BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (Hrsg.) 2011: Klimawandel, Extremwetterereignisse und Gesundheit. Konferenzbericht zur Internationalen Fachkonferenz 29. und 30.11.2010 in Bonn, Bonn. Böhme, C., Bunge, C., Bunzel, A., Preuß, T. 2013: Umweltgerechtigkeit im städtischen Raum – Zwischenergebnisse eines Forschungsvorhabens, Umwelt und Mensch – Informationsdienst (UMID), Vol. 1, 35-41. Internet: www.umweltbundesamt.de/sites/default/files/medien/419/publikationen/umweltgerechtigkeit_im_staedtischen_raum.pdf (Zugriff 08.01.2016) Breitner, S., Schneider, A., Peters, A. 2013: Thermische Belastung, Feinstaub und Ozon – Gesundheitliche Auswirkungen und mögliche Wechselwirkungen. In: Jahn, H.J., Krämer, A. und Wörmann, T. (Hrsg.), Klimawandel und Gesundheit. Internationale, nationale und regionale Herausforderungen. Berlin, Heidelberg, 39-62. Burkart, K., Canário, P., Scherber, K., Breitner, S., Schneider, A., Alcoforado, M. J., Endlicher, W. 2013: Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon, Environmental Pollution, Vol. 183, 54-63. Dugord, P.-A., Lauf, S., Schuster, C., Kleinschmit B. 2014: Land use patterns, temperature distribution, and potential heat stress risk – The case study Berlin, Germany. Computers, Environment and Urban Systems, 48, 86–98. Eis, D., Helm, D., Laußmann, D., Stark, K. 2010: Klimawandel und Gesundheit – Ein Sachstandsbericht, Robert Koch-Institut (Hrsg.), Berlin. Internet: www.rki.de/DE/Content/Gesund/Umwelteinfluesse/Klimawandel/Klimawandel-Gesundheit-Sachstandsbericht.pdf?__blob=publicationFile (Zugriff 08.01.2016) Fenner, D., Meier, F., Scherer, D., Polze, A. 2014: Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001-2010. Urban Climate 10 (2), 308–331. Fenner, D., Mücke, H.-G., Scherer, D. 2015: Innerstädtische Lufttemperatur als Indikator gesundheitlicher Belastungen in Großstädten am Beispiel Berlins. Umwelt und Mensch – Informationsdienst (UMID), Vol. 1, 30-38. Internet: www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/innerstaedtische_lufttemperatur_30-38.pdf (Zugriff 08.01.2016) Gabriel, K. 2009: Gesundheitsrisiken durch Wärmebelastung in Ballungsräumen. Eine Analyse von Hitzewellen-Ereignissen hinsichtlich der Mortalität im Raum Berlin-Brandenburg, Dissertation, Geographisches Institut, Humboldt-Universität zu Berlin, Berlin. Internet: edoc.hu-berlin.de/dissertationen/gabriel-katharina-2009-11-20/PDF/gabriel.pdf (Zugriff 08.01.2016) Gabriel, K., Endlicher, W. 2011: Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany, Environmental Pollution, Vol. 159, 2044-2055. Jehn, M., Gebhardt, A., Liebers, U., Kiran, B., Scherer, D., Endlicher, W., Witt, C. 2014: Heat Stress is Associated with Reduced Health Status in Pulmonary Arterial Hypertension: A Prospective Study Cohort. Lung, 1-6. Jehn, M., Donaldson, G., Kiran, B., Liebers, U., Mueller, K., Scherer, D., Endlicher, W., Witt, C. 2013: Telemonitoring reduces exacerbation of COPD in the context of climate change—a randomized controlled trial, Environmental Health: A Global Access Science Source, 12(1), 99. Jendritzky G. 2007: Folgen des Klimawandels für die Gesundheit. In: Endlicher W., Gerstengarbe F.-W. (Hrsg.): Der Klimawandel – Einblicke, Rückblicke und Ausblicke. Potsdam-Institut für Klimafolgenforschung e.V., Potsdam: 108–118. Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Weihs, P., Batchvarova, E., DeDear, R. 2009: Der Thermische Klimaindex UTCI, Klimastatusbericht Deutscher Wetterdienst, 96-101. Internet: www.dwd.de/DE/leistungen/klimastatusbericht/publikationen/ksb2009_pdf/artikel11.pdf?__blob=publicationFile&v=1 (Zugriff 08.01.2016) Kim, K. R., Yi, C., Lee, J.-S., Meier, F., Jänicke, B., Fehrenbach, U., Scherer, D. 2014: BioCAS: Biometeorological Climate impact Assessment System for building-scale impact assessment of heat-stress related mortality. Die Erde, 145(1), 62–79. Internet: www.die-erde.org/index.php/die-erde/article/view/118/78 (Zugriff 08.01.2016) Koppe, C. 2005: Gesundheitsrelevante Bewertung von thermischer Belastung unter Berücksichtigung der kurzfristigen Anpassung der Bevölkerung an die lokalen Witterungsverhältnisse, Dissertation, Albert-Ludwigs-Universität, Freiburg i. Brsg.. Internet: www.freidok.uni-freiburg.de/data/1802 (Zugriff 08.01.2016) Koppe, C., Kovats, S., Jendritzky, G., Menne, B. 2004: Heat-waves: risks and responses, WHO Europe (Hrsg.), Copenhagen. Internet: www.euro.who.int/__data/assets/pdf_file/0008/96965/E82629.pdf (Zugriff 08.01.2016) Kuttler, W. 1998: Stadtklima. In: Sukopp, H., Wittig, R. (Hrsg.), Stadtökologie. Ein Fachbuch für Studium und Praxis. Stuttgart, Jena, Lübeck, Ulm, 125-167. Landesamt für Gesundheit und Soziales (LAGeSo) (Hrsg.) 2014: Verzeichnis der Krankenhäuser und Privatentbindungsanstalten, Stand 06/2014, Berlin. Landesvermessung und Geobasisinformation Brandenburg (LGB) 2013: Amtliches Liegenschaftskatasterinformationssystem (ALKIS), Potsdam. Internet: geobasis-bb.de/lgb/de/geodaten/liegenschaftskataster/alkis/ (Zugriff 28.07.2020) Landesvermessung und Geobasisinformation Brandenburg (LGB) 2013a: Digitales Geländemodell (DGM), Potsdam. Internet: geobasis-bb.de/lgb/de/geodaten/3d-produkte/gelaendemodell/ (Zugriff 28.07.2020) Laschewski, G. 2008: Das Humanbioklima: Wirkungen und Wandel. In: Lozán, J.L., Graßl, H., Jendritzky, G., Karbe, L., Reise, K. und Maier, W.A. (Hrsg.), Warnsignal Klima: Gesundheitsrisiken. Gefahren für Menschen, Tiere und Pflanzen. Hamburg, 35-43. Michelozzi, P., Accetta, G., De Sario, M., D’Ippoliti, D., Marino, C., Baccini, M., Biggeri, A., Anderson, H. R., Katsouyanni, K., Ballester, F., Bisanti, L., Cadum, E., Forsberg, B., Forastiere, F., Goodman, P. G., Hojs, A., Kirchmayer, U., Medina, S., Paldy, A., Schindler, C., Sunyer, J., Perucci, C. A., PHEWE Collaborative Grp 2009: High Temperature and Hospitalizations for Cardiovascular and Respiratory Causes in 12 European Cities, American Journal of Respiratory and Critical Care Medicine, Vol. 179, 5, 383-389. Mücke, H.-G., Straff, W., Faber, M., Haftenberger, M., Laußmann, D., Scheidt-Nave, C., Stark, K. 2013: Klimawandel und Gesundheit. Allgemeiner Rahmen zu Handlungsempfehlungen für Behörden und weitere Akteure in Deutschland. Robert-Koch-Institut, Umweltbundesamt (Hrsg.), Berlin. Internet: www.rki.de/DE/Content/Kommissionen/UmweltKommission/Stellungnahmen_Berichte/Downloads/klimawandel_gesundheit_handlungsempfehlungen_2013.pdf?__blob=publicationFile (Zugriff 19.02.2018) MUNLV (Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen) (Hrsg.) 2010: Handbuch Stadtklima. Maßnahmen und Handlungskonzepte für Städte und Ballungsräume zur Anpassung an den Klimawandel. MVI (Ministerium für Verkehr und Infrastruktur Baden-Württemberg) (Hrsg.) 2012: Städtebauliche Klimafibel. Hinweise für die Bauleitplanung. Scherber, K. 2014: Auswirkungen von Wärme- und Luftschadstoffbelastungen auf vollstationäre Patientenaufnahmen und Sterbefälle im Krankenhaus während Sommermonaten in Berlin und Brandenburg. Dissertation, Geographisches Institut, Humboldt-Universität zu Berlin, Berlin. Internet: edoc.hu-berlin.de/dissertationen/scherber-katharina-2014-06-13/PDF/scherber.pdf (Zugriff 08.01.2016) Scherber, K., Langner, M., Endlicher, W. 2014: Spatial analysis of hospital admissions for respiratory diseases during summer months in Berlin taking bioclimatic and socio-economic aspects into account, Die Erde, 144 (3), 217-237. Internet: www.die-erde.org/index.php/die-erde/article/view/63/pdf_2 (Zugriff 08.01.2016) Scherber, K. 2016: Stadtklima und Gesundheit, Beitrag zum Begleittext zur Umweltatlaskarte 04.11 (Ausgabe 2016), im Auftrag der Senatsverwaltung für Stadtentwicklung und Umwelt, Berlin. Internet: /umweltatlas/klima/klimabewertung/2015/exkurs/index.php (Zugriff 25.01.2016) Scherer, D. 2007: Viele kleine Parks verbessern Stadtklima. Mit Stadtplanung Klima optimieren. TASPO Report Die grüne Stadt, 15. Scherer, D., Fehrenbach, U., Lakes, T., Lauf, S., Meier, F., Schuster, C. 2013: Quantification of heat-stress related mortality hazard, vulnerability and risk in Berlin, Germany. Die Erde, 144 (3-4), 238-259. Internet: www.die-erde.org/index.php/die-erde/article/view/49/pdf_3 (Zugriff 08.01.2016) Scherer, D., Fehrenbach, U., Fenner, D., Jänicke, B., Holtmann, A., Meier, F., 2015: © Fachgebiet Klimatologie, Institut für Ökologie, Technische Universität Berlin, Rothenburgstr. 12, 12165 Berlin. Internet: www.klima.tu-berlin.de (Zugriff 15.02.2018) Schneider, A., Breitner, S., Brüske, I., Wolf, K., Rückerl, R., Peters, A. 2011: Health Effects of Air Pollution and Air Temperature. In: Krämer, A., Khan, M.H. und Kraas, F. (Hrsg.), Health in Megacities and Urban Areas, Heidelberg, 119-134. Schneider, A., Breitner, S., Wolf, K., Hampel, R., Peters, A., Wichmann, H.-E. 2009: Ursachenspezifische Mortalität, Herzinfarkt und das Auftreten von Beschwerden bei Herzinfarktüberlebenden in Abhängigkeit von der Lufttemperatur in Bayern (MOHIT), Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie (Hrsg.), München. Schuster, C., Burkart, K., Lakes T. 2014: Heat mortality in Berlin – Spatial variability at the neighborhood scale. Urban Climate, 10 (1), 134-147. Internet: www.sciencedirect.com/science/article/pii/S2212095514000807 (Zugriff 19.02.2018) SenGUV (Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz) (Hrsg.) 2011: Basisbericht 2010/2011. Gesundheitsberichterstattung Berlin, Daten des Gesundheits- und Sozialwesens, Berlin. Internet: www.berlin.de/sen/gesundheit/_assets/service/publikationen/gesundheitsberichterstattung/bb_20102011.pdf (Zugriff 24.09.2020) SenStadt (Senatsverwaltung für Stadtentwicklung) (Hrsg.) 2009: Lebensweltlich orientierte Räume (LOR) in Berlin Internet: www.berlin.de/sen/sbw/stadtdaten/stadtwissen/sozialraumorientierte-planungsgrundlagen/lebensweltlich-orientierte-raeume/ (Zugriff 22.03.2023) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2010: Flächennutzung und Stadtstruktur – Dokumentation der Kartiereinheiten und Aktualisierung des Datenbestandes, Berlin. Internet: /umweltatlas/_assets/literatur/nutzungen_stadtstruktur_2010.pdf (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2011: Stadtentwicklungsplan Klima. Internet: www.stadtentwicklung.berlin.de/planen/stadtentwicklungsplanung/de/klima/ (Zugriff 26.10.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2013: Weniger Schadstoffe. Mehr Lebensqualität. Der Luftreinhalteplan 2011-2017 des Landes Berlin. Internet: www.berlin.de/sen/uvk/umwelt/luft/luftreinhaltung/luftreinhalteplan-2-fortschreibung/download/ (Zugriff 22.03.2023) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015: Planungshinweiskarte Stadtklima 2015 -Begleitdokument zur Online-Version, Berlin. Internet: /umweltatlas/_assets/literatur/planungshinweise_stadtklimaberlin_2015.pdf (Zugriff 25.11.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015b: GEO-NET Umweltconsulting GmbH, Hannover: GIS-gestützte Modellierung von stadtklimatisch relevanten Kenngrößen auf der Basis hochaufgelöster Gebäude- und Vegetationsdaten; EFRE Projekt 027 Stadtklima Berlin, Abschlussbericht. Internet: gdi.berlin.de/data/ua_klimabewertung_2015/docs/Projektbericht_StadtklimaBerlin_SenStadtUm_IIID_2015.pdf (Zugriff 25.11.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015e: PRISMA – Planungsraumbezogenes Informationssystem für Monitoring und Analyse, Berlin. Internet: www.berlin.de/sen/sbw/stadtdaten/stadtwissen/sozialraumorientierte-planungsgrundlagen/prisma/ (Zugriff 22.03.2023) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2016: Anpassungskonzept an die Folgen des Klimawandels (AFOK), Berlin. Internet: www.berlin.de/sen/uvk/_assets/klimaschutz/anpassung-an-den-klimawandel/programm-zur-anpassung-an-die-folgen-des-klimawandels/afok_zusammenfassung.pdf (Zugriff 24.09.2020) SenStadtUm/AfS (Senatsverwaltung für Stadtentwicklung und Umwelt, Amt für Statistik Berlin-Brandenburg) (Hrsg.) 2012: Bevölkerungsprognose für Berlin und die Bezirke 2011-2030, Kurzfassung, Berlin. Internet: www.berlin.de/sen/sbw/stadtdaten/stadtwissen/bevoelkerungsprognose-2021-2040/ (Zugriff 22.03.2023) Statistik BBB 2014: Amt für Statistik Berlin-Brandenburg: ‘Melderechtlich registrierte Einwohnerinnen und Einwohner am Ort der Hauptwohnung am 30.06.2014’. Turowski, E., Haase, C. 1987: Meteoropathologische Untersuchung über die Klima- und Wetterabhängigkeit der Sterblichkeit, Dissertation, Humboldt-Universität zu Berlin, Berlin. Turowski, E. 1998: Klima- und Wettereinfluss. In: Moriske, H.-J. und Turowski, E. (Hrsg.), Handbuch für Bioklima und Lufthygiene. Mensch, Wetter, Klima, Innenraum- und Außenlufthygiene, Grundlagen, Forschungsergebnisse, Trends, II-4, Landsberg am Lech, 1-44. VDI (Verband Deutscher Ingenieure) 2015: Richtlinie 3787, Blatt 1 Umweltmeteorologie – Klima- und Lufthygienekarten für Städte und Regionen. Internet: www.vdi.de/richtlinie/vdi_3787_blatt_1-umweltmeteorologie_klima_und_lufthygienekarten_fuer_staedte_und_regionen/ (Zugriff 26.11.2015) Wichert von, P. 2004: Hitzefolgekrankheiten: Bericht zu einer Stellungnahme der Kommission „Hitzetote“ der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF), Epidemiologisches Bulletin, Vol. 24, 189-191. Karten: SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2010a: Digitaler Umweltatlas Berlin, Ausgabe 2010, Karte 01.08 Geländehöhen, Berlin. SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2010b: Digitaler Umweltatlas Berlin, Ausgabe 2010, Karte 04.12 Klimawandel und Wärmebelastung der Zukunft, Berlin. Internet: /umweltatlas/klima/klimawandel/2008/karten/index.php (Zugriff 08.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2011a: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2011, Karte 06.07 Stadtstruktur, Berlin. Internet: /umweltatlas/nutzung/flaechennutzung/2010/karten/artikel.950242.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2012: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2012, Karte 01.02 Versiegelung, Berlin. Internet: /umweltatlas/boden/versiegelung/2011/karten/index.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2013a: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2013, Karte 01.11.3 Naturnähe, Berlin. Internet: /umweltatlas/boden/bodenfunktionskriterien/2010/karten/artikel.951908.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2014: Digitaler Umweltatlas Berlin, Ausgabe 2014, Karte 06.10 Gebäude- und Vegetationshöhen, Berlin. Internet: /umweltatlas/nutzung/gebaeude-und-vegetationshoehen/2012/karten/index.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2014a: Detailnetz Berlin, Stand 11.2014, aktueller Stand verfügbar über Geoportal Berlin, Berlin. Internet: fbinter.stadt-berlin.de/fb/index.jsp (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015a: Digitaler Umweltatlas Berlin, Ausgabe 2015, Karte 04.13 Langjährige Entwicklung ausgewählter Klimaparameter, Berlin. Internet: /umweltatlas/klima/entwicklung-von-klimaparametern/2013/zusammenfassung/ (Zugriff 13.04.2023) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015c: Automatisierte Liegenschaftskarte Berlin (ALK), Stand 01.06.2014, aktuelle Version verfügbar im neuen Standard ALKIS (Amtliches Liegenschaftskatasterinformationssystem) über Geoportal Berlin, Berlin. Internet: fbinter.stadt-berlin.de/fb/index.jsp (Zugriff 08.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015d: Digitaler Umweltatlas Berlin, Ausgabe 2015, Karte 09.01 Umweltgerechtigkeit, Berlin. Internet: /umweltatlas/mensch/umweltgerechtigkeit/2013/karten/index.php (Zugriff 26.11.2015) Weiterführende Quellen zum Exkurs „Gesundheit und Stadtklima“ Berlin: Buchin, O., Hoelscher, M.-T., Meier, F., Nehls, T., Ziegler F. 2015: Evaluation of the health-risk reduction potential of countermeasures to urban heat islands. Energy and Buildings, im Druck. Endlicher, W., Jendritzky, G., Fischer, J., Redlich, J.-P. 2008: Heat Waves, Urban Climate and Human Health. In: Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M. und Bradley, G. (Hrsg.), Urban Ecology. New York, 269-278. Endlicher, W., Lanfer, N. 2003: Meso- and microclimatic aspects of Berlin’s urban climate, Die Erde, Vol. 134, 147-168. Freie Universität Berlin – AG Stadtklima und Gesundheit 2016: Internet: www.geo.fu-berlin.de/met/ag/Stadtklima/index.html (Zugriff 08.01.2016) Innovationsnetzwerk Klimaanpassung Brandenburg Berlin (INKA BB) 2016: Internet: www.inka-bb.de/ (Zugriff 08.01.2016) Jänicke, B. 2015: Stadtklima und Hitzestress. Anpassungsmaßnahmen müssen die Komplexität von Städten berücksichtigen. Umwelt Aktuell, Vol. 10, 2-3. Jänicke, B., Meier, F., Hoelscher, M., Scherer, D. 2015: Evaluating the Effects of Façade Greening on Human Bioclimate in a Complex Urban Environment. Advances in Meteorology, Vol. 2015, Article ID 747259. KiezKlima – Gemeinsam für ein besseres Klima im Brunnenviertel 2016: Internet: e-p-c.de/kiezklima/2015/ (Zugriff 08.01.2016) Scherer, D., Endlicher W. 2014: Special Issue: Urban climate and heat-stress. Part 2. Die Erde, Vol. 145, No 1-2. Internet: www.die-erde.org/index.php/die-erde/issue/view/13 (Zugriff 08.01.2016) Scherer, D., Endlicher W. 2013: Special Issue: Urban climate and heat-stress. Part 1. Die Erde, Vol. 144, No 3-4. Internet: www.die-erde.org/index.php/die-erde/issue/view/12 (Zugriff 08.01.2016) Schubert, S., Grossman-Clarke S. 2013: The Influence of Green Areas and Roof Albedos on Air Temperatures during Extreme Heat Events in Berlin, Germany. Meteorologische Zeitschrift, 22 (2), 131-143. Internet: pubman.mpdl.mpg.de/pubman/item/escidoc:2043067:2/component/escidoc:2043071/Met-Z-80283.pdf (Zugriff 08.01.2016) UCaHS (Urban Climate and Heat Stress) – Stadtklima und Hitzestress in Städten der Mittelbreiten in Anbetracht des Klimawandels 2016: Internet: www.ucahs.org/?lan=de (Zugriff 08.01.2016) Walikewitz, N., Jänicke, B., Langner, M., Endlicher, W. 2015: Assessment of indoor heat stress variability in summer and during heat warnings: A case study using the UTCI in Berlin, Germany. International Journal of Biometeorology, 1-14. Walikewitz, N., Jänicke, B., Langner, M., Meier, F., Endlicher, W. 2015: The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Building and Environment, 84, 151-161. Deutschland: Aktionsprogramm Umwelt und Gesundheit (APUG) 2016: Internet: www.apug.de/ (Zugriff 08.01.2016) Amt für Umweltschutz Stuttgart – Abteilung Stadtklimatologie 2016: Internet: www.stadtklima-stuttgart.de (Zugriff 08.01.2016) Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (Hrsg.) 2008: Deutsche Anpassungsstrategie an den Klimawandel (DAS). www.bmuv.de/download/deutsche-anpassungsstrategie-an-den-klimawandel (Zugriff 25.05.2023) DWD (Deutscher Wetterdienst) 2016: Klima und Umweltberatung – Gesundheit. Internet: www.dwd.de/DE/klimaumwelt/ku_beratung/gesundheit/gesundheit_node.html (Zugriff 08.01.2016) DWD (Deutscher Wetterdienst) 2016: Fachnutzer – Gesundheit. Internet: www.dwd.de/DE/fachnutzer/gesundheit/gesundheit_node.html (Zugriff 08.01.2016) GERICS (Climate Service Center Germany) (Hrsg.) 2014: Gesundheit und Klimawandel. Handeln, um Risiken zu minimieren. Internet: www.climate-service-center.de/imperia/md/content/csc/csc_broschueren/broschure_gesundheit_und_klimawandel.pdf (Zugriff 08.01.2016) GERICS (Climate Service Center Germany) 2016: Stadtbaukasten, Herausforderungen erkennen, rechtzeitig handeln – Module für eine nachhaltige, klimaangepasste Stadtplanung. Internet: www.climate-service-center.de/imperia/md/content/csc/projekte/stadtbaukasten_kompakt_20151022.pdf (Zugriff 19.02.2018) GERICS (Climate Service Center Germany) 2016a: Climate-Focus-Paper “Cities and Climate Change”. Internet: www.climate-service-center.de/products_and_publications/fact_sheets/climate_focus_paper/index.php.de (Zugriff 19.02.2018) Klimaanpassungsschule der Charité – Universitätsmedizin Berlin 2016: Internet: www.klimawandelundgesundheit.de NABU (Naturschutzbund Deutschland e.V.) 2010: StadtKlimaWandel. Rezepte für mehr Lebensqualität und ein besseres Klima in der Stadt. Internet: www.nabu.de/imperia/md/content/nabude/Stadtklimawandel/nabu_broschuere_stadtklimawandel_finalweb.pdf (Zugriff 08.01.2016) Stadtklimalotse 2016: Internet: www.stadtklimalotse.net/ (Zugriff 19.02.2018) UBA (Umweltbundesamt) 2016: KlimaExWoSt – Urbane Strategien zum Klimawandel. Internet: www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/werkzeuge-der-anpassung/projektkatalog/klimaexwost-urbane-strategien-klimawandel (Zugriff 08.01.2016) Europa: European Commission, Public health responses to heat waves 2016. WHO (World Health Organization Europe) (Hrsg.) 2008: Heat-health action plans, Guidance, Copenhagen. Internet: www.euro.who.int/__data/assets/pdf_file/0006/95919/E91347.pdf (Zugriff 08.01.2016) WHO (World Health Organization Europe) (Hrsg.) 2009: Improving public health responses to extreme weather/heat-waves – EuroHEAT. Technical summary, Copenhagen. Internet: www.euro.who.int/__data/assets/pdf_file/0010/95914/E92474.pdf (Zugriff 08.01.2016)
<p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten. 2025 gab es 11 Heiße Tage (gemittelt über die Fläche Deutschlands).</p><p>Informationen zur interaktiven Karte</p><p>Quellen: <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> 2000-2025 – <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>/Climate Data Center, <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2000-2025 – DWD/Climate Data Center; Daten für 2025 – Persönliche Mitteilung des DWD vom 14.11.2025.</p><p>Die Bearbeitung der interaktiven Karte erfolgt durch das Umweltbundesamt, FG I 1.6 und I 1.7.</p><p>Gesundheitsrisiko Hitze</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a> 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren (vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich. </p><p><em>Tipps zum Weiterlesen: </em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. & Mücke, H.-G. (2017): <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>
Der Darstellungsdienst zeigt die Geltungsbereiche der rechtskräftigen Bebauungspläne sowie Satzungen gemäß §§ 34 u. 35 BauGB der Geimeinde Mücke (Vogelsbergkreis) inklusive der Verknüpfung auf Pläne und Dokumente. Dies ist ein Web Map Service der Gemeinde Mücke.
Lecithine und andere Phospholipide bilden, wenn man sie auf die Wasseroberflaeche bringt, monomolekulare Schichten, welche die Oberflaechenspannung des Wassers stark herabsetzen. Es wurde ein Oberflaechenfilm aus pflanzlichen Phospholipiden entwickelt, der die Puppen der Stechmuecken und zum Teil auch die Larven an der Luftaufnahme an der Wasseroberflaeche hindert und rasch ersticken laesst. Die Nebenwirkungen auf die uebrigen luftatmenden Wasserinsekten sind relativ gering. Dieses physikalische Bekaempfungsverfahren wurde 1976 erstmals im Freiland erprobt. 1977 wurden mit diesem Verfahren in einem Grossversuch in den Rheinauen zwischen Karlsruhe und Ludwigshafen die Rheinschnaken (Aedes-Arten) bekaempft. Die Bekaempfung wurde von den Rheinanliegergemeinden durchgefuehrt und erstreckte sich auf ca. 300 ha temporaere Gewaesser.
1. Grob- und Feinkartierung der Schnakenbrutstaetten im Oberrheingebiet und deren Charakterisierung nach oekologischen Gesichtspunkten. 2. Faunistische Bestandsaufnahme, insbesondere im Hinblick auf natuerliche Feinde der Schnaken. 3. Untersuchung der Biologie der Rheinschnaken. 4. Versuche zur biologischen Bekaempfung der Rheinschnaken. 5. Wissenschaftliche Ueberwachung und Betreuung der Schnakenbekaempfung.
Als ultrafeine Partikel werden Teilchen mit Durchmessern kleiner als 100 nm bezeichnet. Die ultrafeinen Partikel entstehen in Verbrennungsprozessen, die unter Sauerstoffmangel stattfinden. Hierbei sind u.a. der Straßenverkehr mit seinen unzähligen instationären Verbrennungen, Industrieprozesse und Hausbrand zu nennen. Partikel dieses Größenbereichs können sehr spezielle chemische oder physikalische Wechselbeziehungen mit der Umgebung eingehen. Man beobachtet bei ultrafeinen Partikeln vorwiegend Diffusion, wogegen sich größere Teilchen eher durch Anlagerung bzw. Sedimentation auszeichnen (Limbach, 2005). In der Europäischen Union gilt seit Januar 2005 ein Grenzwert für Feinstaub, d.h. für Partikel kleiner als 10ìm (PM10), vorgeschrieben. Für ultrafeine Partikel gibt es in Europa bisher keine eigenen Grenzwerte. In einem bis dahin einmaligen Projekt wurde die Entwicklung der Belastung mit ultrafeinen Partikeln in Erfurt über zehn Jahre quantitativ bestimmt. Dabei wurde ein deutlicher Anstieg festgestellt (Krug, 2005). Die Korngrößen des Ultrafeinstaubs können das menschliche Respirationssystem erreichen. Man spricht daher vom inhalierbaren Anteil des Feinstaubs. Partikel kleiner als 100 nm werden als noch gefährlicher eingestuft, da sie lungengängig sind. Wegen ihrer geringen Größe können einzelne ultrafeine Partikel ein Lungenepithel durchqueren. Ein Weitertransport zu Leber, Knochenmark oder Herz ist möglich. Die Ultrafeinpartikel können sich in der Lunge bis zu mehreren Monaten ablagern bzw. verbleiben (WHO,1997). Es sind einige Verfahren entwickelt worden, um die PAK-Belastung auf Menschen zu erfassen und ihre Auswirkungen zu beschreiben. Dabei wurde Benzo(a)Pyren oft als Indikator für die Präsenz von karzinogenen PAK in der Umwelt genutzt. Verbreitet ist zum Beispiel die Bestimmung von PAK in Blut oder Urin und die Untersuchung der Auswirkungen von PAK auf den Metabolismus in Organen wie Niere und Leber (Larsen, 1995). Die Exposition durch NPAK erfolgt hauptsächlich über die Luft. Es gibt bislang wenige Studien, welche die Langzeitwirkung der inhalativen Aufnahme untersuchen. Darüber hinaus gelten auch die Metaboliten der NPAK als kanzerogen (Uhl, 2007). Laut WHO gibt es erheblichen Forschungsbedarf hinsichtlich der Exposition der Menschen und der Wirkungen von NPAK auf die menschliche Gesundheit (IPCS 2003). Obwohl die NPAK nur einen Bruchteil (1 bis 10Prozent) der PAK ausmachen (Nielsen, 1984), ist spezielle Aufmerksamkeit wegen ihrer hohen biologischen Aktivität notwendig. Zahlreiche NPAK wirkten in Tierversuchen deutlich mutagen und kanzerogen (Fiedler et.al, 1990). Über ihr Verhalten und ihre Anreicherung in Boden und Staub ist bis jetzt noch sehr wenig bekannt. Ebenso wenig wie über deren Metabolismus und Akkumulation in biologischem Gewebe (Fiedler et al., 1991, Fieder und Mücke 1990). (...)
Die Datenserie umfasst die beiden Datensätze "Landschaftsschutzgebiete Wuppertal" und "Naturschutzgebiete Wuppertal", die gemeinsam den Inhalt für die Kartenebene "Landschafts- und Naturschutz" im Urbanen Digitalen Zwilling "DigiTal Zwilling" der Stadt Wuppertal bereitstellen. Nur aus diesem Grund kommt der Aggregation der beiden Datensätze eine Identität als Datenserie zu. Der Metadatensatz zur Datenserie erlaubt eine eindeutige Verknüpfung zwischen der o. g. Kartenebene des DigiTal Zwillings und dem Metadatenkatalog. Der Datensatz "Landschaftsschutzgebiete Wuppertal" umfasst zum einen die Geltungsbereiche der gemäß §7 Landesnaturschutzgesetz NRW in den vier rechtsverbindlichen Landschaftsplänen der Stadt Wuppertal (Wuppertal-Gelpe, Wuppertal-Ost, Wuppertal-Nord und Wuppertal-West) festgesetzten Landschaftsschutzgebiete, zum anderen Restflächen aus Landschaftsschutzgebieten, die zuvor vom Land NRW in der "Verordnung zum Schutz von Landschaftsteilen im Gebiet der Stadt Wuppertal" vom 30.01.1975 und der "Verordnung zum Schutz von Landschaftsteilen in der Stadt Düsseldorf und im Kreis Düsseldorf-Mettmann" vom 02.06.1971 (LandschaftsschutzVOen) festgelegt worden waren. Der Datensatz "Naturschutzgebiete Wuppertal" umfasst zum einen die Geltungsbereiche der in den o. g. rechtsverbindlichen Landschaftsplänen festgesetzten Naturschutzgebiete, zum anderen zwei Flächen bzw. Restflächen von Naturschutzgebieten, die zuvor vom Land NRW durch Einzelverordnungen festgelegt worden waren (Naturschutzgebiet "Hardthöhle" von 1966, Restfläche des ursprünglichen 1996 festgelegten Naturschutzgebietes "Herichhauser Bach"). Mit der Festlegung der Naturschutzgebiete in den Landschaftsplänen wurde der flächenmäßig größte Teil der Naturschutzgebiete aus den früheren Einzelverordnungen des Landes aufgehoben. Beide Datensätze sind unter einer Open-Data-Lizenz (CC BY-ND 4.0) mit Ausschluss der Datenveränderung verfügbar. Nach Auffassung der AG Geokom.NRW der kommunalen Spitzenverbände in NRW und des Landes NRW besteht für diese Datenserie eine gesetzliche Publikationspflicht nach den Vorgaben der INSPIRE-Richtlinie bzw. des Geodatenzugangsgesetzes NRW. Sie wird in der Handlungsempfehlung dieser AG dem Thema "Schutzgebiete" aus Anhang I der Richtlinie zugeordnet.
| Origin | Count |
|---|---|
| Bund | 241 |
| Europa | 7 |
| Kommune | 5 |
| Land | 162 |
| Wissenschaft | 9 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Daten und Messstellen | 65 |
| Ereignis | 1 |
| Förderprogramm | 146 |
| Hochwertiger Datensatz | 1 |
| Infrastruktur | 9 |
| Lehrmaterial | 1 |
| Taxon | 45 |
| Text | 66 |
| Umweltprüfung | 1 |
| unbekannt | 84 |
| License | Count |
|---|---|
| geschlossen | 95 |
| offen | 246 |
| unbekannt | 29 |
| Language | Count |
|---|---|
| Deutsch | 342 |
| Englisch | 128 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Bild | 9 |
| Datei | 101 |
| Dokument | 41 |
| Keine | 163 |
| Unbekannt | 2 |
| Webdienst | 11 |
| Webseite | 87 |
| Topic | Count |
|---|---|
| Boden | 173 |
| Lebewesen und Lebensräume | 370 |
| Luft | 130 |
| Mensch und Umwelt | 365 |
| Wasser | 235 |
| Weitere | 335 |