AFOK). Klimaschutz Teilkonzept. Teil I: Hauptbericht; Teil II: Materialien. Potsdam, Berlin. Juli 2016. Download: www.berlin.de/sen/uvk/_assets/klimaschutz/anpassung-an-den-klimawandel/programm-zur-anpassung-an-die-folgen-des-klimawandels/afok_zusammenfassung.pdf (Zugriff am: 27.06.2017) Schulze, H.-D., Pohl, W. & Großmann, M. 1984: Gutachten: Werte für die Landschafts- und Bauleitplanung: Bodenfunktionszahl, Grünvolumenzahl. – Schriftenreihe der Behörde für Bezirksangelegenheiten, Naturschutz und Umweltgestaltung Freie Hansestadt Hamburg, 9. 1. Aufl. Christians. Hamburg. SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) 2016a: Klimafolgenmonitoring des Landes Berlin. Sachstandsbericht 2016. Download: www.berlin.de/sen/uvk/_assets/klimaschutz/publikationen/klimafolgen-monitoringbericht2016_barrierefrei.pdf (Zugriff am: 02.05.2022) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) 2016b: Landschaftsprogramm. Artenschutzprogramm. Begründung und Erläuterung 2016. Download: www.berlin.de/sen/uvk/_assets/natur-gruen/landschaftsplanung/lapro_begruendung_2016.pdf (Zugriff am: 02.05.2022) SenStadtWohn (Senatsverwaltung für Stadtentwicklung und Wohnen Berlin) 2021: Vegetationshöhen – Weiterentwicklung und Anwendung des Bestimmungsverfahrens 2020. Download: www.berlin.de/umweltatlas/_assets/literatur/vegetationshoehen_2020.pdf (Zugriff am: 17.06.2022) SenUVK (Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin) 2020: Antwort auf die schriftliche Anfrage Nr. 18/22191 vom 20. Januar 2020 über Förderprogramme Stadtbäume. Berlin. Download: pardok.parlament-berlin.de/starweb/adis/citat/VT/18/SchrAnfr/s18-22191.pdf (Zugriff am: 17.06.2022) SenUVK (Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin) 2021: Straßenbaum-Zustandsbericht Berliner Innenstadt 2020. Ergebnisse der Straßenbaum-Zustandserhebung aus CIR-Luftbildern. Berlin. Download: www.berlin.de/sen/uvk/_assets/natur-gruen/stadtgruen/stadtbaeume/strassen-und-parkbaeume/zustand-der-strassenbaeume/strb_zustandsbericht2020.pdf (Zugriff am: 17.06.2022) Tervooren, S. 2015: Potenziale von Grünvolumen und Entsiegelung zur Klimaanpassung am Beispiel der Landeshauptstadt Potsdam. In: AGIT ‒ Journal für Angewandte Geoinformatik, 1-2015. Herbert Wichmann Verlag, VDE VERLAG GMBH, Berlin/Offenbach. ISBN 978-3-87907-557-7, ISSN 2364-9283, doi:10.14627/537557037. Download: gispoint.de/fileadmin/user_upload/paper_gis_open/AGIT_2015/537557037.pdf (Zugriff am: 02.05.2022) OSM (Open Street Map) 2021: Gebäudedaten Internet: download.geofabrik.de/europe/germany/berlin.html SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt) (Hrsg.) 2016c: Umweltatlas Berlin, Karte 04.10.07 Klimamodell Berlin – Klimaanalyse Stadtklima, Ausgabe 2016, 1 : 50.000, Berlin. Internet: www.berlin.de/umweltatlas/klima/klimaanalyse/2014/zusammenfassung/ SenStadtWohn (Senatsverwaltung für Stadtentwicklung und Wohnen) (Hrsg.) 2020: Umweltatlas Berlin, Karte 06.10.02 Vegetationshöhen, Stand 2020, Berlin. Internet: www.berlin.de/umweltatlas/biotope/vegetationshoehen/2020/zusammenfassung/ SenStadtWohn (Senatsverwaltung für Stadtentwicklung und Wohnen Berlin) (Hrsg.) 2021: ALKIS Berlin (Amtliches Liegenschaftskatasterinformationssystem) (Stand 06.09.2021). Internet: fbinter.stadt-berlin.de/fb/index.jsp?loginkey=showMap&mapId=wmsk_alkis@senstadt
The effective mesh density (seff) is a measure of the degree to which movement between different parts of the landscape is interrupted by a Fragmentation Geometry (FG). FGs are defined as the presence of impervious surfaces and traffic infrastructure, including medium sized roads. The more FGs fragment the landscape, the higher the effective mesh density hence the higher the fragmentation.
Bauhaus der Erde - Initiative für eine Bauwende Durch Errichten, Nutzung und Rückbau von Gebäuden ist der Bausektor ein bedeutender Treiber des Klimawandels. Das muss sich schleunigst ändern, soll das Pariser Klima-Abkommen nicht scheitern. Der Klimaforscher Hans Joachim Schellnhuber fordert deshalb von allen Verantwortlichen eine Bauwende. Die weltweite Substitution von Stahlbeton durch organische Baustoffe wie Holz oder Bambus würde erhebliche Mengen an klimaschädlichen Emissionen vermeiden. Darüber hinaus würde sogar eine mächtige CO 2 -Senke entstehen. Vor diesem Hintergrund hat Schellnhuber jetzt zusammen mit der Architektin Annette Hillebrandt und rund 20 weiteren Persönlichkeiten die „Bauhaus der Erde“ gGmbH gegründet. Der UBA -Präsident Dirk Messner hat das „Bauhaus der Erde“ fachlich mitinitiiert und unterstützt die Initative auch weiterhin fachlich. Als Keimzelle einer globalen Bewegung hat sich die Initiative zum Ziel gesetzt, die gebaute Umwelt nachhaltig zu transformieren. In Anlehnung an die Bauhaus-Bewegung des 20. Jahrhunderts wählt das „Bauhaus der Erde“ einen ganzheitlichen Ansatz. Es will einen breiten gesellschaftlichen Diskurs anstoßen, der eine neue Vision der gebauten Umwelt hervorbringt. Es gilt, diese Vision, die sich an den Begriffen Nachhaltigkeit , Teilhabe und Ästhetik orientieren sollte, in den nächsten Jahrzehnten umzusetzen. Für die entsprechenden Aktivitäten hat das „Bauhaus der Erde“ eine Startförderung in Höhe von 2,5 Millionen Euro von der „Laudes Foundation“ erhalten. Mehr Informationen zur Initiative: https://www.bauhausdererde.org .
Origin | Count |
---|---|
Bund | 98 |
Europa | 4 |
Land | 7 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 89 |
Text | 7 |
unbekannt | 10 |
License | Count |
---|---|
geschlossen | 12 |
offen | 90 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 101 |
Englisch | 28 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 1 |
Keine | 86 |
Webdienst | 3 |
Webseite | 20 |
Topic | Count |
---|---|
Boden | 80 |
Lebewesen & Lebensräume | 107 |
Luft | 65 |
Mensch & Umwelt | 107 |
Wasser | 62 |
Weitere | 105 |