Objective: In order for the commercial production of large CIGS modules on the multi-MW scale to be successful, the processes must still be streamlined and optimised taking considering both economical and ecological aspects. This project aims to support the developme nt of this material- and energy-saving thin-film technology so it can gain a foothold in the free PV market. Promising laboratory results will be transferred to large-scale production, where the availability of appropriate production equipment and very hig h material and process yields are of decisive importance. 4 universities, 2 research institutes, and 4 companies will work closely together in order to merge the physical understanding of the processes and the engineering know-how, which are necessary for up-scaling the CIGS technology to a marketable multi-megawatt production volume. We will focus on: (1) very high-quality modules manufactured by coevaporation of CIGS and applying cost-effective methods, ETA up to 14 Prozent on 0.7 m2; (2) the development of Cd-free buffer layers for Cd-free CIGS modules on an area of up to 0.7 m2, ETA up to 12 Prozent; (3) and the development of a mid-term alternative: electrodeposition of low-cost CIS modules with ETA above 10 Prozent (estimated cost about 0.8 E/Wp). We will transfer the Mo back contact sputtering know-how to a specialised European large-area glass coater to provide substrates for both the coevaporation and the electrodeposition approaches. All process developments such as modifications of the back contact, wet- or vacuum-deposited buffer layers, the multi-stage coevaporation of CIGS, or improved Ga incorporation in electrodeposited absorbers will first be tested and evaluated on the laboratory scale. Successful approaches will be up-scaled and transferred to three independ ent commercial CIGS pilot lines located in three different European countries. Novel process and quality control techniques must also be developed and applied to reach these ambitious goals.
Angesichts knapper werdender Ressourcen und strengerer gesetzlicher Auflagen bezüglich der Schadstoffemission ist der Leichtbau vor allem im Automobilbau einer der wichtigsten Schwerpunkte der Produktentwicklung. Das Innenhochdruckumformen von Magnesiumhohlprofilen bietet in dieser Hinsicht durch die enge Verknüpfung von Strategien des Form- und Stoffleichtbaus bedeutsame Potentiale. Der Werkstoff Magnesium weist jedoch bei Raumtemperatur ein sehr geringes Umformvermögen auf. Untersuchungen zum Warmumformen von Magnesiumblechen haben gezeigt, dass sich das Umformvermögen von Magnesium bei höheren Temperaturen (250 Grad C) deutlich verbessert. Für die Anwendung des Innenhochdruckumformens von Rohren bei höheren Temperaturen zur Herstellung von Integralhohlformteilen aus Magnesiumlegierungen fehlen bislang die wissenschaftlich-technischen Grundlagen. Im Rahmen des vorliegenden Forschungsprojektes soll eine Variante des Warm-Innenhochdruckumformens mit Erwärmung über das Wirkmedium, ergänzt durch eine Werkzeugerwärmung, in Wechselwirkung mit dem Werkstoff Magnesium grundlegend untersucht und darauf aufbauend für den Anwender aufbereitet werden. Mit dem Forschungsprojekt Innenhochdruckumformen von Magnesiumrohren bei Erwärmung der Ausgangsteile über das Wirkmedium sollen wesentliche Voraussetzungen für die industrielle Nutzung des Warm-Innenhochdruckumformens von Magnesiumrohren zur Herstellung extrem leichter Integralhohlformteile für den Automobilbau geschaffen werden.