Die Daten enthalten die Anbauflächen im Land Brandenburg, auf denen kein Anbau von gentechnisch verändertem Mais erfolgen darf. Sie dienen lediglich der Übersicht und besitzen keine Rechtsverbindlichkeit. Für die Anforderung rechtsverbindlicher Angaben sind ggf. Angaben des Antragstellers einzelfallbezogen erforderlich. Die Anbauflächen von GVO werden in einem zentralen Melderegister vom Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) als deskriptiver Datenbestand erfasst. Dieser Datenbestand lässt derzeit eine Visualisierung der Anbauflächen über ein GIS nicht zu. Das Bundesland Brandenburg beabsichtigt im Rahmen der Pflichten u.a. des Umweltinformationsgesetzes (UIG) diesen Datenbestand den Bürgern zugänglich zu machen. Des Weiteren soll ein auswertbarer geographischer Grundlagendatenbestand angelegt werden, der z.B. für Wirkungsabschätzungen (z.B. Umweltverträglichkeitsprüfungen) auf Schutzgebiete des Europäischen Schutzgebietssystems Natura 2000 vorbereitet. Die Daten enthalten die Anbauflächen im Land Brandenburg, auf denen kein Anbau von gentechnisch verändertem Mais erfolgen darf. Sie dienen lediglich der Übersicht und besitzen keine Rechtsverbindlichkeit. Für die Anforderung rechtsverbindlicher Angaben sind ggf. Angaben des Antragstellers einzelfallbezogen erforderlich. Die Anbauflächen von GVO werden in einem zentralen Melderegister vom Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) als deskriptiver Datenbestand erfasst. Dieser Datenbestand lässt derzeit eine Visualisierung der Anbauflächen über ein GIS nicht zu. Das Bundesland Brandenburg beabsichtigt im Rahmen der Pflichten u.a. des Umweltinformationsgesetzes (UIG) diesen Datenbestand den Bürgern zugänglich zu machen. Des Weiteren soll ein auswertbarer geographischer Grundlagendatenbestand angelegt werden, der z.B. für Wirkungsabschätzungen (z.B. Umweltverträglichkeitsprüfungen) auf Schutzgebiete des Europäischen Schutzgebietssystems Natura 2000 vorbereitet.
Dieser Metadatensatz beschreibt „Umweltüberwachungseinrichtungen (EnvironmentalMonitoringFacility)“ als Objektart des INSPIRE Annex-Thema III „Umweltüberwachung“. Die Bundesanstalt für Gewässerkunde (BfG) verwaltet im Auftrag der Wasserwirtschaftsverwaltungen in Deutschland im nationalen Berichtsportal Wasser (WasserBLIcK) die Daten der Berichterstattung zu diversen wasserbezogenen EG-Umweltrichtlinien. Auf Basis dieser Datengrundlage stellt die BfG in Abstimmung mit der Länderarbeitsgemeinschaft Wasser (LAWA) ausgewählte Karten- und Datendienste bereit. Die hier bereitgestellten Dienste basieren auf national flächendeckend homogenisierten Datenbeständen. Andere administrative Ebenen in Deutschland (Land, Bezirk, Kreis, Kommune) stellen gegebenenfalls zu diesem Thema Dienste in einer höheren räumlichen und zeitlichen Auflösung bereit.
Dieser Metadatensatz beschreibt "Meeresgebietseinheiten" als Gebietstyp der Objektart „Bewirtschaftungsgebiet, Schutzgebiet, geregeltes Gebiet“ des INSPIRE Annex- Thema III "Bewirtschaftungsgebiete, Schutzgebiete, geregelte Gebiete und Berichterstattungseinheiten". Die Bundesanstalt für Gewässerkunde (BfG) verwaltet im Auftrag der Wasserwirtschaftsverwaltungen in Deutschland im nationalen Berichtsportal Wasser (WasserBLIcK) die Daten der Berichterstattung zu diversen wasserbezogenen EG-Umweltrichtlinien. Auf Basis dieser Datengrundlage stellt die BfG in Abstimmung mit der Länderarbeitsgemeinschaft Wasser (LAWA) ausgewählte Karten- und Datendienste bereit. Die hier bereitgestellten Dienste basieren auf national flächendeckend homogenisierten Datenbeständen. Andere administrative Ebenen in Deutschland (Land, Bezirk, Kreis, Kommune) stellen gegebenenfalls zu diesem Thema Dienste in einer höheren räumlichen und zeitlichen Auflösung bereit.
Die DTK 25 ist eine (digitale) topographische Karte im Maßstab 1 : 25 000. Sie wird weitgehend automatisiert aus den Daten des Digitalen Landschaftsmodells NRW und weiteren amtlichen Quellen abgeleitet. Die Karte wird sowohl in Farbe als auch in Schwarz-Weiß bereitgestellt. Die Topographie der Erdoberfläche wird mit hoher Lagegenauigkeit detailreich wiedergegeben. Die DTK25 steht sowohl blattschnittfrei als auch im Standardblattschnitt mit Kartenrahmen und Legende bezogen werden. Die blattschnittfreien Daten können sowohl in Farbe als auch in Schwarz-Weiß bereitgestellt werden.
Der Datensatz umfasst die Ergebnisdaten der Simulation des extremen Starkregenereignisses vom 29.05.2018 in Wuppertal, im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurden in der Simulation die während des extremen Starkregenereignisses vom 29.05.2018 gemessenen Regenmengen verwendet, die ungleichmäßig über das Stadtgebiet verteilt waren, also ein sogenannter Naturregen. Im Zentrum des Unwetters hatte das Regenereignis eine Stärke bis zu Starkregenindex 11 (SRI 11). Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.
Der Datensatz umfasst die Ergebnisdaten der Simulation eines synthetischen Starkregenereignisses mit dem Starkregenindex 10 (SRI 10), im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurde in der Simulation ein extremes Starkregenereignis mit einer Dauer von 1 Stunde und einer Niederschlagsmenge von 90 l/m² in ganz Wuppertal angenommen. Für ein solches Regenereignis kann auf der Grundlage der seit 1960 vorliegenden Regenaufzeichnungen keine statistische Wiederkehrzeit bestimmt werden. Der zeitliche Verlauf des Regenereignisses wurde als Blockregen mit konstanter Intensität modelliert. Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.
Der Datensatz umfasst die Ergebnisdaten der Simulation eines synthetischen Starkregenereignisses mit dem Starkregenindex 6 (SRI 6), im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurde in der Simulation ein außergewöhnliches Starkregenereignis mit einer Dauer von 2 Stunden und einer Niederschlagsmenge von 38,5 l/m² in ganz Wuppertal angenommen. Ein solches Regenereignis besitzt eine 50-jährliche statistische Wiederkehrzeit. Der zeitliche Verlauf des Regenereignisses wurde als Eulerregen Typ II modelliert. Hierbei werden in 5-Minuten-Abschnitten unterschiedliche Intensitäten angenommen, die bis zur maximalen Intensität schnell und gleichmäßig ansteigen, dann stark abfallen und danach allmählich abklingen. Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.
Der Datensatz umfasst die Ergebnisdaten der Simulation eines synthetischen Starkregenereignisses mit dem Starkregenindex 7 (SRI 7), im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurde in der Simulation ein außergewöhnliches Starkregenereignis mit einer Dauer von 2 Stunden und einer Niederschlagsmenge von 42 l/m² in ganz Wuppertal angenommen. Ein solches Regenereignis besitzt eine 100-jährliche statistische Wiederkehrzeit. Der zeitliche Verlauf des Regenereignisses wurde als Eulerregen Typ II modelliert. Hierbei werden in 5-Minuten-Abschnitten unterschiedliche Intensitäten angenommen, die bis zur maximalen Intensität schnell und gleichmäßig ansteigen, dann stark abfallen und danach allmählich abklingen. Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.
Pflanzen verfügen über vielfältige Mechanismen zum Schutz vor Pathogenbefall oder Umweltstress. Dabei weisen pflanzliche Abwehrsysteme Ähnlichkeiten zum angeborenen Immunsytem von Säugern auf, bei dem Stickoxid (NO) eine Schlüsselrolle spielt. Auch in Pflanzen finden sich wichtige Komponenten der durch NO induzierten Signalübertragung. NO aktiviert Abwehrgene und ist beteiligt an programmiertem Zelltod und an der Abwehr von Pathogenen. Das vorgeschlagene Projekt hat zum Ziel, die Signalübertragung durch NO in Tabak und Arabidopsis zu erforschen und die Rolle von NO bei der Abwehr von Pathogenen zu klären. (1) Ein Schwerpunkt soll in der Aufklärung der Signalübertragung durch NO und der Aktivierung von Abwehrgenen liegen. Es soll geklärt werden, ob NO als mobiles Signal dient, und ob andere Signalmoleküle (z.B. Salicylsäure) in die NO-Signalübertragung integriert sind. (2) Um die Bedeutung von NO für die Regulation von Abwehrmechanismen zu klären, sollen Expressionsprofil und Expressionsdynamik von NO-induzierten Genen durch DNA-ChipTechnologie analysiert werden. Diese neuartige Technik wird auch Aufschluss über eine etwaige Vernetzung der NO-Signalübertragung mit pflanzlichen Hormonsystemen liefern. Die Erforschung der Signalübertragung durch NO in Pflanzen kann unser Verständnis von Resistenzmechanismen vertiefen und zur Entwicklung pathogen-resistenter Pflanzen beitragen.
Flowering time (FTi) genes play a key role as regulators of complex gene expression networks, and the influence of these networks on other complex systems means that FTi gene expression triggers a cascade of regulatory effects with a broad global effect on plant development. Hence, allelic and expression differences in FTi genes can play a central role in phenotypic variation throughput the plant lifecycle. A prime example for this is found in Brassica napus, a phenotypically and genetically diverse species with enormous variation in vernalisation requirement and flowering traits. The species includes oilseed rape (canola), one of the most important oilseed crops worldwide. Previously we have identified QTL clusters related to plant development, seed yield and heterosis in winter oilseed rape that seem to be conserved in diverse genetic backgrounds. We suspect that these QTL are controlled by global regulatory genes that influence numerous traits at different developmental stages. Interestingly, many of the QTL clusters for yield and biomass heterosis appear to correspond to the positions of meta-QTL for FTi in spring-type and/or winter-type B. napus. Based on the hypothesis that diversity in FTi genes has a key influence on plant development and yield, the aim of this study is a detailed analysis of DNA sequence variation in regulatory FTi genes in B. napus, combined with an investigation of associations between FTi gene haplotypes, developmental traits, yield components and seed yield.
Origin | Count |
---|---|
Bund | 2373 |
Kommune | 66 |
Land | 176 |
Wirtschaft | 9 |
Wissenschaft | 50 |
Type | Count |
---|---|
Chemische Verbindung | 12 |
Ereignis | 13 |
Förderprogramm | 2182 |
Gesetzestext | 3 |
Messwerte | 10 |
Strukturierter Datensatz | 11 |
Text | 80 |
Umweltprüfung | 3 |
unbekannt | 193 |
License | Count |
---|---|
geschlossen | 137 |
offen | 2308 |
unbekannt | 52 |
Language | Count |
---|---|
Deutsch | 2188 |
Englisch | 562 |
Resource type | Count |
---|---|
Archiv | 47 |
Bild | 3 |
Datei | 55 |
Dokument | 43 |
Keine | 1514 |
Unbekannt | 3 |
Webdienst | 71 |
Webseite | 934 |
Topic | Count |
---|---|
Boden | 1547 |
Lebewesen & Lebensräume | 2280 |
Luft | 1164 |
Mensch & Umwelt | 2488 |
Wasser | 1157 |
Weitere | 2455 |