Zwischen Herbst 2008 und Sommer 2010 wurden in den Vogesen und im Schwarzwald insgesamt 152 Quellen zu den verschiedenen Jahreszeiten beprobt. Neben den Quellgewässern sind auch die Böden der Quellgebiete Gegenstand der Untersuchung. Anhand verschiedener physikalischer und chemischer Parameter soll eine Aussage über den Versauerungsgrad der Quellen und der Böden in beiden Gebirgen getroffen werden. Zudem wird angestrebt, Korrelationen zwischen den Boden- und Quellwerten nachzuweisen. Diese Auswertungen dienen als Basis für die Analyse des Zustandes der Tonminerale in den Böden.
In this research we analyzed nocturnal temperature inversions in Haean Basin. Inversions are important phenomena for understanding meteorological and hydrological character of the basin region. Three automatic weather station data and tethered balloon soundings were used to analyze inversion strength, depth, and occurrence of inversions. Stronger and deep inversion was found during early summer while weaker but frequent inversions occurred during late September and early October. A significant influence of fog layer was found. The fog layer acts as a break during a cooling process. The fog appears usually in early mornings. During our experiment, average potential temperature change at the surface was -1.08 K/h without fog presence. When the fog appeared six hours average decreased to -0.23K/h. The most deep and strongest inversion of the studied period was 0.19 °C/m temperature gradient.
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Die Verlagerung der hauptsächlichen sommerlichen Position der innertropischen Konvergenzzone (ITC) über der südlichen Arabischen Halbinsel hat starken Einfluss auf die klimatischen Verhältnisse des südlichen Arabiens. Eine Verschiebung der ITC nach Norden führt zu einer gleichgerichteten Verlagerung des Indischen Monsuns, was einen Anstieg der Niederschläge im südlichen Arabien zur Folge hat. Das Projekt befasst sich mit der Rekonstruktion der Paläoumwelt der heute ariden Jabal Bani Jabir Region in der südlichen Hajar Bergkette im Nordosten Omans, die im hohem Maße von den Paläoniederschlägen in dieser Region abhängig ist. Die Rekonstruktion der Paläoumwelt wird auf der Grundlage eines 20 m mächtigen Sedimentarchivs erstellt werden, das sich in einer Senke in der Nähe der Bergoase von Maqta in einer Höhe von 1.160 m befindet. Der Schwerpunkt der wissenschaftlichen Arbeiten liegt im Bereich holozäner Klimaschwankungen unter besonderer Berücksichtigung ihrer möglichen Einflüsse auf die landwirtschaftliche Tätigkeit in diesem Gebiet.
Der menschliche Einfluss auf großräumige Änderungen des Klimas hat in den letzten Jahrzehnten stark zugenommen, sowohl in Atmosphäre, Ozean und Kryosphäre. Die genauen Eigenschaften physikalischer Prozesse und Mechanismen, die den menschlichen Einfluss von großräumigen auf lokale Skalen übertragen, sind allerdings kaum bekannt. Dies bedeutet eine erhebliche Unsicherheit für die Folgen des Klimawandels in der Zukunft. Das Problem der Übertragung betrifft auch den Gletscherrückgang im Hochgebirge, der überdies ein seltener Indikator für den Klimawandel in der mittleren Troposphäre ist. --- Das vorliegende Projekt hat das Ziel, unser Verständnis des Klimawandels in großer Höhe entscheidend zu verbessern. Das Fundament dafür legt eine neuartige und interdisziplinäre Methodik, mit der wir den menschlichen Anteil am Klimawandel in der großräumigen Klimadynamik, der regionalen Zirkulation über den ausgewählten Gebirgen sowie in der atmosphärischen Grenzschicht der dortigen Gletscher quantifizieren können. Die Verknüpfung prozessauflösender, physikalischer Modelle von globaler bis lokaler Skala sowie außergewöhnliche Messungen auf Gletschern in großer Höhe spannen diese Methodik auf. Sie wird letztlich ermöglichen, den menschlichen Anteil präzise zu erklären und die dafür verantwortlichen Mechanismen ausweisen zu können, inklusive der empfindlichsten Zusammenhänge im multiskaligen System ('Achillesfersen'). --- Der Einfluss des Projekts wird sich deutlich über die Glaziologie hinaus erstrecken. Unser Wissen über das globale Klimasystem wird durch den besser verstandenen Aspekt der Verknüpfung zwischen bodennahen Luftschichten und der mittleren Troposphäre profitieren. Auf regionalen und lokalen Skalen helfen die Ergebnisse für die Abschätzung von Klimafolgen, da Gletscheränderungen Wasserreserven und Naturgefahren beeinflussen. Und schließlich werden die Ergebnisse neue Wege für die Klimafolgenforschung allgemein aufzeigen, indem sie eine prozessauflösende und skalenübergreifende Methodik demonstrieren.
Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.
Die Göppinger Hütte liegt auf 2245 m.ü.NN. in Österreich, Vorarlberg, im Karstgebiet. Das Trinkwasser für den Hüttenbetrieb wird aus einem Schneefeld bezogen, bzw. gegen Ende der Saison wird Regenwasser genutzt. Durch die Installation einer neuen UV-Anlage wird die Hütte mit hygienisch einwandfreiem Trinkwasser versorgt werden. Bisher traten in warmen Perioden Engpässe in der Wasserversorgung auf. Daraufhin stand zur Diskussion, ob der Speicherbehälter erweitert werden soll. Unter ökologischen Gesichtspunkten sollte allerdings zuerst der Hüttenbetrieb auf Einsparungsmaßnahmen untersucht werden. Im Küchenbereich wurde bereits bei den zurückliegenden Anschaffungen auf wassersparende Geräte Wert gelegt. Als größter Wasserverbraucher wurde die Toilettenanlagen mit 9 l Spülkästen festgestellt. Hier besteht das größte Einsparpotential. Durch die Installation von urinseparierenden Komposttoiletten und wasserlosen Urinalen soll dieses Potential voll ausgeschöpft werden. Der anfallende Urin wird als Teilstrom separat gesammelt und mittels Materialseilbahn zur unterhalb gelegenen Alpe transportiert und dort in eine Güllegrube gegeben. Dadurch wird eine einfachere Abwasserreinigung möglich und das Hüttenumfeld vor dem Eintrag von Nährstoffen geschützt. Das Abwasser wird derzeit in eine 2 Kammer-Grube geleitet und bei Vollfüllung ausgepumpt und der Schlamm im Hüttenumfeld verbracht. Durch die Änderungen im Sanitärbereich, verändert sich auch die Zusammensetzung des verbleibenden Abwassers. Bei Installation einer Komposttoilette muss lediglich der sogenannte Teilstrom Grauwasser gereinigt werden (26). Nach einem Variantenvergleich, der die speziellen Randbedingungen der Göppinger Hütte berücksichtigt hat, wurde als Vorzugsvariante eine mechanische Vorreinigung über eine Filtersackanlage mit einer anschließenden biologischen Reinigung in einem bewachsenen Bodenfilter gewählt. Das Küchenabwasser wird zusätzlich an einen Fettfang angeschlossen. Die Abwasserreinigungsanlage benötigt sehr wenig Energie (26) und ist gut in die Landschaft einzugliedern. Es werden durch diese Anlage mindestens die Grenzwerte für den biologischen Abbau der Extremlagen-Verordnung eingehalten. Durch diese Reinigung wird das ökologische Gleichgewicht der Umgebung der Hütte weitgehend entlastet . Durch einem gestiegenen Bedarf an Energie der Göppinger Hütte sowie durch die geplanten Anlagen (UV-Entkeimung und Abwasserreinigung) wird die Energieversorgung neu überplant. Derzeit existiert eine Photovoltaikanlage, über die auch die Materialseilbahn betrieben wird. Als Notstromversorgung dient ein Dieselaggregat. Der Gastraum wird über einen Kachelofen beheizt. Das erstellte Energiekonzept sieht in einem ersten Schritt eine verbesserte Wärmedämmung der Gaststube vor, ein wärmegedämmtes Warmwasserverteilnetz sowie den Ersatz einzelner Verbraucher durch energiesparende Einheiten. (Text gekürzt)
Das Projekt "Quantifying the Influence of SnowmelT on RIVEr Hydrology in High Mountain Asia (STRIVE)" fokussiert sich auf alpine Flüsse und dem Zeitpunkt und Menge der Schneeschmelze im Himalaya . In vielen alpinen Einzugsgebieten stammt ein signifikanter Teil des jährlichen Wasserhaushalts aus der Schneeschmelze, insbesondere während der Monate vor dem Beginn des Monsuns. Da die Gletscher in vielen hochgelegenen Bergregionen weiter schmelzen werden, wird der saisonale Wasserpuffer durch die Schneeschmelze in Zukunft noch wichtiger werden. Auch die Gefahr von Überschwemmungen wird zunehmen, da die steigenden Temperaturen die Schneeschmelze im Frühjahr beschleunigen. Trotz der Bedeutung des Schneewasserhaushalts für viele besiedelte Gebiete sind Zeitpunkt und Volumen der Schneeschmelze nach wie vor nur unzureichend bekannt - insbesondere in Einzugsgebieten in großer Höhe. Um besser quantifizieren zu können, wann und wo das Wasser der Schneeschmelze die alpinen Flüsse erreicht, wird das STRIVE-Projekt einen kombinierten in-situ- und satellitenbasierten Ansatz verwenden, um (1) den Zeitpunkt und die räumliche Verteilung der Schneeschmelze zu überwachen, (2) den Einfluss der Schneeschmelze auf die Flusshöhen und (3) Flusstemperaturen zu bewerten. Die im Rahmen des STRIVE-Projekts gesammelten neuen Daten mit hoher zeitlicher Auflösung werden mit lokalen und regionalen hydrologischen Daten kombiniert, um (4) ein umfassenderes Verständnis der aktuellen Schneeschmelze und deren Wassermenge für alpine Flüsse zu entwickeln. Hier spielen insbesondere die sich verändernden Klimabedingungen eine große Rolle. Die Ergebnisse des STRIVE-Projekts werden für Forscher verschiedener Fachbereiche in der physischen Geographie, Hydrologie und Geomorphologie, zum Einschätzen von Naturgefahren und für Manager sowie Entwickler von Wasserkraftwerken im gesamten Himalaya und in ähnlichen, von der Schneeschmelze angetriebenen alpinen Ökosystemen, von großem Nutzen sein. Um die Forschungszusammenarbeit und den Austausch mit den nepalesischen Partnern zu erleichtern und nachhaltiger zu machen, wird das STRIVE-Projekt zwei Workshops für Nachwuchswissenschaftlerinnen durchführen, die sich mit der Sammlung und Verarbeitung von in-situ- und Fernerkundungsdaten beschäftigen. Diese Workshops werden dazu beitragen, die Ergebnisse und Erkenntnisse des STRIVE-Projekts zu verbreiten und sicherzustellen, dass die entwickelten Methoden und Daten auch nach dem Ende des Projekts in die Forschung und in wasserpolitische Entscheidungen im Himalaya einfließen.
Das Ziel des hier vorgeschlagenen LOBSTER Projektes im Rahmen des SPP 4D-MB umfasst zum einen den Einsatz eines deutsch-französischen Netzwerkes von Ozeanbodenseismometern (OBS) in der Ligurischen See als marine Komponente des seismischen Netzwerkes von AlpArray und zum anderen die Bereitstellung von korrigierten und prozessierten marinen seismologischen Daten, die kompatibel mit den Landdaten sind. AlpArray ist eine europäische Initiative mit dem Ziel, ein enges Netzwerk an Breitbandstationen im alpinen Orogen einzusetzen, um Untergrundstrukturen in hoher Auflösung abzubilden. Die marine Komponente von AlpArray und SPP 4D-MB umfasst den Einsatz von 33 Breitbandstationen aus Frankreich und Deutschland in der Ligurischen See. Der Einsatz der deutschen Stationen wird hier beantragt. Dahingehend haben die französischen Kollegen für 2017 Schiffszeit zum Ausbringen der Stationen sichern können, während in Deutschland zeitgleich ein Antrag auf Schiffszeit auf FS Merian/Meteor eingereicht und für 18 Tage Anfang 2018 bewilligt wurde. Damit können die Schiffszeiten für das Ausbringen und Bergen der Stationen zwischen den beiden Nationen geteilt werden. Die OBS-Daten sind essentiell für die Identifikation von Untergrundstrukturen im Übergang der westlichen Alpen zum Apennin und für unser Verständnis der dreidimensionalen Geometrie des tektonischen Systems. OBS-Geräte unterscheiden sind grundsätzlich von Landstationen aufgrund ihres maritimen Einsatzbereiches und somit gilt gleiches auch für die registrierten Daten. Die Hauptaufgabe im Rahmen von LOBSTER wird es daher sein, eine Kompatibilität zwischen den marinen Daten und den Landdaten herzustellen. Die kombinierte Analyse der beiden Datensätze im Rahmen von SPP 4D-MB setzt eine zeitnahe Korrektur und Bereitstellung des marinen Datensatzes voraus, so dass beide Datensätze zusammengeführt werden können. Die dafür notwendigen Bearbeitungsschritte sollen im Zeitraum zwischen den Ausfahrten aufgesetzt und vorbereitet werden. Um Kompatibilität zu erreichen, ist zunächst eine Zeitkorrektur notwendig. Ohne Verbindung zur Außenwelt ist eine Synchronisation z.B. mit GPS erst nach der Bergung möglich. Bis dahin entstandene Zeitfehler können durch Kreuzkorrelation des seismischen Umgebungsrauschens (ambient noise) behoben werden. Da OBS autark abgesetzt werden, ist ihre Orientierung am Meeresboden zunächst nicht bekannt und muss z.B. aus Messungen von Airgun-Schüssen ermittelt werden. Als letzten Bearbeitungsschritt im Projekt sehen wir eine Charakterisierung des Spektralverhaltens der OBS mit Hilfe von Wahrscheinlichkeitsdichte-Verteilungen der spektralen Leistungsdichte vor, um Aussagen über die Entstehung und Ausbreitung des seismischen Umgebungsrauschens in der Ligurischen See treffen zu können.
Wasserressourcen in Hochgebirgsregionen haben eine zentrale Funktion für Menschen und Ökosysteme. Eine wachsende Anzahl an Studien bewertet aktuelle und künftige Veränderungen der Abflüsse in bedeutenden Gebirgen. Gleichzeitig werden Anpassungsstrategien erarbeitet, um aktuelle und zu erwartende Wasserhaushaltsdefizite zu verringern. Der 5. Bericht des IPCC hebt die grundlegende Bedeutung des Risiko-Anpassung-Zusammenhanges sowohl für die Entwicklung von Anpassungsstrategien als auch zur Verringerung und Handhabung zukünftiger Klimarisiken hervor. Allerdings sind umfangreiche Analysen des Risikos in Bezug auf die Wasserressourcen und den Klimawandel mit mehrdimensionalen Einflussfaktoren und unter Berücksichtigung von verschiedenen Skalen komplex und für die klimasensitiven Gebirgsregionen oft nicht vorhanden. Dieser gemeinschaftliche Antrag wird die Herausforderung mittels der international führenden Expertise der Universitäten Zürich und Stuttgart in Angriff nehmen. Durch die Kopplung von hydroklimatischen (Wasserangebot) und sozioökonomischen (Wassernachfrage) Daten wird ein Wasserhaushalts-Modellierungsframework entwickelt, der als Grundlage für die Analyse von Wasserrisiken und Anpassungsstrategien dient. Als integratives Fallbeispiel wird diese Methodologie in 2 Schlüsselregionen in den peruanischen Anden angewandt. Beide Regionen sind stark von Klimawandel und sozioökonomischen Auswirkung betroffen und somit einem potentiell hohem Maß an Wasserrisiken ausgesetzt. Die Hauptziele dieses Antrags sind:- Die Entwicklung räumlich und zeitlich konsistenter Zeitreihen von hochaufgelösten hydroklimatischen Daten (beobachtet und projiziert) mithilfe von innovativen Interpolations- und Downscalingmethoden.- Eine umfassende Analyse der Einflussfaktoren auf die Wassernachfrage in den Fallbeispielregionen und die Ableitung von sozioökonomischen Szenarien und deren Wassernachfrage (beobachtet und projiziert).- Die Entwicklung eines Wasserbilanzmodells für Wasserangebot und -nachfrage, welches für Simulationen zukünftiger Szenarien verwendet wird, und somit Variabilität und Knappheit der Wasserressourcen aufzuzeigen.- Bewertung von Wasserrisiken in Bezug auf die verschiedenen wirtschaftlichen Sektoren und sozialen Gruppen. Grundlagen der Bewertungen sind hydrologischen Modelloutputs, die die Empfindlichkeit von Umweltsystemen und ökonomischen und sozialen Systemen und ein iteratives Verfahren, welches potentielle Anpassungsstrategien aufweist. Der Antrag schließt somit wissenschaftliche Lücken in der Analyse von gegenwärtigen und zukünftigen Wasserrisiken in Gebirgsgebieten. Die Innovation des Vorgehens in den transdisziplinären Ansatz für die Risikoanpassung, der die IPCC-Konzepte in Forschungsmethoden umsetzt.
Origin | Count |
---|---|
Bund | 1485 |
Kommune | 1 |
Land | 178 |
Wissenschaft | 46 |
Type | Count |
---|---|
Daten und Messstellen | 1 |
Ereignis | 12 |
Förderprogramm | 1137 |
Taxon | 40 |
Text | 331 |
Umweltprüfung | 8 |
WRRL-Maßnahme | 2 |
unbekannt | 114 |
License | Count |
---|---|
geschlossen | 449 |
offen | 1188 |
unbekannt | 8 |
Language | Count |
---|---|
Deutsch | 1393 |
Englisch | 417 |
Resource type | Count |
---|---|
Archiv | 12 |
Bild | 15 |
Datei | 13 |
Dokument | 274 |
Keine | 1039 |
Multimedia | 2 |
Unbekannt | 2 |
Webdienst | 27 |
Webseite | 346 |
Topic | Count |
---|---|
Boden | 1645 |
Lebewesen und Lebensräume | 1645 |
Luft | 847 |
Mensch und Umwelt | 1615 |
Wasser | 949 |
Weitere | 1552 |