Das Wissen über die Menge, Zusammensetzung und Umsetzung der organischen Substanz in Böden der gemäßigten Breiten beschränkt sich bis auf wenige Ausnahmen auf die Oberböden (A-Horizonte und Auflagen). Hier finden sich die höchsten Konzentrationen der organischen Substanz. Jüngere Inventurarbeiten haben nun gezeigt, dass auch im Unterboden (B- und Cv-Horizonte) beträchtliche Mengen an organischer Substanz, allerdings in niedrigen Konzentrationen vorliegen. Ziel des geplanten Vorhabens ist es, (1) die Menge der organischen Substanz im Unterboden zu erfassen, (2) ihre Zusammensetzung und Herkunft zu bestimmen und (3) ihre Umsetzbarkeit zu erfassen. Daraus sollen Rückschlüsse auf die Stabilisierungsmechanismen der organischen Substanz im Unterboden gezogen werden. Nach einer Inventur der Bodenprofile an den SPP-Standorten (C-Gehalte, 14C-Alter) erfolgt die Erfassung der Zusammensetzung der organischen Substanz mittels Festkörper-13C-NMR-Spektroskopie. Die Zusammensetzung der Lipid-, Polysaccharid- und Ligninfraktion soll Hinweise auf die Herkunft der stabilisierten organischen Substanz differenziert nach oberirdischen, unterirdischen Pflanzenrückständen und mikrobiellen Resten geben. Abbauversuche unter kontrollierten Bedingungen im Labor und die Erfassung des 14C-Alters des freigesetzten CO2 sollen Aufschluß über die Umsetzbarkeit des 'jungen' und 'alten' C im Unterboden geben. Dabei werden jeweils die Profile über die gesamte Entwicklungstiefe betrachtet, um die Unterbodenhorizonte in Bezug zu den Oberböden und zu den Ergebnissen anderer AG im SPP zu setzen. Darauf aufbauend können dann in den nächsten Phasen des SPP die Eigenschaften der organischen Substanz im Unterboden und die Regulation der C-Umsetzungen im Unterboden untersucht werden.
Einfluss des Ozonabbaus auf die UV -Belastung Die UV - Strahlung der Sonne, die so genannte "solare UV - Strahlung ", mit Wellenlängen von 100 Nanometer ( nm ) bis 400 nm wird wellenlängenabhängig durch das Ozon in der Stratosphäre mehr oder weniger absorbiert. Durch eine Verringerung der Ozonkonzentration in der Atmosphäre erhöht sich der Anteil an UV -B- Strahlung , der die Erdoberfläche erreicht. Erhöht sich der UV -B-Anteil, steigt auch die Gesamt- UV -Strahlungsbelastung für die Bevölkerung. Dies bedeutet ein erhöhtes Risiko für UV -bedingte Erkrankungen. Der menschgemachte Ozonabbau ist nicht nur Ursache für das Ozonloch über der Antarktis. Er führte weltweit zu einer mehr oder minder ausgeprägten Erhöhung des UV -B-Anteils - in den mittleren Breitengraden der nördlichen Hemisphäre und damit auch über Deutschland um ca. 7 % im Winter/Frühling und um ca. 4 % im Sommer/Herbst. Quelle: @nt/stock.adobe.com Das Ozon in der Atmosphäre verhindert, dass die gesamte UV - Strahlung , die von der Sonne abgegeben wird, die so genannte "solare UV - Strahlung ", die Erde erreicht. Diese Filterfunktion des Ozons ist stark wellenlängenabhängig: Je kleiner die Wellenlänge der UV - Strahlung , desto weniger erreicht davon die Erde. So passiert die langwellige UV -A- Strahlung mit Wellenlängen von 315 nm bis 400 nm ungehindert die Ozonschicht, während nur noch 10 % der UV -B- Strahlung (Wellenlängen 280 nm bis 315 nm ) zur Erde gelangen. UV -C- Strahlung (280 nm bis 100 nm ) erreicht die Erde gar nicht. Ändert sich der Ozongehalt in der Atmosphäre, bewirkt dies eine Veränderung des Anteils an UV -B- Strahlung , der die Erde erreicht: Eine kleinere Ozonkonzentration bedeutet eine Erhöhung des UV -B-Anteils. Eine höhere Ozonkonzentration verringert den UV -B-Anteil. Erhöht sich der UV -B-Anteil, steigt auch die Gesamt- UV -Strahlungsbelastung für die Bevölkerung. Dies bedeutet ein erhöhtes Risiko für UV -bedingte Erkrankungen, insbesondere für UV -bedingte Krebserkrankungen an Auge und Haut. Schwankungen des Ozongehalts Etwa 90 % der gesamten Ozonmenge in der Atmosphäre entfallen auf die Stratosphäre , etwa 10 % auf die darunterliegende Troposphäre . Der atmosphärische Gesamtozongehalt unterliegt in unseren Breitengraden jahreszeitlichen, natürlichen Schwankungen mit einem Maximum im Frühjahr und einem Minimum im Herbst. Zusätzlich können so genannte Niedrig-Ozon-Ereignisse verschiedenen Ursprungs auftreten. Zum einen kann in sehr kalten Wintern über der Arktis ein starker Ozonabbau erfolgen. Die ozonarmen Luftmassen daraus können mit Auflösen des Polarwirbels in gemäßigte Breiten transportiert werden. Das kann dann im März/ Anfang April für einige wenige Tage zu ungewöhnlich hohen UV -Intensitäten in Deutschland führen. Der UV-Index kann sich dann vorübergehend um bis zu drei UV-Index -Werte erhöhen. Zum anderen kann auch ein Zustrom ozonarmer Luft aus subtropischen Breiten erfolgen, wodurch ebenfalls für einige Tage in Deutschland UV -Intensitäten auftreten können, die über dem normalerweise erwartbaren Niveau liegen. Das Bundesamt für Strahlenschutz beobachtet dies genau und warnt über den UV - Newsletter des BfS und die Social-Media-Kanäle des BfS zeitnah. Der menschgemachte Ozonabbau Der menschgemachte Ozonabbau ist nicht nur Ursache für das Ozonloch über der Antarktis, sondern führte weltweit zu einer mehr oder minder ausgeprägten Erhöhung des UV -B-Anteils. In den mittleren Breitengraden der Nordhalbkugel – und damit auch für Deutschland – reduzierte sich die stratosphärische Ozonschicht um etwa 3 % . Dies führte zu einem Anstieg der sonnenbrandwirksamen UV -Bestrahlungsstärke um ca. 7 % im Winter/Frühling und um ca. 4 % im Sommer/Herbst. Inzwischen scheint sich aufgrund der Einhaltung des Montrealer Protokolls die Ozonschicht der Erde zu erholen. Es wird erwartet, dass die Ozonschichtdicke über den mittleren Breitengraden der Nordhalbkugel in den nächsten Jahrzehnten wieder die Werte der 1980er-Jahre erreichen wird. Aber es gibt auch Hinweise, dass Wechselwirkungen zwischen den Treibhausgasen (Stichwort globale Erwärmung, Klimawandel) und den ozonbildenden Prozessen in der Atmosphäre diese Erholung verzögern könnten. Stand: 13.05.2025
Das Wissen über die Menge, Zusammensetzung und Umsetzung der organischen Substanz in Böden der gemäßigten Breiten beschränkt sich bis auf wenige Ausnahmen auf die Oberböden (A-Horizonte und Auflagen) Hier finden sich die höchsten Konzentrationen der organischen Substanz. Jüngere Inventurarbeiten haben nun gezeigt, dass auch im Unterboden (B- und Cv-Horizonte) beträchtliche Mengen an organischer Substanz, allerdings in niedrigen Konzentrationen vorliegen. Ziel des geplanten Vorhabens ist es, (1) die Menge der organischen Substanz im Unterboden zu erfassen, (2) ihre Zusammensetzung und Herkunft zu bestimmen und (3) ihre Umsetzbarkeit zu erfassen. Daraus sollen Rückschlüsse auf die Stabilisierungsmechanismen der organischen Substanz im Unterboden gezogen werden. Nach einer Inventur der Bodenprofile an den SPP-Standorten (C-Gehalte, 14C-Alter) erfolgt die Erfassung der Zusammensetzung der organischen Substanz mittels Festkörper-13C-NMR-Spektroskopie. Die Zusammensetzung der Lipid-, Polysaccharid- und Ligninfraktion soll Hinweise auf die Herkunft der stabilisierten organischen Substanz differenziert nach oberirdischen, unterirdischen Pflanzenrückständen und mikrobiellen Resten geben. Abbauversuche unter kontrollierten Bedingungen im Labor und die Erfassung des 14C-Alters des freigesetzten CO2 sollen Aufschluss über die Umsetzbarkeit des 'jungen' und 'alten' C im Unterboden geben. Dabei werden jeweils die Profile über die gesamte Entwicklungstiefe untersucht, um die Ergebnisse der Unterbodenhorizonte in Bezug zu den Oberböden und zu den Ergebnissen anderer AG im SPP zu setzen. Darauf aufbauend können dann in den nächsten Phasen des SPP die Eigenschaften der organischen Substanz im Unterboden und die Regulation der C-Umsetzungen im Unterboden untersucht werden.
Methan (CH4) ist ein potentes Treibhausgas, das zur globalen Erwärmung beiträgt und eine wichtige Rolle in der Atmosphärenchemie spielt. Aquatische Systeme wurden kürzlich als bedeutende Quellen von CH4 identifiziert, die bis zu 50 % zu den globalen CH4-Emissionen ausmachen. Es besteht jedoch weiterhin erhebliche Unsicherheit über das Ausmaß dieser Emissionen, insbesondere über deren räumliche und zeitliche Treiber. Dies gilt besonders für CH4-Emissionen aus den aquatischen Systemen der Arktis, die bisher kaum untersucht wurden. Um das Verständnis des globalen CH4-Budgets zu verbessern, ist es daher entscheidend die Quellen von CH4 in aquatischen Systemen genau zu charakterisieren und zu klassifizieren. Aktuelle Methoden zur Klassifizierung von CH4-Quellen nutzen stabile Isotopenverhältnisse wie stabile Kohlenstoff- (delta13C) und Wasserstoff- (delta2H) Isotopenwerte von CH4 (13C vs. 2H Diagramme) sowie geochemische Bernard-Verhältnisse, welche die molaren Verhältnisse von CH4 zu Ethan und Propan gegen delta13C-CH4 Werte darstellt (Bernard-Diagramme). Beide Diagramme werden verwendet, da verschiedene CH4-Quellen durch spezifische Bereiche von delta13C- und delta2H-CH4-Werten sowie Bernard-Verhältnissen charakterisiert sind. Eine wesentliche Einschränkung ergibt sich aus der CH4-Oxidation (MOx) durch methanotrophe Bakterien, die in aquatischen Umgebungen weit verbreitet sind. Dieser Prozess verändert die CH4-Konzentrationen und stabilen Isotopenwerte sowie die Ethan- und Propankonzentrationen, wobei die Oxidation dieser Gase bezüglich der CH4-Quellenklassifizierung bisher unberücksichtigt bleibt. Dies kann zu einer erschwerten Klassifizierung von CH4-Quellen bis hin zu Fehlinterpretationen führen. Ein vielversprechender neuer Parameter, um die Klassifizierung von CH4-Quellen in dieser Hinsicht zu verbessern, ist der sogenannte Delta(2,13)-Parameter, der auf den delta13C- und delta2H-Werten von CH4 basiert, jedoch zusätzlich für die durch MOx verursachte Isotopenfraktionierung korrigiert. Derzeit beeinträchtigen jedoch die begrenzte Nutzung des Delta(2,13) Parameters sowie fehlendes Wissen über potenzielle Einflussfaktoren seine Zuverlässigkeit und erfordern eine systematische Untersuchung. Das Ziel von AMIOX ist es, das Verständnis des aquatischen CH4-Kreislaufs zu vertiefen, indem die Klassifizierung von CH4-Quellen und -Senken in gemäßigten und arktischen aquatischen Systemen verbessert wird. Dies soll durch die Einführung des neuen Delta(2,13)-Parameters in Kombination mit Bernard- und 13C vs. 2H-CH4 Diagrammen erreicht werden. Um diese Ziele zu erreichen, werde ich den Einfluss von MOx auf die Delta(2,13)-Werte und Bernard-Verhältnisse durch drei weit verbreitete methanotrophe Spezies in Laborstudien unter verschiedenen Umweltbedingungen untersuchen. Schließlich werde ich die erworbenen Erkenntnisse im Feld anwenden, um das Verständnis des CH4-Kreislaufs in Seen in gemäßigten Breiten in Deutschland und arktischen Seen in Grönland zu verbessern.
Marine Makroalgen stellen Schlüsselorganismen in Küstenökosystemen dar. Bisherige Untersuchungen haben gezeigt, dass die Photosynthese dieser Organismen durch die natürliche, solare UV-Strahlung beeinträchtigt wird. Die molekularen Mechanismen der Schädigung und die der Anpassung mariner Makroalgen an erhöhten UVB-Intensitäten sind bisher wenig untersucht. Innerhalb des beantragten Projektes soll geklärt werden, welche Auswirkungen die solare UV-Strahlung auf die Expression bestimmter Markergene photosynthetischer Enzyme und Proteine innerhalb der Elektronentransportkette, die Enzymregulierung und die Ausbildung von Schutzmechanismen hat und was die Konsequenzen für den Photosyntheseapparat unter natürlichen Bedingungen sind. In der zweiten Phase soll die Interaktion von UVB-Strahlung mit weiteren Stressfaktoren (besonders Temperatur) untersucht werden. Feldexperimente sollen vor allem an Arten der warm-gemäßigten und tropischen Regionen vorgenommen werden, da diese Organismen permanent hohen UVB-Intensitäten ausgesetzt sind und deswegen über adäquate Anpassungsmechanismen verfügen müssen. Diese Untersuchungen sollen zu einer Abschätzung führen, ob auch Algen aus den Polarregionen, die primär vom Ozonabbau betroffen sind, sich langfristig an die dort erhöhte UV-Strahlung anpassen können.
In Flussauen von Flussmittelläufen in gemäßigten Klimazonen ist der Grundwasserstrom typischerweise vornehmlich talabwärts gerichtet. Die hydrologische Funktion der Auengrundwasserleiter hängt allerdings vom Vorhandensein hydrogeologisch relevanter Strukturen ab, und das Grundwassersystem wird stark durch Wasser- und Stoffflüsse über seine Ränder beeinflusst. Das beantragte Projekt zielt daher darauf ab, die hydrogeologischen Steuergrößen für diese Flüsse zu charakterisieren und die relative Bedeutung der Ränder für die Wasserbilanz und den Umsatz gelöster Stoffe in Auengrundwasserleitern zu ermitteln. Als Untersuchungsgebiet dient die Ammeraue bei Tübingen (Südwestdeutschland), die typisch für Auengebiete entlang von Flussmitteläufen in gemäßigten Klimazonen ist und bereits von den Antragstellern im Rahmen des SFB1253 CAMPOS untersucht wurde. Für die Modellierung und Vorhersage der hydrologischen Funktion des Auengrundwasserleiters und seiner Ränder ist es wichtig, die räumliche Lage, Geometrie und die Eigenschaften hydraulisch leitfähiger Strukturen an den Auenrändern zu erkunden. Unsere Untersuchungen zielen daher darauf ab, geologische Strukturelemente an den Auenrändern zu charakterisieren, die die Gesamtflüsse des Grundwassers und der darin gelösten Stoffe durch den Auengrundwasserleiter bestimmen. Hierfür entwickeln wir arbeits- und kosteneffiziente Methoden, mit denen sich die räumliche Ausdehnung und Geometrie der Ränder (mittels geophysikalischer Methoden) abbilden und die hydraulische Konnektivität zu den Auengrundwasserleitern (mittels hydraulischer Methoden) charakterisieren lassen. Mit besonderem Fokus auf die identifizierten hydrogeologisch relevanten Strukturelemente an den Auenrändern wollen wir die Wasserflüsse und die Stoffströme bestimmen, die die Ränder des Auengrundwasserleiters passieren, um ihre relativen Beiträge innerhalb des Auengrundwasserleiters zu quantifizieren. Wir untersuchen hierfür insbesondere die zeitliche Grundwasserdynamik, um zu bestimmen, unter welchen hydrologischen Bedingungen ein erhöhter Wasseraustausch stattfindet. Die experimentellen Projektergebnisse fließen in ein konsistentes numerisches Grundwassermodell ein, um hydrogeologische Messungen vorherzusagen und die Ergebnisse der dynamischen Austauschflüsse zu interpretieren. Schließlich werden wir die geologischen Informationen, die in den verschiedenen Untersuchungsschritten und in vorherigen Arbeiten gesammelt wurden, umfassend geologisch interpretieren. Dies ermöglichst es, die maßgeblichen geologischen Prozesse zu identifizieren, die das Vorkommen und die Wirkung durchlässiger Strukturen an den Rändern von Auengrundwasserleitern bestimmen sowie die Austauschprozesse über die Ränder kontrollieren. Dieser Ansatz erlaubt es, unsere Ergebnisse auf andere Standorte zu übertragen und zu verallgemeinern.
Ziel des Projektes ist es, die Mechanismen besser zu verstehen, welche die biogeochemischen Prozesse (Metabolismus und Stickstoffaufnahme der mikrobiellen Gemeinschaft) unter Einfluss verschiedener Wiedervernässungsszenarien (mit und ohne Sedimenttransport) beeinflussen. Die Wiederaufnahme der Strömung nach einer Austrocknungsphase wird als biogeochemisches ‚hot moment‘ betrachtet, bei dem hohe Metabolismusraten und Stickstoffaufnahmeraten zu erwarten sind. Die Raten werden weiterhin durch die Häufigkeit der vorherigen Austrocknungsphasen beeinflusst. Die Mechanismen, die diesen biogeochemischen Moment beeinflussen, sind bisher wenig untersucht. Bisher waren es vor allem Studien zu Einzelfaktoren in temporären Bach- und Flussökosystemen. Allerdings treten Austrocknung und Wiederaufnahme der Strömung zunehmend auch in permanenten Gewässerökosystemen auf. Die Oberflächenströmung impliziert oft Sedimenttransport (z.B. in Form von Strömungsrippeln), insbesondere in sandgeprägten Gewässern. Darüber hinaus kann die Wiederaufnahme der Strömung in verschiedenen Chronologien erfolgen, wie z.B. sofortiges Einsetzen der Strömung während Regenereignissen oder langsames Einsetzen der Strömung bei steigendem Grundwasserpegel. Auch die Konzentrationen von Nährstoffen und Kohlenstoff, die bei der Wiederaufnahme der Strömung ausgelaugt werden, können die biogeochemischen Prozesse beeinflussen. Wir schlagen in unserem Projekt ein neues allgemeines Konzept von "austrocknenden Fließgewässerhabitaten" für trockenfallende Fließgewässer verschiedener Klimazonen vor (mediterrane und gemäßigte Zone). Die hier vorgeschlagene Untersuchung werden zeigen, ob eine solche allgemeine und integrative Sichtweise angewendet werden kann. Die Wechselwirkungen von Strömungswiederaufnahme, Sedimenttransport, Nährstoff- und Kohlenstoffkonzentration und Austrocknungshäufigkeit werden in Mikrokosmenversuchen mit mikrobiellen Gemeinschaften aus temporären und permanenten Fließgewässern untersucht. Im Fokus unserer Untersuchungen stehen 1) der Kohlenstoffstofffluss, gemessen anhand der Änderungen der Sauerstoffkonzentration im Dunkeln und im Licht, 2) die Netto-Stickstoffaufnahme durch Zugabe des stabilen Isotops 15N (15NH4Cl) und 3) die Struktur und Architektur (Biofilm) der mikrobiellen Gemeinschaft. Die Ergebnisse werden zu einem besseren mechanistischen Verständnis der Kohlenstoff- und Stickstoffdynamik in Gewässerökosystemen beitragen, die zu starken Strömungsschwankungen und Austrocknung neigen. Die Ergebnisse werden es ermöglichen, die Wiederaufnahme der Strömung in die aktuellen Konzepte zur Steuerung von Prozessen in Fließgewässerökosystemen zu integrieren. Ein solcher konzeptioneller Rahmen ist der Schlüssel für das Management von Ökosystemen im Mittelmeerraum und in den gemäßigten Breiten, die aufgrund der zunehmenden Wasserentnahme und des Klimawandels regelmäßig trockenfallen.
Biologische Bodenkrusten (Biokrusten) sind Hotspots an mikrobieller Diversität und Aktivität, die als 'Ökosystemingenieure' biogeochemische Kreisläufe (N, P) kontrollieren und die Bodenoberfläche stabilisieren. Biokrusten sind ein komplexes Netzwerk vielfältiger, interagierender Mikroorganismen mit verschiedensten Lebensweisen. In den gemäßigten Breiten ist wenig über die Einflussfaktoren auf Struktur und Funktion der Biokrusten bekannt. Daher wollen wir die Diversität der Mikroorganismen in Biokrusten (Bakterien, Protisten, Pilze und Algen) und ihre biogeochemische Funktion in den Waldflächen der Biodiversitätsexploratorien (BE) entlang von Landnutzungsgradienten untersuchen, um deren Beeinflussung durch Landnutzung und Umweltfaktoren zu verstehen.Das zentral organisierte, neue Störexperiment in den Waldflächen ist eine hervorragende Möglichkeit, um die Entwicklung einer Biokruste unter natürlichen Bedingungen nach einer starken Störung zu verfolgen. Eine Teilfläche simuliert Kahlschlag (die Stämme werden entfernt), die andere Teilfläche einen zukünftig häufiger auftretenden Orkan (Stämme verbleiben auf der Fläche). Wir werden die Entwicklung der Bodenkrusten von einem jungen zu einem reifen Stadium visuell (Flächenbedeckung) und durch Probenahme (Biomasse, Nährstoffe, Bodenorganik, Mikrobiota) mittels Feld-, analytischen und molekularen Methoden regelmäßig über zwei Jahre verfolgen. Außerdem werden wir an der zentralen Bodenbeprobungskampagne in allen 150 Waldflächen teilnehmen und parallel Biokrusten sammeln. Wir werden die mikrobielle Biomasse in der Biokruste quantifizieren, ihre Gemeinschaftsstruktur mittels Hochdurchsatzsequenzierung beschreiben und dies mit dem Umsatz von Stickstoff- und Phosphorverbindungen verschneiden. Um Schlüsselorganismen dieser Prozesse zu identifizieren und in hoher räumlicher Auflösung zu visualisieren, wird zusätzlich ein Laborexperiment unter Anwendung von stable isotope probing und NanoSims durchgeführt. Die Daten zur Biodiversität und funktionellen Genomik werden mit den Nährstoffstatus der Biokrusten (Konzentration und chemische Speziierung von C, N und P) verknüpft. Das Laborexperiment mit stabilen Isotopen wird unser Verständnis von Biokrusten Schlüsselorganismen im N- und P-Nährstoffkreislauf und den Einfluss der räumlichen Heterogenität fundamental verbessern. Diese Daten erlauben zum ersten Mal die quantitative und qualitative Rekonstruktion der wichtigsten Stoffkreisläufe und mikrobiellen Interaktionsmuster in Biokrusten als Reaktion auf Landnutzung und Störung. Abschließend werden die ermittelten Daten in das gemeinsame bodenkundliche Netzwerk der BE integriert und dienen dann als Keimzelle für ein Synthese-Vorschlag mit dem Ziel, die Leistung der Biokruste quantitativ und qualitativ mit anderen Hotspots in Böden, wie Detritus- oder Rhizosphäre, zu vergleichen.
Antarktische Böden sind ideal geeignet, um bisher unerforschte besondere Eigenschaften von Bodenmikroalgen und -cyanobakterien zu untersuchen. Dazu gehören das Aufdecken von Pinionierarten bei der Besiedlung junger nährstoffarmer Böden sowie die Entwicklung von Mikroalgengesellschaften im Boden unbeeinflusst von anthropogenen Störungen oder dem Einfluss einer Deckschicht von Gefäßpflanzen. Zentrales Forschungsthema des Projektes ist es mögliche Korrelationen in Veränderungen der Algen- und Cyanobakteriengesellschaften mit verschiedenen Entwicklungsstadien der Böden, Stadien der (biogenen) Verwitterung sowie einer Reihe von abiotischen Bodenparametern zu untersuchen. Die Analysen werden die Rolle der Mikroalgen und Cyanobakterien bei der Bereitstellung von photosynthetischer Energie für Verwittungsvorgänge in jungen Böden als auch ihre Beiträge zu geochemischen Zyklen in den Böden aufklären. Schließlich werden die Analysen Rückschlüsse auf funktionelle und ökophysiologische Eigenschaften der Antarktischen Bodenalgen erlauben. Außerdem wird untersucht, ob die geographische Abgeschiedenheit der Antarktis und ihre besonders rauen Umweltbedingungen die Ausbildung besonders angepasster Antarktischer Populationen von Bodenalgen ermöglicht haben, die auf genotypischer Ebene unterschiedlich von ihren Entsprechungen der gemäßigten Breiten sind. Es werden mit Schwerpunkt Bodenproben entlang von Chronosequenzen aus Antarktischen Gletschervorfeldern der Maritimen Antarktis und dem Östlichen Antarktischer Kontinent, aber auch der trockeneren Polygonböden des Coal Nunatak untersucht. Die Proben wie auch die Bestimmung ihrer abiotischen Parameter werden durch Kooperationen innerhalb des SPP 1158 zur Verfügung gestellt. Unsere ersten Gruppen-spezifischen PCR-Amplifikationen zeigen bereits das Vorhandensein von Vertretern der Chlorophyta, Klebsormidium und Xanthophyceae in verschiedenen Bodenentwicklungsstadien entlang zweier Chronosequenzen aus Gletschervorfeldern.
| Origin | Count |
|---|---|
| Bund | 110 |
| Land | 21 |
| Wissenschaft | 3 |
| Type | Count |
|---|---|
| Ereignis | 3 |
| Förderprogramm | 91 |
| Taxon | 3 |
| Text | 19 |
| unbekannt | 15 |
| License | Count |
|---|---|
| geschlossen | 31 |
| offen | 100 |
| Language | Count |
|---|---|
| Deutsch | 115 |
| Englisch | 44 |
| Resource type | Count |
|---|---|
| Datei | 3 |
| Dokument | 19 |
| Keine | 65 |
| Webseite | 50 |
| Topic | Count |
|---|---|
| Boden | 105 |
| Lebewesen und Lebensräume | 131 |
| Luft | 131 |
| Mensch und Umwelt | 129 |
| Wasser | 101 |
| Weitere | 130 |