API src

Found 142 results.

Related terms

Revision des Methankreislaufes in Seen: Quellen und Senken in 2 deutschen Seen unter besonderer Berücksichtigung der Methanakkumulation in sauerstoffhaltigenen Wasserschichten

Die Akkumulation von Methan (CH4) in sauerstoffhaltigen Wasserschichten wurde kürzlich für viele Binnengewässern und Ozeangebiete beschrieben. In unserem DFG-Projekt Aquameth (GR1540/21-1) haben wir daher die wichtigste Literatur in einem Review zusammengefasst und die möglichen Mechanismen für dieses Phänomen im Stechlinsee evaluiert. Indem wir ein online System für CH4 Messungen entwickelt haben, konnten wir die enge Kopplung der räumlich-zeitlichen Dynamik von Algen (z.B. Blaualgen und Cryptophyten) und CH4 in den oxischen Wasserschichten des Sees zeigen. Obwohl der vor kurzem beschriebene Methylphosphonat-Metabolismus im See vorkommt, haben wir zahlreiche Hinweise, dass Algen das CH4 während der Photosynthese direkt produzieren. Jedoch sind die genauen Mechanismen sowie der Anteil des im sauerstoffreichen Wasser gebildeten CH4 am gesamten CH4 Fluss in die Atmosphäre unklar. Durch die Kombination der Expertise von zwei etablierten Arbeitsgruppen, die sich ideal ergänzen, möchten wir die genaue Chemie und Biologie der CH4 Bildungs- und Oxidations-prozesse untersuchen, um die Rolle von Seen für den regionalen und globalen CH4 Kreislauf besser zu verstehen. Daher soll das komplette CH4 Budget von zwei Seen detailliert quantifiziert werden, d.h. CH4-Quellen und -Senken werden mit einem Massenbalance-Ansatz untersucht und mit in situ Inkubationsexperimenten verknüpft. Unsere zwei ausgesuchten Seen (Stechlinsee und Willersinnweiher) repräsentieren zwei Hauptseentypen der gemäßigten Zone (tief/Nährstoff-arm und flach /Nährstoff-reich), die gut von beiden Institutionen untersucht und biogeochemisch charakterisiert wurden. In diesen Seen hängen die spezifischen Prozesse der CH4 Bildung, Akkumulation und Freisetzung in die Atmosphäre von dem komplizierten Wechselspiel von physikalischen, chemischen und biologischen Faktoren sowie bestimmten Organismen ab. Daher ist unser Hauptziel, dieses komplizierte Wechselspiel zwischen Umweltvariablen und den CH4 Prozessen und ihre globale Bedeutung zu entschlüsseln. Unser Hypothesen sind: (1) Die Methanproduktion ist direkt mit der Photosynthese verbunden und CH4 kann bei bestimmten Umweltbedingungen, z.B. Nährstofflimitation, direkt von photo-autotrophen Organismen gebildet werden. (2) Die Methanbildung ist von der -oxidation durch die räumlich-zeitliche Trennung der methanotrophen Aktivität in sauerstoffhaltigen Wasserkörpern entkoppelt. (3) Methan an der Temperatursprungschicht ist das Produkt aus einem komplizierten Wechselspiel von biologischen, chemischen und physikalischen Prozessen. (4) Die erhöhten CH4 Konzentration in der oberen oxischen Wasserschicht erleichtert den Gasaustausch mit der Atmosphäre. Obwohl die CH4 Anreicherung in den oberen Wasserschichten stark vernachlässigt wurde, könnte sie eine wichtige fehlende Verbindung im globalen CH4 Budget sein. Um diese Hypothesen zu überprüfen, sollen Feld- und Labormessungen gemeinsam durch beide Teams durchgeführt werden.

Nutzung von Lignocellulosereichen Substraten zur Biogas- und Faser, bzw. Cellulosegewinnung mittels innovativer Verfahren

Eine Substitution fossiler durch biogene Rohstoffe für stoffliche Anwendungen ist ein maßgeblicher Schritt zur Reduktion der anthropogenen CO2 Emissionen. Dabei sollte Biomasse im Sinne der Bioökonomie möglichst ganzheitlich und effizient genutzt werden, um die Flächeneffizient und den Beitrag zur Eindämmung des Klimawandels zu maximieren. Die hochwertige Verwendung von bisher kaum genutzten landwirtschaftlichen Reststoffen ist eine vielversprechende Methode zur Effizienzsteigerung. Die stoffliche Nutzung von Agrarreststoffen ist allerdings problematisch. Biogene Stoffe haben stets eine schwankenden Produktqualität. Deshalb ist eine Vorbehandlung und Auftrennung der Reststoffe auf verwertbare Bestandteile notwendig und ein entscheidender Schritt für die Weiternutzung. Deutschland und Taiwan stellen zwei Technologieführer mit hohem Umweltbewusstsein in ihrer jeweiligen Klimazone dar. Deutschland befindet sich in der gemäßigten Klimazone, während Taiwan sich in der (sub-)tropischen Klimazone befindet. Besonders vielversprechende landwirtschaftliche Reststoffe, die sich für eine stofflich Nutzung eignen und daher untersucht werden sollen, sind in der gemäßigten Klimazone Getreidestroh und in der (sub-)tropischen Klimazone Kakao- und Bananenschalen, sowie Reisstroh. Zudem fallen Tomatenpflanzenreste in beiden Klimazonen an. Im angestrebten Projekt wird der landwirtschaftliche Reststoff zunächst in einem hydrothermalen Aufbereitungsverfahren aufgeschlossen, um die anaerob kaum abzubauenden Fasern von den sehr gutvergärbaren Bestandteilen zu trennen. Dies wird in Deutschland mittels Thermodruckhydrolyse realisiert und in Taiwan mittel Überkritischer Wassermethode. Anschließend folgt eine Auftrennung in einem Flüssig/Fest-Separator. Der faserreiche Feststoff soll als Torfersatzprodukt und als Substrat zur mikrobiellen Zelluloseproduktion genutzt werden. Torf findet insbesondere im Gartenbau Anwendung, da er diverse Vorteile besitzt. Allerdings bildet sich Torf in Mooren nur sehr langsam und zur Gewinnung müssen die CO2-bindende Moore entwässert werden. Im Projekt soll untersucht werden in wie weit die produzierten Fasern Torf ersetzen können. Ein zweiter zu untersuchender Ansatz im Projekt ist es die Feststofffraktion als Nährmedium für Bakterienkulturen zu verwenden, die gezielt mikrobielle Zellulose produzieren. Die Flüssigkeit soll mithilfe innovativer zweistufiger Biogasanlage energetisch genutzt werden soll. Die Nutzung der Organik zur Biogasproduktion soll die Prozessenergie der energieintensiven Aufbereitung bereitstellen. Der TS-Gehalt der flüssigen Fraktion ist sehr gering, was bei herkömmlichen volldurchmischten Reaktoren eine lange Verweilzeit und somit ein sehr großes Reaktorvolumen verursacht. Um diese Nachteile zu reduzieren, sollen im Projekt zweistufige Reaktorsysteme untersucht werden. Während in Taiwan beide Fermenter volldurchmischt betrieben werden, wird in Deutschland der Methanreaktor als Festbettfermenter ausgeführt.

Der Einfluss der Mykorrhizatypen und der Diversität der Bäume auf die Stabilisierung des Kohlenstoffs im Boden

Böden speichern große Mengen an Kohlenstoff (C) in der organischen Bodensubstanz (OBS), die durch Einschluss in Aggregate oder Bindung an Oberflächen von Mineralen vor mikrobieller Zersetzung geschützt ist. Je nachdem, welche Fraktion der OBS betrachtet wird, sind die Quellen sehr unterschiedlich. Während die partikuläre organische Substanz hauptsächlich aus Pflanzenresten besteht, stammt die mineralassoziierte organische Substanz größtenteils aus mikrobiellen Rückständen. In Wälder der gemäßigten Zonen spielt zudem die Symbiose zwischen Bäumen und Pilzen, die Mykorrhiza, eine wichtige Rolle für die C-Speicherung im Boden. Wälder, die von Bäumen mit Ektomykorrhiza (ECM) dominiert werden, weisen höhere C-Vorräte auf, verglichen mit Wäldern mit arbuskulärer Mykorrhiza (AM). Diese C-Vorräte sind jedoch weniger stabilisiert und das Verhältnis der partikulären zur mineralassoziierten OBS ist in ECM Wäldern höher als in AM Wäldern. Ein mechanistisches Verständnis der Faktoren und Prozesse, durch die die verschiedenen Mykorrhizatypen die partikuläre und die mineralassoziierte OBS beeinflussen, fehlt jedoch bislang. Wir nehmen an, dass der Mykorrhizatyp die Rhizodeposition beeinflusst, insbesondere die Vielfalt der Metabolite und die Dynamik des C-Eintrags, und dadurch ein Schlüsselfaktor für die C-Speicherung im Boden ist. Unsere Hypothese ist, dass in AM-dominierten Wäldern ein geringer, aber kontinuierlicher Eintrag von hochdiversen Rhizodepositen die mikrobiellen Gemeinschaften fördert, die dann zu einer erhöhten C-Stabilisierung in Form von mineralassoziierter OBS beitragen. Im Gegensatz dazu fördert ein unregelmäßiger und hoher C-Eintrag, bei gleichzeitiger Unterdrückung saprotropher Pilze (Gadgil Effekt), die Akkumulation der partikulären OBS in ECM Wäldern. Um die Hypothesen dieses Gemeinschaftsprojekts zu prüfen, werden wir auf ein etabliertes Experiment zur Diversität von Bäumen, bei dem die Häufigkeit von Mykorrhizatypen manipuliert wird, zurückgreifen. Dieses wird durch innovative Experimente im Labor und modernste Methoden, wie die Markierung mit stabilen Isotopen, die Identifizierung mittels Biomarkermolekülen und die Flüssigkeitschromatographie/Massenspektrometrie, kombiniert. Das vorgeschlagene Projekt wird zu einem umfassenden Verständnis der durch den Mykorrhizatyp bedingten Mechanismen des C-Umsatzes in Wäldern der gemäßigten Breiten beitragen. Dadurch wird es möglich, künftige Veränderungen der C-Vorräte in Waldökosystemen besser vorherzusagen und neue Waldbewirtschaftungsstrategien zu entwickeln, um die C-Speicherung im Boden zu erhalten oder sogar zu erhöhen.

Zusammensetzung und Umsetzung der organischen Substanz in Unterböden unter besonderer Berücksichtigung der Interaktion zwischen Mineralen und organischer Substanz

Das Wissen über die Menge, Zusammensetzung und Umsetzung der organischen Substanz in Böden der gemäßigten Breiten beschränkt sich bis auf wenige Ausnahmen auf die Oberböden (A-Horizonte und Auflagen) Hier finden sich die höchsten Konzentrationen der organischen Substanz. Jüngere Inventurarbeiten haben nun gezeigt, dass auch im Unterboden (B- und Cv-Horizonte) beträchtliche Mengen an organischer Substanz, allerdings in niedrigen Konzentrationen vorliegen. Ziel des geplanten Vorhabens ist es, (1) die Menge der organischen Substanz im Unterboden zu erfassen, (2) ihre Zusammensetzung und Herkunft zu bestimmen und (3) ihre Umsetzbarkeit zu erfassen. Daraus sollen Rückschlüsse auf die Stabilisierungsmechanismen der organischen Substanz im Unterboden gezogen werden. Nach einer Inventur der Bodenprofile an den SPP-Standorten (C-Gehalte, 14C-Alter) erfolgt die Erfassung der Zusammensetzung der organischen Substanz mittels Festkörper-13C-NMR-Spektroskopie. Die Zusammensetzung der Lipid-, Polysaccharid- und Ligninfraktion soll Hinweise auf die Herkunft der stabilisierten organischen Substanz differenziert nach oberirdischen, unterirdischen Pflanzenrückständen und mikrobiellen Resten geben. Abbauversuche unter kontrollierten Bedingungen im Labor und die Erfassung des 14C-Alters des freigesetzten CO2 sollen Aufschluss über die Umsetzbarkeit des 'jungen' und 'alten' C im Unterboden geben. Dabei werden jeweils die Profile über die gesamte Entwicklungstiefe untersucht, um die Ergebnisse der Unterbodenhorizonte in Bezug zu den Oberböden und zu den Ergebnissen anderer AG im SPP zu setzen. Darauf aufbauend können dann in den nächsten Phasen des SPP die Eigenschaften der organischen Substanz im Unterboden und die Regulation der C-Umsetzungen im Unterboden untersucht werden.

Vertiefung des Verständnisses des aquatischen Methankreislaufs durch innovative isotopische Ansätze und Untersuchung der Methanoxidation

Methan (CH4) ist ein potentes Treibhausgas, das zur globalen Erwärmung beiträgt und eine wichtige Rolle in der Atmosphärenchemie spielt. Aquatische Systeme wurden kürzlich als bedeutende Quellen von CH4 identifiziert, die bis zu 50 % zu den globalen CH4-Emissionen ausmachen. Es besteht jedoch weiterhin erhebliche Unsicherheit über das Ausmaß dieser Emissionen, insbesondere über deren räumliche und zeitliche Treiber. Dies gilt besonders für CH4-Emissionen aus den aquatischen Systemen der Arktis, die bisher kaum untersucht wurden. Um das Verständnis des globalen CH4-Budgets zu verbessern, ist es daher entscheidend die Quellen von CH4 in aquatischen Systemen genau zu charakterisieren und zu klassifizieren. Aktuelle Methoden zur Klassifizierung von CH4-Quellen nutzen stabile Isotopenverhältnisse wie stabile Kohlenstoff- (delta13C) und Wasserstoff- (delta2H) Isotopenwerte von CH4 (13C vs. 2H Diagramme) sowie geochemische Bernard-Verhältnisse, welche die molaren Verhältnisse von CH4 zu Ethan und Propan gegen delta13C-CH4 Werte darstellt (Bernard-Diagramme). Beide Diagramme werden verwendet, da verschiedene CH4-Quellen durch spezifische Bereiche von delta13C- und delta2H-CH4-Werten sowie Bernard-Verhältnissen charakterisiert sind. Eine wesentliche Einschränkung ergibt sich aus der CH4-Oxidation (MOx) durch methanotrophe Bakterien, die in aquatischen Umgebungen weit verbreitet sind. Dieser Prozess verändert die CH4-Konzentrationen und stabilen Isotopenwerte sowie die Ethan- und Propankonzentrationen, wobei die Oxidation dieser Gase bezüglich der CH4-Quellenklassifizierung bisher unberücksichtigt bleibt. Dies kann zu einer erschwerten Klassifizierung von CH4-Quellen bis hin zu Fehlinterpretationen führen. Ein vielversprechender neuer Parameter, um die Klassifizierung von CH4-Quellen in dieser Hinsicht zu verbessern, ist der sogenannte Delta(2,13)-Parameter, der auf den delta13C- und delta2H-Werten von CH4 basiert, jedoch zusätzlich für die durch MOx verursachte Isotopenfraktionierung korrigiert. Derzeit beeinträchtigen jedoch die begrenzte Nutzung des Delta(2,13) Parameters sowie fehlendes Wissen über potenzielle Einflussfaktoren seine Zuverlässigkeit und erfordern eine systematische Untersuchung. Das Ziel von AMIOX ist es, das Verständnis des aquatischen CH4-Kreislaufs zu vertiefen, indem die Klassifizierung von CH4-Quellen und -Senken in gemäßigten und arktischen aquatischen Systemen verbessert wird. Dies soll durch die Einführung des neuen Delta(2,13)-Parameters in Kombination mit Bernard- und 13C vs. 2H-CH4 Diagrammen erreicht werden. Um diese Ziele zu erreichen, werde ich den Einfluss von MOx auf die Delta(2,13)-Werte und Bernard-Verhältnisse durch drei weit verbreitete methanotrophe Spezies in Laborstudien unter verschiedenen Umweltbedingungen untersuchen. Schließlich werde ich die erworbenen Erkenntnisse im Feld anwenden, um das Verständnis des CH4-Kreislaufs in Seen in gemäßigten Breiten in Deutschland und arktischen Seen in Grönland zu verbessern.

Bewertung von naturnahen Lebensräumen und Ökosystemleistungen in Agrarlandschaften

Der Schutz natürlicher Lebensräume ist ein Ziel vieler regionaler politischer Strategien und steht im Einklang mit den globalen Verpflichtungen, mindestens 30 % der Land- und Meeresökosysteme zu schützen. In Agrarlandschaften spielen natürliche und naturnahe Lebensräume eine entscheidende Rolle, da sie nützliche Arten fördern, die Ökosystemleistungen erbringen, welche für produktive und nachhaltige landwirtschaftliche Systeme von zentraler Bedeutung sind. Das geplante Projekt zielt darauf ab, die Rolle naturnaher Lebensräume in der Agrarlandschaft hinsichtlich der Förderung von Insektengemeinschaften und Ökosystemleistungen zu untersuchen. Wir konzentrieren uns auf Laufkäfer (Carabidae) als Zielgruppe, da sie zu den häufigsten und vielfältigsten Taxa in landwirtschaftlichen Systemen der gemäßigten Zonen gehören und einen wichtigen Beitrag zur biologischen Kontrolle von Insektenschädlingen und Unkrautsamen leisten. Darüber hinaus wollen wir die Anwendung von weit verbreiteten Monitoringinstrumenten zur Quantifizierung der von Laufkäfern und anderen nützlichen Taxa erbrachten Ökosystemleistungen verbessern. Im Rahmen des Projekts wird die Bedeutung verschiedener naturnaher Lebensräume (z. B. Hecken, Blühflächen, Grasstreifen und Grünland) für die funktionelle Vielfalt der Laufkäfer analysiert. Hierbei werden die Anfälligkeit von Laufkäfer-Gemeinschaften für den Verlust von Arten aufgrund von Lebensraumverlusten simuliert (WP1), die Nutzung der Lebensräume durch Laufkäfer während des gesamten Jahres, einschließlich der wenig beforschten Winterzeit, betrachtet (WP2), der Zusammenhang zwischen dem Lebensraumtyp und dem Ernährungszustand einer weit verbreiteten Laufkäferart erforscht (WP3), die Beeinflussung der biologischen Kontrolle von Schadinsekten und Unkrautsamen durch Lebensraumtyp und Ernährungszustand untersucht (WP4) und Instrumente zum Monitoring der räuberischen Aktivität von Laufkäfern in landwirtschaftlichen Systemen weiterentwickelt (WP5). Durch die Kombination von Simulationsmodellen mit Feld- und Laborexperimenten wird dieses Projekt beitragen, die Lebensräume zu identifizieren, die für die Förderung funktioneller Laufkäfergemeinschaften und Ökosystemleistungen erforderlich sind. Außerdem wird das Projekt helfen, zu verstehen, wie Laufkäfer verschiedene Lebensräume über das Jahr hinweg nutzen und welche Rolle verschiedene Lebensräume als Ressourcenlieferanten für Laufkäfer aufweisen. Das Gesamtziel dieses Projekts ist, den Schutz und die Pflege naturnaher Lebensräume in Agrarlandschaften zu verbessern sowie unsere Fähigkeit zur Gestaltung funktionaler und widerstandsfähiger Agrarlandschaften zu stärken.

Wasser- und Stoffflüsse an Rändern von Auengrundwasserleitern und ihre Kontrolle durch Untergrundstrukturen

In Flussauen von Flussmittelläufen in gemäßigten Klimazonen ist der Grundwasserstrom typischerweise vornehmlich talabwärts gerichtet. Die hydrologische Funktion der Auengrundwasserleiter hängt allerdings vom Vorhandensein hydrogeologisch relevanter Strukturen ab, und das Grundwassersystem wird stark durch Wasser- und Stoffflüsse über seine Ränder beeinflusst. Das beantragte Projekt zielt daher darauf ab, die hydrogeologischen Steuergrößen für diese Flüsse zu charakterisieren und die relative Bedeutung der Ränder für die Wasserbilanz und den Umsatz gelöster Stoffe in Auengrundwasserleitern zu ermitteln. Als Untersuchungsgebiet dient die Ammeraue bei Tübingen (Südwestdeutschland), die typisch für Auengebiete entlang von Flussmitteläufen in gemäßigten Klimazonen ist und bereits von den Antragstellern im Rahmen des SFB1253 CAMPOS untersucht wurde. Für die Modellierung und Vorhersage der hydrologischen Funktion des Auengrundwasserleiters und seiner Ränder ist es wichtig, die räumliche Lage, Geometrie und die Eigenschaften hydraulisch leitfähiger Strukturen an den Auenrändern zu erkunden. Unsere Untersuchungen zielen daher darauf ab, geologische Strukturelemente an den Auenrändern zu charakterisieren, die die Gesamtflüsse des Grundwassers und der darin gelösten Stoffe durch den Auengrundwasserleiter bestimmen. Hierfür entwickeln wir arbeits- und kosteneffiziente Methoden, mit denen sich die räumliche Ausdehnung und Geometrie der Ränder (mittels geophysikalischer Methoden) abbilden und die hydraulische Konnektivität zu den Auengrundwasserleitern (mittels hydraulischer Methoden) charakterisieren lassen. Mit besonderem Fokus auf die identifizierten hydrogeologisch relevanten Strukturelemente an den Auenrändern wollen wir die Wasserflüsse und die Stoffströme bestimmen, die die Ränder des Auengrundwasserleiters passieren, um ihre relativen Beiträge innerhalb des Auengrundwasserleiters zu quantifizieren. Wir untersuchen hierfür insbesondere die zeitliche Grundwasserdynamik, um zu bestimmen, unter welchen hydrologischen Bedingungen ein erhöhter Wasseraustausch stattfindet. Die experimentellen Projektergebnisse fließen in ein konsistentes numerisches Grundwassermodell ein, um hydrogeologische Messungen vorherzusagen und die Ergebnisse der dynamischen Austauschflüsse zu interpretieren. Schließlich werden wir die geologischen Informationen, die in den verschiedenen Untersuchungsschritten und in vorherigen Arbeiten gesammelt wurden, umfassend geologisch interpretieren. Dies ermöglichst es, die maßgeblichen geologischen Prozesse zu identifizieren, die das Vorkommen und die Wirkung durchlässiger Strukturen an den Rändern von Auengrundwasserleitern bestimmen sowie die Austauschprozesse über die Ränder kontrollieren. Dieser Ansatz erlaubt es, unsere Ergebnisse auf andere Standorte zu übertragen und zu verallgemeinern.

Eine subkontinentale Bewertung der Reaktionen auf Klimaextreme in alten Buchenwäldern (Fagus sylvatica L.) von der Zelle bis zum Ökosystem

Es wird erwartet, dass die Frequenz und Amplitude anthropogen verursachter hydroklimatischer Extreme zunehmen und die europäischen Waldökosysteme über ihre physiologischen Grenzen hinaus beeinträchtigen. Um die Resilienz und Veränderung dieser Waldökosysteme zu beurteilen, ist es wichtig, die mechanistischen Zusammenhänge zwischen Baumwachstum und Klima zu definieren und quantifizieren. Dabei bietet die retrospektive Charakterisierung funktioneller hydraulischer Holzmerkmale, sowie der Vergleich mit jährlichen Holzzuwächsen entlang großräumiger ökologischer Gradienten einen idealen Ansatz für die Evaluation zukünftiger Klima- und Umweltbelastungen.Das hier beantragte Forschungsprojekt fokussiert die Buche (Fagus sylvatica L.), eine der wichtigsten und durch den Klimawandel am stärksten bedrohten Baumarten der europäischen gemäßigten Breiten. Im Zentrum stehen vier einzigartige, von der UNESCO zum Weltnaturerbe erklärte Buchenwälder, die in der Mitte des Verbreitungsgebiets in Nord- und Westdeutschland, sowie an den westlichen und südlichen Verbreitungsgrenzen auf der Iberischen Halbinsel und in Italien lokalisiert sind. Für diese Wäldern werden jährlich aufgelöster Zeitreihen des Grundflächenzuwachses und holzanatomischer Merkmale erstellt und mit fernerkundungsbasierten Vegetationsindizes kombiniert, um über längere Zeiträume i) die Reaktionen auf vergangene hydroklimatische Extreme zu charakterisieren, ii) die Signale einzelner Bäume auf Waldbestände zu skalieren, und iii) die Resilienz dieser Wälder für zukünftige Extremereignisse zu quantifizieren. Dabei evaluieren wir die klimatischen Signale holzanatomischer Parameter, indem wir Veränderungen in der Merkmalsverteilung vor und nach Extremereignissen quantifizieren. Zusätzlich dokumentieren wir die Zusammenhänge zwischen funktionalen Holzmerkmalen und Ökosystemprozessen, indem wir die spektralen Eigenschaften von Zeitreihen zellulärer Parameter und der Bruttoprimärproduktivität mit Hilfe modernster Techniken der sub-saisonalen Signalverstärkung vergleichen.Holzanatomische Merkmale haben sich in der jüngsten Vergangenheit zu geeigneten Indikatoren für die Evaluierung pflanzenphysiologischer Prozesse und des Gesundheitszustand von Bäumen entwickelt. Die Integration der klimatischen Sensitivität dieser Parameter mit der Funktionsweise von Ökosystemen bietet einen konzeptionellen Rahmen, um die Vulnerabilität einzelner Arten in zukünftigen klimatischen Szenarien abzuschätzen. Durch die Analyse extrem alter und langfristig nicht-bewirtschafteter Buchenwälder, kann das hier beantragte Projekt zu einem besseren Verständnis der Widerstandsfähigkeit wichtiger Waldbestände gegenüber dem Klimawandel beitragen.

Untersuchung der molekularen Mechanismen der durch UV-Strahlung induzierten Inhibition der Photosynthese mariner Makroalgen

Marine Makroalgen stellen Schlüsselorganismen in Küstenökosystemen dar. Bisherige Untersuchungen haben gezeigt, dass die Photosynthese dieser Organismen durch die natürliche, solare UV-Strahlung beeinträchtigt wird. Die molekularen Mechanismen der Schädigung und die der Anpassung mariner Makroalgen an erhöhten UVB-Intensitäten sind bisher wenig untersucht. Innerhalb des beantragten Projektes soll geklärt werden, welche Auswirkungen die solare UV-Strahlung auf die Expression bestimmter Markergene photosynthetischer Enzyme und Proteine innerhalb der Elektronentransportkette, die Enzymregulierung und die Ausbildung von Schutzmechanismen hat und was die Konsequenzen für den Photosyntheseapparat unter natürlichen Bedingungen sind. In der zweiten Phase soll die Interaktion von UVB-Strahlung mit weiteren Stressfaktoren (besonders Temperatur) untersucht werden. Feldexperimente sollen vor allem an Arten der warm-gemäßigten und tropischen Regionen vorgenommen werden, da diese Organismen permanent hohen UVB-Intensitäten ausgesetzt sind und deswegen über adäquate Anpassungsmechanismen verfügen müssen. Diese Untersuchungen sollen zu einer Abschätzung führen, ob auch Algen aus den Polarregionen, die primär vom Ozonabbau betroffen sind, sich langfristig an die dort erhöhte UV-Strahlung anpassen können.

Forschergruppe (FOR) 5315: Humusauflage: Funktionsweise, Dynamik und Vulnerabilität im Wandel, Teilprojekt: Steuergrößen von Eigenschaften der Humusauflage: Auswirkungen auf die thermisch-hydrologischen Funktionen von Waldböden

Klimatische Bedingungen, Nährstoffeinträge über die Luft und Baumartenwahl steuern - neben anderen Faktoren - die Ausprägung der Humusauflagen (HA) und damit die ökologischen Funktionen unserer Wälder. Mittels verfügbarer Wald- und Bodeninventurdaten lassen sich die Beziehungen zwischen den Basiseigenschaften der HA (z. B. Mächtigkeit, Masse, Morphologie) und den ökologischen Standortbedingungen ermitteln. Obwohl es generell akzeptiert wird, dass solche Beziehungen existieren, steht eine Analyse dieser Zusammenhänge entlang von Umweltgradienten noch aus. Die Prüfung der Beziehungen zwischen HA-Eigenschaften, Niederschlag (MAP) und Lufttemperatur (MAT) ist herausfordernd, da einerseits die Beschaffenheit der HA die Beziehung zwischen MAT/MAP und Temperatur/Feuchte innerhalb der HA steuert. Andererseits ändert sich die Beschaffenheit der HA unter den Bedingungen des Klimawandels und damit auch die Beziehung zwischen den meteorologischen Größen und dem Wasser- und Wärmehaushalt der Humusauflage.Nur wenig ist über den Zusammenhang zwischen den Basiseigenschaften der HA und den physikalischen Eigenschaften der HA (Porengrößenverteilung, Wasserrückhaltevermögen, hydraulische Leitfähigkeit, Wärmeleitfähigkeit) bekannt. Darüber hinaus wissen wir nicht, wie sich diese Eigenschaften unter den Bedingungen des Klimawandels, der N-Eutrophierung und der Veränderung der Baumartenzusammensetzung verändern. Änderungen im Wasserrückhaltevermögen von HA wirken sich nicht nur auf den Wasserkreislauf in Wäldern aus, sondern auch auf deren Wärmehaushalt. Während dies für die borealen Wälder bereits gezeigt wurde, fehlen ähnliche Untersuchungen für die Wälder der gemäßigten Zone. Das Fehlen solcher Studien erschwert unser Verständnis darüber, wie sich das kombinierte Feuchte- und Temperaturregime der HA als Reaktion auf Veränderungen der abiotischen und biotischen Faktoren modifizieren könnte.Verfügbare Wald- und Bodeninventurdaten in Kombination mit einer modellbasierten Bewertung der Auswirkungen von Veränderungen der thermischen und hydraulischen Eigenschaften von HA auf den Wasser- und Wärmehaushalt von HA bergen ein großes Potenzial, die aufgezeigten Wissenslücken zu schließen. Solch eine systematische Vorgehensweise zur Identifizierung der Steuergrößen der Beschaffenheit der HA und der daraus resultierenden Eigenschaften der HA wurde bisher noch nicht umgesetzt. Das Ziel unseres Projekts ist daher ein zweifaches: (1) Beantwortung der Frage, wie sich Strukturveränderungen der HA infolge veränderter Nährstoffverfügbarkeit und Lufttemperatur auf den Wärme- und Wasserhaushalt von Wäldern auswirken können, und (2) auf der Grundlage eines verbesserten Verständnisses der Beziehungen zwischen Basiseigenschaften der HA und Standortbedingungen an den Untersuchungsstandorten der Forschergruppe und anderen Monitoringstandorten werden diese neuen Erkenntnisse genutzt, um die Basiseigenschaften der HA von der Plotebene auf die nationale Ebene zu übertragen.

1 2 3 4 513 14 15