Im Rahmen des Forschungsvorhabens sollen Ergebnisse von Untersuchungen der Laermentstehungsmechanismen bei Geblaesen und Verdichtern auf den Anwendungsfall der Turbine mit Kuehlluftausblasung uebertragen werden. Ziel des Vorhabens ist es, Auslegungskriterien fuer die Wahl der Kuehlluftausblasung bei gekuehlten Turbinenstufen festzulegen, die zu einer Laermminderung von Turbinen beitragen.
Ziel sind genauere Aussagen ueber das energetische Verhalten von Heizkesseln mit Geblaesebrenner. Es wird ein Berechnungsmodell verwendet, das anhand der Daten der Typenpruefung den Nutzungsgrad des Kessels bestimmt. Der Weg ueber das Berechnungsmodell erspart einen grossen Teil der sonst erforderlichen Messungen. Das Projekt testet vorgeschlagene Modelle aufgrund von Pruefstandsmessungen verschiedener Kesseltypen und entwickelt sie weiter.
Die Chemiewerk Bad Köstritz GmbH ist ein mittelständischer Hersteller von anorganischen Spezialchemikalien. Für die chemischen Herstellungsprozesse im Werk wird Dampf benötigt, für dessen Erzeugung Erdgas verbrannt wird. Zur Herstellung von Thiosulfaten und Sulfiten kommen flüssiges Schwefeldioxid und Schwefel zum Einsatz. Um Kieselsole und -gele herzustellen, wird konzentrierte Schwefelsäure verwendet. Bisher werden die benötigten Rohstoffe von externen Lieferanten bezogen und am Standort gelagert. Gegenstand des Vorhabens ist die Umsetzung eines innovativen Verfahrenskonzepts, mit welchem auf Basis von flüssigem Schwefel die weiteren benötigten Rohstoffe nach Bedarf am Standort hergestellt werden können. Im Zentrum steht die Errichtung einer Anlage zur Verbrennung von flüssigem Schwefel, der als Abprodukt bei Entschwefelungsprozessen in Raffinerien oder Kraftwerken anfällt. Das bei der Verbrennung entstehende Schwefeldioxid (SO2) wird mit einem Abhitzekessel abgekühlt. Ein Teil davon wird im Anschluss mit Hilfe einer Adsorptionskälteanlage verflüssigt. Der andere Teil des SO2 wird in einem Konverter mittels eines Katalysators zu Schwefeltrioxid (SO3) oxidiert und anschließend in einem Adsorber in konzentrierte Schwefelsäure umgewandelt, das Verhältnis SO2 zu H2SO4 (Schwefelsäure) kann dem Bedarf der Produktion flexibel angepasst werden. Mit der bei den Prozessen entstehenden Wärme wird Dampf erzeugt, welcher für den Antrieb des Gebläses für die Verbrennungsluft, zum Betrieb der Adsorptionskälteanlage und mittels einer Turbine zur Stromerzeugung genutzt wird. Der restliche Dampf wird in das vorhandene Dampfnetz des Werks eingespeist. Der erzeugte Strom wird zum Betrieb der Anlage und darüber hinaus für den Eigenbedarf am Standort verwendet. Das innovative Verfahrenskonzept geht deutlich über den Stand der Technik in der Chemiebranche hinaus und hat Modellcharakter. Es zeigt auf, wie an einem Standort aus einem einzigen Rohstoff verschiedene Produkte wirtschaftlich, bedarfsgerecht und gleichzeitig umweltfreundlich hergestellt werden können. Die Reduzierung der Anzahl der Rohstofftransporte trägt zur Umweltentlastung bei. Das Verfahren erzeugt keine Abfälle und Abwässer. Mit der konsequenten Abwärmenutzung zur Dampferzeugung können ca. 50 Prozent des Grundbedarfs an Dampf des Werks gedeckt und dadurch etwa die Hälfte des bisher zur Dampferzeugung genutzten Erdgases eingespart werden. Gegenüber dem gegenwärtigen Produktionsverfahren können insgesamt ca. 3.400 Tonnen CO2-Emissionen jährlich vermieden werden, was einer Minderung um etwa 33 Prozent entspricht.
Das Ziel dieses Forschungsvorhabens ist die Entwicklung und praktische Erprobung einer kostengünstigen adaptiven universellen Regelung. Die Universalität dieser adaptiven Regelung soll sich dadurch ergeben, dass der Regler nicht nur für LEVS Technologien mit dem Drei-Gebläse-Verbrennungsluftzufuhr- und Abgasfördersystem, sondern auch für alle anderen Vergaserkesseltechnologien unabhängig von dem Verbrennungskonzept, der Konstruktion und dem Verbrennungsluftzufuhr- und Abgasfördersystem adaptiv integrierbar bzw. nachrüstbar entwickelt werden soll. Durch die Regelung von Vergaserkesseln mit dem adaptiven Universalregler soll nicht nur die Verbrennung, sondern auch die Nutzung der Energie im Wohngebäude effizienter erfolgen.
Der Projektantrag zielt auf die Entwicklung eines 5 kWel SOFC-KWK-Systems (Solid Oxide Fuel Cell Kraft-Wärme-Kopplung) für Hotels, Gewerbe und Mehrfamilienhäuser ab. Dabei sollen elektrische Wirkungsgrade von 60 % und eine Gesamteffizienz von 95 % inklusive Warmwasserproduktion und/oder Heizungsanwendungen erreicht werden. Das System soll mit Erdgas oder Biomethan betrieben werden und wird ausgelegt, aufgebaut und getestet, um geringe Beschaffungskosten (Capital Expenditure (CAPEX) kleiner als 2000 EUR/kWel), eine hohe Lebensdauer (80.000 h) sowie eine gute Teillastfähigkeit, inklusive der Möglichkeit einer stromgeführten Betriebsweise bei Jahresbetriebsstunden von größer als 6.000 h, zu erreichen. Abhängig vom Betriebsszenario ergeben sich CO2-Einsparpotentiale von 1.000-10.000 t/a. Die Realisierung einer 5 kWel SOFC-KWK-Anlage ist das Ergebnis von Arbeitspaketen (WPs), die gemeinsam von Partnern aus Deutschland und Österreich bearbeitet werden. Das Projekt wird in zwei Teile unterteilt, wobei ein Teil durch das PtJ und ein Teil durch die FFG gefördert wird. An den meisten Arbeitspaketen nehmen Partner aus Deutschland (IKTS, AVL Schrick, Viessmann) und Österreich (AVL, Plansee, BIOS, FB) teil. Systempartner sollen im ersten Schritt die bereits vorhandenen Ideen für ein 5 kW-System in detaillierte Spezifikationen überführen. Ausgehend von der Systemspezifikation werden die Anlagenkomponenten entsprechend der neuen Anforderungen optimiert und in zwei Hardware-Generationen erprobt. Parallel zu Systementwicklung und Erprobung werden die kosten- und wirkungsgradkritischen Komponenten wie Stack, Stack-Modul, Gebläse und Wärmeauskopplung entwickelt. Ausgehend von den Systemtests und Wirtschaftlichkeitsanalysen soll ein Pfad für die Markeinführung der 5kW SOFC-Geräte erarbeitet werden.
Der Projektantrag zielt auf die Entwicklung eines 5 kWel SOFC-KWK-Systems (Solid Oxide Fuel Cell Kraft-Wärme-Kopplung) für Hotels, Gewerbe und Mehrfamilienhäuser ab. Dabei sollen elektrische Wirkungsgrade von 60 % und eine Gesamteffizienz von 95 % inklusive Warmwasserproduktion und/oder Heizungsanwendungen erreicht werden. Das System soll mit Erdgas oder Biomethan betrieben werden und wird ausgelegt, aufgebaut und getestet, um geringe Beschaffungskosten (Capital Expenditure (CAPEX) kleiner als 2000 EUR/kWel), eine hohe Lebensdauer (80.000 h) sowie eine gute Teillastfähigkeit, inklusive der Möglichkeit einer stromgeführten Betriebsweise bei Jahresbetriebsstunden von größer als 6.000 h, zu erreichen. Abhängig vom Betriebsszenario ergeben sich CO2-Einsparpotentiale von 1.000-10.000 t/a. Die Realisierung einer 5 kWel SOFC-KWK-Anlage ist das Ergebnis von Arbeitspaketen (WPs), die gemeinsam von Partnern aus Deutschland und Österreich bearbeitet werden. Das Projekt wird in zwei Teile unterteilt, wobei ein Teil durch das BMWi und ein Teil durch die FFG gefördert wird. An den meisten Arbeitspaketen nehmen Partner aus Deutschland (IKTS, AVL Schrick, Viessmann) und Österreich (AVL, Plansee, BIOS, FB) teil. Systempartner sollen im ersten Schritt die bereits vorhandenen Ideen für ein 5 kW-System in detaillierte Spezifikationen überführen. Ausgehend von der Systemspezifikation werden die Anlagenkomponenten entsprechend der neuen Anforderungen optimiert und in zwei Hardware-Generationen erprobt. Parallel zu Systementwicklung und Erprobung werden die kosten- und wirkungsgradkritischen Komponenten wie Stack, Stack-Modul, Gebläse und Wärmeauskopplung entwickelt. Ausgehend von den Systemtests und Wirtschaftlichkeitsanalysen soll ein Pfad für die Markteinführung der 5kW SOFC-Geräte erarbeitet werden.
Origin | Count |
---|---|
Bund | 65 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 65 |
License | Count |
---|---|
offen | 65 |
Language | Count |
---|---|
Deutsch | 64 |
Englisch | 3 |
Resource type | Count |
---|---|
Keine | 51 |
Webseite | 14 |
Topic | Count |
---|---|
Boden | 46 |
Lebewesen & Lebensräume | 43 |
Luft | 41 |
Mensch & Umwelt | 65 |
Wasser | 41 |
Weitere | 65 |