It is well established that reduced supply of fresh organic matter, interactions of organic matter with mineral phases and spatial inaccessibility affect C stocks in subsoils. However, quantitative information required for a better understanding of the contribution of each of the different processes to C sequestration in subsoils and for improvements of subsoil C models is scarce. The same is true for the main controlling factors of the decomposition rates of soil organic matter in subsoils. Moreover, information on spatial variabilities of different properties in the subsoil is rare. The few studies available which couple near and middle infrared spectroscopy (NIRS/MIRS) with geostatistical approaches indicate a potential for the creation of spatial maps which may show hot spots with increased biological activities in the soil profile and their effects on the distribution of C contents. Objectives are (i) to determine the mean residence time of subsoil C in different fractions by applying fractionation procedures in combination with 14C measurements; (ii) to study the effects of water content, input of 13C-labelled roots and dissolved organic matter and spatial inaccessibility on C turnover in an automatic microcosm system; (iii) to determine general soil properties and soil biological and chemical characteristics using NIRS and MIRS, and (iv) to extrapolate the measured and estimated soil properties to the vertical profiles by using different spatial interpolation techniques. For the NIRS/MIRS applications, sample pretreatment (air-dried vs. freeze-dried samples) and calibration procedures (a modified partial least square (MPLS) approach vs. a genetic algorithm coupled with MPLS or PLS) will be optimized. We hypothesize that the combined application of chemical fractionation in combination with 14C measurements and the results of the incubation experiments will give the pool sizes of passive, intermediate, labile and very labile C and N and the mean residence times of labile and very labile C and N. These results will make it possible to initialize the new quantitative model to be developed by subproject PC. Additionally, we hypothesize that the sample pretreatment 'freeze-drying' will be more useful for the estimation of soil biological characteristics than air-drying. The GA-MPLS and GA-PLS approaches are expected to give better estimates of the soil characteristics than the MPLS and PLS approaches. The spatial maps for the different subsoil characteristics in combination with the spatial maps of temperature and water contents will presumably enable us to explain the spatial heterogeneity of C contents.
(1) Terrestrische Biota der Antarktis sind durch geografische Isolation und inselhafte Verteilung geprägt. Die isolierte Lage der Antarktis und die Beschränkung auf weit voneinander entfernte kleine Habitatflecken haben zu einem hohen Endemiten-Anteil und einer starken Regionalisierung der Fauna und Flora geführt. Genetische Differenzierung, lokale Anpassung und die Evolution kryptischer Arten sind die Folge. Die Biodiversitäts-Konvention (CBD) betrachtet genetische Diversität als einen Eckpfeiler biologischer Vielfalt und stellt sie damit in eine Reihe mit der Diversität von Arten und Ökosystemen. Durch Einschleppung ortsfremder Arten und Homogenisierung bislang getrennter Genpools bedroht der Mensch jedoch zunehmend diese Isolation und genetische Differenzierung vieler antarktischer Biota. (2) Obwohl Flechten als wichtigste Primärproduzenten antarktische terrestrische Lebensräume dominieren, fehlen zurzeit Daten zu ihrer genetischen Struktur und Diversität. Der Umfang inter- und intrakontinentalen Genflusses ist bisher völlig unbekannt. Es ist deswegen derzeit unmöglich, den aktuellen und zukünftigen menschlichen Einfluss auf antarktische Flechtenpopulationen auch nur annähernd abzuschätzen.(3) Wir schlagen vor, mittels molekulargenetischer Daten die populationsgenetische Struktur von sechs weit verbreiteten Flechtenarten mit unterschiedlichen Ausbreitungsstrategien zu untersuchen. Dabei soll die Nullhypothese überprüft werden, dass Flechtenpopulationen genetisch nicht differenziert sind. Zusätzlich wollen wir abschätzen, ob menschliche Aktivitäten zur Einschleppung ortsfremder Arten oder Genotypen und zur Homogenisierung von Genpools beitragen. Hierfür sollen Lokalitäten mit hohem und niedrigem menschlichen Einfluss verglichen werden. Das Projekt schafft damit unverzichtbare Grunddaten für die Entwicklung von Schutzstrategien in der Antarktis.