API src

Found 18 results.

Related terms

Schummerungsbild (Geländerelief)

Schummerungsbilder sind Rasterbilder, die auf der Basis des Digitalen Geländemodells in der Gitterweite von 1m gewonnen werden. Über eine Lichtquelle wird eine Flächentönung mit Schatteneffekt generiert, auf der Oberflächenstrukturen sichtbar sind.

Digitale Höhenlinienkarte

Die Höhenlinien liegen flächendeckend als Rasterdaten in Bayern vor und werden aus den Daten des Digitalen Geländemodells (DGM5) abgeleitet.

WCS ST DGM1

Dieser OGC konforme WebCoverageService stellt das Digitale Oberflächenmodell (DGM) bereit. Digitale Geländemodelle (DGM) sind digitale, numerische, auf ein regelmäßiges Raster reduzierte Modelle der Geländehöhen und –formen der Erdoberfläche. Sie beinhalten keine Information über Bauwerke (z. B. Brücken) und Vegetation. Das LVermGeo Sachsen-Anhalt stellt im Rahmen ihres gesetzlichen Auftrags das DGM mit einer Rasterweite von einem Meter bereit. Erläuterung zum Fachbezug: WCS Service

WCS ST DOM1

Dieser OGC konforme WebCoverageService stellt das Digitale Oberflächenmodell (DOM) bereit. Das Digitale Oberflächenmodell (DOM) beschreibt im Gegensatz zum Digitalen Geländemodell - DGM nicht die Höhe des natürlichen Erdbodens (Gelände), sondern die Höhe der Oberfläche der auf der Erde befindlichen natürlichen und künstlichen Objekte (z. B. Vegetation, Gebäude, Fahrzeuge). Es handelt sich hierbei um ein auf einer Laserscanbefliegung basierendes Situationsmodell. Maßstab: 1:null; Bodenauflösung: 1m; Scanauflösung (DPI): null; Erläuterung zum Fachbezug: WCS Service

Exposition

Die Exposition beschreibt die Richtung des Hanggefälles. Sie hat einen maßgeblichen Einfluss auf die Bodentemperatur sowie auf den Bodenfeuchtegehalt. Die Exposition einer Fläche wirkt sich daher direkt auf die Wärmeenergie aus, die durch Erdwärmekollektorsysteme dem Boden entzogen werden kann. Nach Süden exponierte Hänge sind in der Regel durch intensivere Sonneneinstrahlung und geringere Bodenfeuchtegehalte während der Sommermonate gekennzeichnet. In den Wintermonaten kann die stärkere Sonneneinstrahlung die Schneeschmelze begünstigen und somit zu höheren Feuchtegehalten des Bodens führen. Im Gegensatz dazu sind Nordhänge thermisch benachteiligt. Die geringere Sonneneinstrahlung begünstigt höhere Bodenfeuchtegehalte. Der Datensatz stellt eine Grundlage für großräumige Betrachtungen dar und ersetzt nicht die Durchführung von Detailuntersuchungen.

Digitales Geländemodell

Das Digitale Geländemodell (DGM) beschreibt die Grenzfläche zwischen der Erdoberfläche bzw. Wasserobefläche und der Luft, ohne Vegetation und Bebauung. Es besteht aus einem regelmäßigen Gitter und wird in der Gitterweite 1 m zum Download bereitgestellt.

Schummerungsbild (Geländerelief)

Schummerungsbilder sind Rasterbilder, die auf der Basis des Digitalen Geländemodells in der Gitterweite von 1m gewonnen werden. Über eine Lichtquelle wird eine Flächentönung mit Schatteneffekt generiert, auf der Oberflächenstrukturen sichtbar sind.

WebLine Mobile

mobiles GIS zur Orientierung, Information, Datenerfassung und Vermessung im Gelände Inhalt: Geobasisdaten, Geofachdaten LZW/LFB verwendete Standards: Shapes, Rasterdaten Formen: Offline-GIS Bemerkung: Betriebsintern

Die Bedeutung von Eisnukleationspartikeln und -moden für die Entstehung der Eisphase und Niederschlag: Modellsimulationen basierend auf Labormesssungen

Das Projekt "Die Bedeutung von Eisnukleationspartikeln und -moden für die Entstehung der Eisphase und Niederschlag: Modellsimulationen basierend auf Labormesssungen" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre durchgeführt. In diesem Projekt sollen mit COSMO-SPECS, einem 3D-Wolkenmodell mit einer spektralen Beschreibung der wolken-mikrophysikalischen Prozesse von Hydrometeoren und Aerosolpartikeln, Modellsimulationen durchgeführt werden. Da dasselbe mikrophysikalische Schema in dem Luftpaketmodell enthalten ist, mit dem in INUIT-1 gearbeitet wurde, werden alle neuen Entwicklungen und Verbesserungen der Mikrophysik aus INUIT-1 direkt in COSMO-SPECS übertragen. Zunächst soll ein künstlicher Testfall simuliert werden, eine Wärmeblase über einem flachen Gelände. Sensitivitätsstudien sollen die Entwicklung der Eisphase und die Bildung von Niederschlag aufzeigen, wobei die Verteilung und die Typen der Eisnukleations-Partikel auf realistische Weise variiert werden. Ein anderer Schwerpunkt der Sensitivitätsstudien soll auf der Wirkung von sog. kleinen Triggern liegen, wie etwa Eisnukleations-Partikel oder Gefriermoden (z.B. biologische Partikel oder Kontaktgefrieren), die keine signifikanten Effekte hinsichtlich der Anzahl der entstehenden Eispartikel zeigen, aber doch die Dynamik der Wolke in einer Weise beeinflussen können, dass sich im Endeffekt die Eisbildung erhöht. Weiterhin ist in Zusammenarbeit mit INUIT RP5 eine Fallstudie geplant, die auf INUIT Feldexperimenten basiert. Hier sollen die Beiträge der verschiedenen eisbildenden Prozesse quantifiziert werden und dadurch die atmosphärische Relevanz der Eisbildungs-Regimes, wie sie in INUIT Labor- und Feldexperimenten untersucht werden, abgeschätzt werden. Gleichzeitig werden neue Parametrisierungen für Partikel, die während INUIT-2 untersucht werden, entwickelt und in das mikrophysikalische Schema eingebunden; vorhandene Parametrisierungen sollen weiter modifiziert und verbessert werden. Dieses Projekt schließt selbst auch Laborexperimente zum Kontakt- und Immersionsgefrieren ein, die am Mainzer vertikalen Windkanal und mit einer akustischen Tropfenfalle durchgeführt werden. Hier liegt der Schwerpunkt auf einer Verbesserung des Kontaktgefrierens. Die Experimente sollen am Mainzer vertikalen Windkanal durchgeführt werden, wobei unterkühlte Tropfen in einem Luftstrom, der die potentiellen Kontakteiskeime mit sich führt, frei ausgeschwebt werden. Auf diese Weise kann die Anzahl der Kollisionen zwischen Tropfen und Partikeln berechnet und die Gefriereffizienz, d.h. die Gefrierwahrscheinlichkeit für eine Tropfen-Partikel Kollision bestimmt werden.

Windfield and snowdrift modelling over complex mountainous terrain

Das Projekt "Windfield and snowdrift modelling over complex mountainous terrain" wird vom Umweltbundesamt gefördert und von Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft durchgeführt. The transport of snow by wind is an important factor for avalanche danger as well as ecology and hydrology in mountainous environments. Investigations of airflow and snowdrift are carried out using field data and model. Field experiment for airflow and snow deposition/accumulation studies were held at the Gaudergrat ridge, located near Davos, accumulation and erosion studies. In the summer 2003 a large scale field experiment, Gaudex 2003, took place there in collaboration with the University of Leeds. During this field campaign, more than 30 measurement devices were placed around the Gaudergrat in order to collect airflow data at a very small scale. These data are used to compare and validate the numerical models. The wind field data required to initialise and drive the snow transport model are provided by the meteorological model ARPS. ARPS is developed at the Center for Analysis and Prediction of Storms, at the University of Oklahoma. This model can handle simulations ranging from regional scales down to micro-scales. The numerical forecast component of the ARPS is a three-dimensional, nonhydrostatic compressible model in generalized terrain-following coordinates, using finite differences and can be used in a Large-Eddy Simulations configuration. As transport of snow mostly occurs in the first meters of the atmospheric boundary layer, snowdrift modelling requires high resolution windfields. Consequently ARPS has been adapted for microscales simulations, with a finest horizontal resolution of 25 meters in order to resolve the complex topography. Windfields simulations are higly sensitive to initial and boundary conditions, for this reason ARPS is now coupled to Meteoswiss model aLMo in order to produce initial and boundary conditions for ARPS runs. aLMo outputs have a horizontal resoltion of 7km, thus Arps computations are realised using nesting domains with a decreasing resolution down to 25m. Part of the computations are run at the Swiss National Supercomputing Centre (CSCS).

1 2