API src

Found 100 results.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Verständnis der mechanistischen Grundlagen von marinen Uhren und Rhythmen in der antarktischen Schlüsselart Euphausia superba

Praktisch alle Lebewesen auf unserem Planeten zeigen tägliche und saisonale Rhythmen. Diese Rhythmen werden durch endogene Uhren erzeugt, die es Organismen, einschließlich Menschen, ermöglichen, tägliche und saisonale Lebenszyklusfunktionen mit rhythmischen Änderungen ihrer Umgebung zu synchronisieren. Unser derzeitiges molekulares Verständnis von biologischen Rhythmen und Uhren ist jedoch hauptsächlich auf terrestrische Modellarten beschränkt. Im Gegensatz dazu wissen wir sehr wenig über die endogenen Uhren mariner Organismen und wie sie mit Umweltzyklen interagieren. Dies gilt insbesondere für marine ökologische Schlüsselarten wie den im Südpolarmeer endemischen Antarktischen Krill (Euphausia superba). Sein Lebensraum in den hohen Breitengraden ist durch extreme jahreszeitliche Umweltveränderungen gekennzeichnet (Tageslänge, Lichtintensität, Nahrungsverfügbarkeit) und zählt zu den sich am schnellsten erwärmenden Gebieten auf der Erde. Diese fein abgestimmten Wechselwirkungen, zwischen Organismen wie Krill und ihrem Lebensraum, die sich über Jahrmillionen entwickelt haben, werden durch die Folgen des schnell voranschreitenden Klimawandels beeinflusst. Daher ist es unser übergeordnetes Ziel, herauszufinden, wie rhythmische Umweltsignale (Tag / Nacht-Zyklus, Photoperiode) molekulare Oszillationen erzeugen und insbesondere polaren Meeresorganismen wie dem Antarktischen Krill ermöglichen, rhythmische Veränderungen in ihrer Umgebung zu antizipieren und ihren Lebenszyklus dementsprechend zu synchronisieren. Um dies zu erreichen, wollen wir die Beteiligung der endogenen Uhr an zentralen Lebenszyklusfunktionen im Antarktischen Krill mithilfe von saisonalen Verhaltensexperimenten, sowie Genexpressionsanalysen von Markergenen der inneren Uhr und Stoffwechselprozessen, untersuchen. Darüber hinaus wollen wir den Ort und die Anatomie der zirkadianen Uhr im Gehirn von E. superba durch In-situ-Hybridisierung und immunozytochemische Studien charakterisieren, um die molekularen und neuronalen Mechanismen zu verstehen, die der endogenen Uhr zugrunde liegen. Schließlich werden wir die endogene Uhr experimentell manipulieren, um zu verstehen, wie der endogene Rhythmus und die äußeren Bedingungen das Verhalten und die Physiologie des Antarktischen Krills bestimmen. Wir hoffen mit den geplanten Arbeiten die Mechanismen zu verstehen, die der Anpassung an extreme Umweltbedingungen in Polarregionen zugrunde liegen, und Krill‘s Plastizität im Hinblick auf anhaltende Ökosystemveränderungen im Südpolarmeer bedingen.

Statistische Methoden bei nichtinasiven Verfahren der Hirnforschung

Kompensation strahleninduzierter Inflammation an der Mikrovaskulatur durch inflammationshemmende Substanzen, Teilprojekt A

Kompensation strahleninduzierter Inflammation an der Mikrovaskulatur durch inflammationshemmende Substanzen, Teilprojekt B

Alternativmethoden: Aktivität in Hirngewebekulturen als Ersatzmethode für Analysen genetisch veränderter Mäuse, Molekularbiologischer Werkzeugkasten und APP Mausmutanten

Aufklärung der neurophysiologischen Mechanismen, die für OWA-induzierte Verhaltensänderungen bei Polarfischen verantwortlich sind: ein NMR-Ansatz

Die dramatischsten Auswirkungen des Klimawandels werden für die Polarregionen erwartet, sodass polare Organismen durch die Temperatur- und CO2-Änderungen besonders beeinflusst werden. Im Gegensatz zu den meisten marinen Wirbellosen haben Fische die Fähigkeit zur effektiven Säure-Basen-Regulation. Trotzdem konnten für verschiedene Arten neurologische Störungen unter erhöhten CO2-Konzentrationen nachgewiesen werden. Die den CO2-induzierten Verhaltensänderungen zugrundeliegenden Mechanismen sowie die Frage, inwieweit auch antarktische Fischarten betroffen sind, konnten jedoch noch nicht geklärt werden.In ersten Studien wurden als mögliche Ursache sowohl eine Änderung in der Reaktion des GABAA-Rezeptors als auch im GABA-Metabolismus postuliert. Des Weiteren konnte im Gehirn einer antarktischen Fischart ein Absinken des intrazellulären pH-Wertes (pHi) unter Hyperkapnie gezeigt werden. Es konnte aber noch nicht geklärt werden, ob ein Faktor allein oder eine Kombination und Interaktion mehrerer Faktoren für die Verhaltensänderungen verantwortlich sind. Daher ist die nicht-invasive, räumlich und zeitlich hochaufgelöste Bestimmung von Metabolitenkonzentrationen und des pHi in vivo im Gehirn von Polarfischen für das Verstehen neurologischer Effekte von großer Bedeutung.Ziel des Projekts ist es, mit neuen methodischen Ansätzen der lokalisierten in vivo 1H-NMR-Spektroskopie ein besseres Verständnis der den neurologischen Störungen zugrundeliegenden Mechanismen zu erlangen. Dabei sollen insbesondere Editierverfahren eingesetzt werden, die eine spektrale Vereinfachung der in vivo 1H-NMR-Spektren durch die Unterdrückung unerwünschter Signale während der Erfassung ermöglichen. Diese Ansätze sind in der präklinischen Forschung bereits teilweise etabliert, müssen jedoch für die spezielle Anwendung an nicht anästhesierten Polarfischen (Temperatur um den Gefrierpunkt, Bewegung, Salzwasser u. a.) angepasst werden. Des Weiteren sollen diese Methoden mit spektroskopischen Bildgebungsverfahren kombiniert und die Quantifizierung der 1H-NMR-Spektren für die polaren Temperaturen optimiert werden.In einem früheren Projekt wurde von mir und meinen Kollegen der Ansatz des Chemical Shift Saturation Transfer (CEST) erstmalig für die pH-Bildgebung am Polardorsch genutzt. Dabei konnten wir zeigen, dass TauCEST, d. h. die auf Taurin beruhende CEST-MRI, die räumlich und zeitlich hochaufgelöste Bestimmung von relativen pHi-Änderungen im Gehirn unter erhöhten CO2-Konzentrationen ermöglicht. Eine Adaption dieser Methode für viele polare Fischarten scheint nach derzeitigem Kenntnisstand umsetzbar.Die Kombination von lokalisierter in vivo 1H-NMR-Spektroskopie und CEST-MRI soll daher die gleichzeitige Quantifizierung von Metaboliten und die Bestimmung des pHi mit hoher räumlicher und zeitlicher Auflösung ermöglichen, um die neurophysiologischen Mechanismen aufzudecken, die für die unter Szenarien des Klimawandels beobachteten Verhaltensänderungen bei Polarfischen verantwortlich sind.

EnEff:Stadt: Nachhaltige Erhöhung der Energieeffizienz in Quartieren durch Digitalisierung und selbstlernende Steuerung der Energieinfrastruktur, Teilvorhaben: BRAIN - Aufbau eines selbstlernenden Steuerungsmodells

Funktionale Biomasse aus kohlenstoffreichen Abfallströmen, Teilprojekt A

Alternativmethoden OGEAM: Optimierte Gewebekulturen des Gehirns als Ersatzmethode für Analysen genetisch veränderter Mäuse, Teilprojekt A

Alternativmethoden OGEAM: Optimierte Gewebekulturen des Gehirns als Ersatzmethode für Analysen genetisch veränderter Mäuse, Teilprojekt B

1 2 3 4 58 9 10