API src

Found 117 results.

Übertrittsstellen und Akkumulationen

Die markierten Standorte sind Schwerpunkte des Sedimenttransportes und der Bodenakkumulation bei Erosionsereignissen infolge von Starkniederschlägen. Übertrittsstellen befinden sich vor allem an Gewässern, Biotopen, baulichen Anlagen etc. Akkumulationsflächen sind häufig am Ende von Abflussbahnen lokaliosiert. Die Übertrittsstellen und Akkumulationsflächen wurden aktenkundig aufgenommen. Orientierende Untersuchungen wurden durchgeführt, um geeignete Maßnahmen zur Gefahrenabwehr, zur Schadensminimierung und Verhinderung vorzuschlagen. Diese Informationen dienen als Grundlage für die Umsetzung von Erosionsschutzmaßnahmen zur Gefahrenabwehr und zur Vermittlung von Vorsorgepflichten zur Vermeidung von Bodenerosionen auf landwirtschaftlich genutzten Flächen.

Review der wassergebundenen Transportprozesse von Radionukliden im Boden

Verständnis der Effekte von Mikroplastik auf Rhizosphärenprozesse und -wechselwirkungen in landwirtschaftlichen Böden, Teilprojekt B

Extraktion von Aluminium und Eisen aus organischer Assoziation im Boden - Entwicklung einer neuer selektiven Methode

Im Zuge der Bodenentwicklung werden Metallionen beispielsweise des Aluminiums (Al) und Eisens (Fe) frei, die mit organischer Bodensubstanz (OBS) reagieren können. Wechselwirkungen zwischen Metallkationen und OBS, die zur Stabilisierung der OBS führen, d.h. zur Verlangsamung des Abbaus im Boden, sind seit langem bekannt. Die Wechselwirkungen in sauren Böden durch Adsorption von Al und Fe an funktionelle Gruppen der OBS sowie ihre Ausfällung mit OBS führen zur Bildung von organischen Assoziationen der Metalle. Metalle in organischen Assoziationen werden durch Oxalat gelöst, das allerdings auch Metalle in weiteren mineralischen Bindungsformen freisetzt. Aktuelle Studien zeigen, dass insbesondere die Gehalte oxalatlöslichen Aluminiums die Gehalte an organischem Kohlenstoff im Boden miterklären können. Trotz der Bedeutung der Metalle in organischer Assoziation gibt es bisher keine selektive Methode ihrer Extraktion. Das beantragte Projekt zielt darauf ab, ein Verfahren zu entwickeln, das die selektive und vollständige Extraktion von Al und Fe in organischer Assoziation und die quantitative und qualitative Charakterisierung der mit Al assoziierten OBS ermöglicht. Dazu wird eine zu entwickelnde Extraktion mit Fluorid bei pH 6,5 in ein sequentielles Extraktionsschema integriert, das Al bzw. Fe aus organischer Assoziation sowie gering kristallinen Fe-Oxiden und Aluminosilikaten separat extrahiert. Vor der Übertragung auf Böden wird die Fluorid-basierte Extraktion mit organischen Modellassoziaten und Referenzmineralen hinsichtlich Selektivität und Vollständigkeit überprüft. Anschließend werden Bodenproben, in denen erhöhte Gehalte von Al und Fe in organischer Assoziation zu erwarten sind, nach diesem Schema extrahiert. Die Proben werden Horizonten von reference soil groups der WRB-Klassifikation entstammen, in die metall-organische Assoziationen transportiert wurden (Podzols, Luvisols), in denen sie sich in situ bilden (Andosols, Cambisols) bzw. sie sich aufgrund von Redoxprozessen bilden (Gleysols, Stagnosols). Je nach pedogenem Milieu werden variable Gehalte an Metallen und OBS in den Assoziationen erwartet, sowie variable Beiträge von Metallen in organischer Assoziation zu den Gehalten oxalatlöslicher Metalle als Summenparameter. Die OBS, die aus Bindungen mit Al extrahiert wird, wird spektroskopisch und thermisch charakterisiert. Auch hier werden Unterschiede nach pedogenem Milieu erwartet, z.B. größere Anteile niedermolekularer Säuren in Podzols als in Andosols mit höheren Anteilen aromatischer OBS. Das Projekt soll nicht nur eine selektive Extraktionsmethode für Al und Fe in organischer Assoziation in Böden leisten, sondern auch die Charakterisierung einer bislang nicht selektiv zugänglichen OBS-Fraktion. Die gewonnenen Daten haben grundlegende pedogenetische Bedeutung und können, bei Anwendung auf größere Probenkollektive, in Modelle zur Erklärung der Steuerung der Gehalte organischen Kohlenstoffs im Boden implementiert werden.

Erhaltung von Viola guestphalica im Naturschutzgebiet 'Waldwiese im Waeschebachtal' bei Blankerode (Hochsauerlandkreis)

Im Waeschebachtal bei Blankenrode (Hochsauerlandkreis) hat sich eine Schwermetallvegetation u.a. mit Viola guestphalica etabliert, was moeglicherweise auf die Eintragung von schwermetallhaltigen Abwaessern aus oberhalb liegenden Schwermetallabraumhalden zurueckzufuehren ist. Beobachtungen der letzten Jahre liessen einen Rueckgang des Schwermetallpflanzenbestandes befuerchten. Als Ursache fuer diesen Rueckgang werden verschiedene Moeglichkeiten in Betracht gezogen: a) Vernaessung der Wiese, b) Auswaschung der Schwermetalle, c) Verdraengung durch andere Pflanzen infolge der Punkte a und b. Um quantitative Veraenderungen im Bestand erfassen zu koennen, wurden in den jahren 1994 und 1996 detailierte Vegetationsaufnahmen der Waldwiese gemacht. Parallel hierzu wurden im Jahr 1994 die Grundwasserstaende erfasst und die vertikale Verteilung von Schwermetallen (Pb, Zn und Fe) im Boden sowie die Akkumulation in ausgewaehlten Pflanzen analysiert. Die vorlaeufigen Ergebnisse lassen vermuten, dass der moegliche Rueckgang des Viola-Bestandes nicht auf eine Verarmung an Schwermetallen zurueckzufuehren ist, sondern an andere noch zu eruierende Faktoren gekoppelt sein muss.

Der Einfluss von meteorologischen Parametern auf die Schallausbreitung im Freien: 1. Untersuchung der Wechselwirkung durch Korrelation - 2. Charakterisierung der gemessenen Signale durch ihre fraktale Dimension

Die Schallausbreitung im Freien wird neben der Richtcharakteristik der Quelle, Absorption in der Luft und der Impedanz des Bodens sehr stark beeinflusst. Es werden Untersuchungen durchgefuehrt, die Wechselwirkung von Wind- und Temperaturverteilungen mit dem Schallsignal durch Korrelation zu beschreiben. Bei Laufwegen des Schalls von bis zu 50 m ergeben sich Korrelationen, die auf Haupteinfluesse von Turbulenzstrukturen in der Groessenordnung von 50 - 150 m schliessen lassen. Der Haupteinfluss der meteorologischen Parameter liegt in der Naehe des Lautsprechers. Bei groesseren Laufwegen (bis zu einigen hundert Metern) ist nur geringe oder ueberhaupt keine Korrelation zu finden. In diesen Entfernungen waere die Kenntnis der gesammten Wind- und Temperaturverteilung ueber Ort und Zeit notwendig. Da dies auf experimentelle Schwierigkeiten stoesst, wird das jeweilige Zeitsignal durch fraktale Dimension charakterisiert. Aus der Kenntnis der fraktalen Dimension gewinnt man Aussagen, wieviele Parameter notwendig sind, um das System zu beschreiben. Ausserdem kann man unterscheiden, welcher Anteil des Signals deterministisch und welcher stochastisch ist. Es ergeben sich aehnliche fraktale Dimensionen fuer das Windsignal sowie fuer die Schallschwankungen, was darauf hindeutet, dass die Schallschwankungen in gewisser Hinsicht die augenblickliche Windverteilung wiederspiegelt.

Radikalbildung durch Kupferausbringung in landwirtschaftlich relevanten tonreichen Böden und ihre ökotoxikologischen Folgen

Nachhaltige Landwirtschaft agiert in einem Spannungsfeld zwischen Produktivität und Erhalt der Bodengesundheit. Kupfer wird in großem Umfang als Fungizid und Düngemittel eingesetzt, hat jedoch auch negative Auswirkungen auf die Bodengemeinschaft. Kupfertoxizität wird in der Regel durch Adsorption im Boden und Aufnahme durch Organismen erklärt, aber die Möglichkeit anderer toxischer Pfade, z. B. die Bildung von Radikalen, wird noch nicht in Betracht gezogen. Die Relevanz von Radikalen im Boden wurde zuvor in unseren Studien gezeigt, in denen Nanopartikel auf Kupferbasis bei sehr niedrigen, umweltrelevanten Konzentrationen negative Effekte auf Bodenorganismen hatten, einschließlich Reaktionen in deren antioxidativem System. Überraschenderweise war dies nur bei stark adsorbierenden, tonreichen Böden der Fall, die für die Landwirtschaft sehr relevant sind. Die Kombination von Kupfer und Ton in Böden ist in der Lage, reaktive Sauerstoffspezies (ROS) zu bilden oder weit verbreitete polyaromatische Schadstoffe in umweltbeständige freie Radikale (EPFR) umzuwandeln, die negative Folgen für Bodenorganismen, aber auch für die menschliche Gesundheit haben können. Die Bildung dieser Radikale beruht auf Elektronentransferprozessen, bei denen Übergangsmetalle wie Kupfer oder Eisen (insbesondere in nanopartikulärer Form), Tonminerale und organische Stoffe als Quelle und/oder Transporteur von überschüssigen Elektronen dienen. Alle diese Stoffgruppen kommen natürlich im Boden vor, werden aber auch durch landwirtschaftliche Aktivitäten eingebracht. In diesem Projekt werde ich mehrere repräsentative Stoffgruppen kombinieren, die ein landwirtschaftliches Bodensystem simulieren und für die Radikalbildung relevant sind. Das radikalbildende Potenzial sowohl natürlicher als auch anthropogener Stoffe, d.h. verschiedener Arten von Ton- und Eisenmineralen, organischer Substanz und anthropogenem Kupfer, wird einzeln und in Kombination ermittelt. Die Radikalbildung wird chemisch untersucht, indem die ROS- und EPFR-Bildung in künstlichen Bodenlösungen und Böden gemessen wird, aber auch biochemisch und ökologisch anhand der antioxidativen und Fitness-Reaktion von Springschwänzen (Folsomia candida). Um die Laborergebnisse auf die Freilandsituation zu übertragen, werden die Faktoren, die im Labor als am auffälligsten identifiziert wurden, zur Identifizierung potenzieller radikalbildender Hotspots im Feld verwendet; dabei werden Podsole mit Fluvisolen (schwankendere Redoxbedingungen aufgrund ihrer Nähe zu Flüssen) im Hinblick auf die Korrelation zwischen ihren Bodeneigenschaften und dem Auftreten von ROS und EPFR verglichen. Die Identifizierung der Bodenfaktoren für die Radikalbildung im Labor und auf dem Feld wird Auswirkungen auf den Bodenschutz, die Risikobewertung von Nanopestiziden und die landwirtschaftliche Bewirtschaftung haben und direkte Empfehlungen für eine nachhaltige Bewirtschaftung des Bodens mit Hinblick auf deren Potenzial zur Radikalbildung ermöglichen.

Vorhersage, Herkunft und Validierung von Tau, Raureif, Nebel und die Adsorption von Wasserdampf im Boden in landwirtschaftlichen Ökosystemen mithilfe eines Energiebilanzmodells, stabilen Isotopen des Wassers und Lysimeterdaten

Tau, Raureif, Nebel, und die Adsorption von Wasserdampf im Boden sind die am wenigsten untersuchten sowie charakterisierten Komponenten und Prozesse des terrestrischen Wasserkreislaufs. Im Rahmen des Projektes REWET werden diese Komponenten und Prozesse für unterschiedliche Agrarökosysteme in humiden Gebieten umfassend quantifiziert und wichtige Beiträge zum Prozessverständnis erarbeitet. Die Komponenten wurden in den meisten Studien, die sich mit der Simulation von Ökosystemprozessen befassen, nicht berücksichtigt, da ihre Messung aufwendig ist und Methoden zur Vorhersage nur begrenzt anwendbar sind. In REWET sollen die Häufigkeit und Dauer des Auftretens dieser Komponenten sowie deren Mengen beispielhaft für acht verschiedene Agrarökosystem bestimmt werden. Die Quantifizierung erfolgt auf Basis von Daten hochpräziser wägbarer Lysimeter sowie zusätzlichen Blattfeuchte- und meteorologischen Messungen. Im ersten Schritt des Projektes sollen die treibenden abiotischen und biotischen Faktoren identifiziert werden, die die Bildung von Tau, Raureif, Nebel, und die Adsorption von Wasserdampf im Boden des jeweiligen Agrarökosystems steuern. Dabei wird erwartet, dass neben den atmosphärischen Bedingungen, die Oberflächentemperatur und die Struktur des Pflanzenbestandes eine entscheidende Rolle bei der Bildung der Komponenten spielt. Die identifizierten Schlüsselfaktoren und Messdaten werden anschließend dazu verwendet, um die Bildungsmechanismen mit dem Two-Source Energy Balance Model TSEB vorherzusagen und zu validieren. Hierbei soll die Implementierung der Oberflächentemperatur und Kalibrierung der Parameter der Landoberflächeneigenschaften (z.B. aerodynamische Wiederstand) helfen, die Prozesse im Model abzubilden. Das Model TSEB verwendet standardmäßig verfügbare meteorologische Parameter und soll zukünftig ermöglichen diese Komponenten auf der Landschaftsebene besser abschätzen zu können. Das Tau- und Nebelwasser wird über ein Jahr lang beprobt, um die Quellen der Tau- und Nebelfraktionen zu identifizieren. Die Isotopenzusammensetzung des Wassers und ihrer Lage zur local meteoric water line unterscheidet sich je nach Herkunft und Bildungsmechanismus der Komponente (z.B. Meer, Verdunstung). Die Kenntnisse zur Herkunftsquelle können dazu beitragen, mögliche Auswirkungen des Klimawandels auf die Bildung von Tau und Nebel abzuschätzen. Um die Bedeutung von Tau, Nebel oder Wasserdampfadsorption als zusätzliche Komponenten des Wasserhaushaltes für das Pflanzenwachstum zu bestimmen, werden die stabilen Isotope im Pflanzenwasser sowie deren Wasserpotentiale während einer Trockenperiode täglich gemessen. Aufgrund unterschiedlicher Fraktionierungsprozesse kann das Wasser in der Pflanze anhand der Steigung d17O-d18O dem Tau, Nebel oder Bodenwasser zugeordnet werden. Dies kann klären, ob die Pflanzen Wasser direkt über das Blatt aufnehmen und sich damit der Wasserstress in Pflanzen während Trockenperioden vermindert.

Forschergruppe (FOR) 5288: Schnell und unsichtbar: Zwischenabfluss durch einen interdisziplinären Multi-Standort-Ansatz bezwingen, Teilprojekt: SSF NOVEL TRACERS - Erforschung von biogeochemischen Tracern (Umwelt- und künstliche DNA, organischer Kohlenstoff) zur Identifizierung des Zwischenabflusses

Die Entschlüsselung von Fließwegen und Herkunftsräumen des Zwischenabflusses (SSF) sowie der unterirdischen hydrologischen Konnektivität ist durch unterschiedliche Prozessvorstellungen und wenigen direkten Messmöglichkeiten begrenzt. Es werden Tracer benötigt, mit denen Herkunftsräumen und Fließwege von SSF räumlich identifiziert werden können. Die über die Umwelt-DNA (eDNA) abgeleitete Zusammensetzung mikrobieller Gemeinschaften sowie die räumlichen Unterschiede der optischen Eigenschaften wasserlöslicher organischer Substanz (WSOM; Absorption und Fluoreszenz) in Böden bietet eine bisher wenig beachtete Möglichkeit. In Abhängigkeit von topographischen und bodenkundlichen Eigenschaften bilden sich spezifische Habitate für mikrobielle und makrobiologische Bodengemeinschaften, die als räumliche eDNA-Muster kartiert und zur Lokalisierung der Herkunftsgebiete von SSF genutzt werden können. Die Anwendung künstlicher Tracer-DNA bietet die Möglichkeit, mit geringem technischem Aufwand und hohem Informationsgehalt hinsichtlich der unterirdischen Fließwege mehrere kontrollierte Experimente durchzuführen. Trotzdem fehlt bisher noch eine umfangreiche und konsequente Bewertung der Anwendbarkeit dieser biochemischen Tracer im Hinblick auf den SSF. Es ist das Ziel des Projektes, das Potenzial von eDNA, künstlich aufgebrachter Tracer-DNA und optischer Eigenschaften von WSOM als nicht-konservative Tracer für zur Identifizierung von SSF und der unterirdischen Konnektivität in vier Einzugsgebieten im Mittel- und Hochgebirge (Sauerland, Erzgebirge, Schwarzwald, Alpen) zu bewerten. In diesen werden an 12 Hängen an jeweils 10 Bodenprofilen Bodenproben entnommen, um die Verteilung von eDNA und WSOM über das Bodenprofil und im Hang zu erfassen. Die zeitliche Variabilität des Exports von eDNA und WSOM aus dem Boden wird während natürlicher Niederschlagsereignisse an einem mit einem Trench versehenen Hang in jedem Einzugsgebiet untersucht, wozu Wasserproben des unterirdischen Abflusses in verschiedenen Bodentiefen entnommen werden. Um genaue Fließwege des SSF in der Hangskala zu identifizieren werden an zwei Hängen künstliche DNA-Tracer eingesetzt und deren Transport durch Beregnungsexperimente aktiviert. Zur Untersuchung der eDNA und WSOM im Labor, werden eine Reihe modernster Laborgeräte und Methoden (TOC-Analysator, Fluoreszenzspektrometrie, Hochdurchsatz-Amplikonsequenzierung, real-time PCR) angewandt. Der Einsatz vielfältiger statistischer Verfahren (z.B. PARAFAC, Cluster-, Netzwerkanalyse) wird helfen, zeitliche und räumliche Muster zu erkennen, um Herkunftsräume von SSF zu identifizieren und biochemische Signaturen als Tracer für SSF zu erkennen.Diese systematische Untersuchung von eDNA und WSOM in Mittel- und Hochgebirgslandschaften ermöglicht es, diese biochemischen Tracer grundlegend zu bewerten. Darüber hinaus wird eine einzigartige Datenbank für die Ableitung biogeochemischer Signaturen geschaffen, um Herkunftsräume und Fließwege von SSF zu identifizieren.

Forschergruppe (FOR) 5095: Interaktionen von Schadstoffen, Antibiotikaresistenz und Pathogenen in einem sich ändernden Abwasserbewässerungssystem, Teilprojekt: Einfluss der Qualität des Bewässerungswassers und des Bodentyps auf das Boden- und Pflanzen-assoziierte Mikrobiom, die Abundanz, Diversität und Übertragungsfähigkeit von Antibiotikaresistenzgenen in Gram-positiven Bakterien

In vielen Teilen der Erde ist Abwasserbewässerung eine gängige Praxis. Bewässerung mit ungeklärtem Abwasser resultiert in der Akkumulation von Rückständen von Pharmaka und Desinfektionsmitteln in Böden. Wechsel von Bewässerung mit ungeklärtem zu geklärtem Abwasser ist in vielen Ländern im Gang, so auch im Mezquital Tal in Mexiko. Über die Dynamik der mikrobiellen und chemischen Kontaminanten sowie der Antibiotikaresistenz-Gene als Folge der Veränderung des Bewässerung-Regimes ist jedoch nur wenig bekannt. Wir postulieren, dass die Vorteile des Wechsels des Bewässerungsregimes auf Flächen, die für lange Zeit mit Abwasser bewässert wurden, in der Übergangsphase marginal sind, da 1.) der Wechsel des Bewässerungswassers Schadstoffe freisetzt, die sich im Boden akkumuliert haben, 2.) die Schadstoffkonzentrationen, die im ungeklärten bzw. geklärten Abwasser vorliegen bzw., die von den Böden freigesetzt und den Pflanzen aufgenommen werden, groß genug sind, um auf Antibiotikaresistenzbildung zu selektieren und Resistenzübertragung im Boden und in den Pflanzen zu induzieren und 3.) die Freisetzung der Schadstoffe und die damit verbundene Selektion für Antibiotikaresistenzen vom Bodentyp abhängt. SP 4 wird diese Hypothesen mit 3 verschiedenen Bodentypen, Leptosol, Phaeozem und Vertisol für häufig eingesetzte Antibiotika, die sich in Struktur und Wirkmechanismus unterscheiden, Sulfamethoxazol, Trimethoprim, Ciprofloxacin, Clindamycin, Erythromycin, Azithromycin und für Desinfektionsmittel, die zu den quaternären Alkylammoniumverbindungen gehören (Alkyltrimethylammonium-, Dialkyldimethylammonium- und Benzylalkylammonium-Verbindungen), in 3 gemeinsamen Versuchen in der Forschungsgruppe untersuchen. Wir werden den Einfluss von variierenden Schadstoffkonzentrationen auf die Zusammensetzung der mikrobiellen Gemeinschaft und die Abundanz von pathogenen Gram-positiven Bakterien in ungeklärtem, geklärtem Abwasser, in Boden- und Pflanzenproben mit kulturunabhängigen Methoden (Kooperation mit SP 5) analysieren. Wir werden die Konzentrationen von Antibiotikaresistenz-Genen und konjugativen Plasmiden mit quantitativer real-time PCR in Abwasser, geklärtem Abwasser, Boden- und Pflanzenproben (Kooperation mit SP5) bestimmen, konjugative Resistenzplasmide von Gram-positiven pathogenen Bakterien sequenzieren (Kooperation mit SP 6) und ausgewählte Plasmide an SP 3 für „Minimale Selektive Konzentration“-Tests übergeben. Außerdem werden wir horizontale Transferraten für Antibiotikaresistenz-Gene zwischen Gram-positiven Bakterien in Abwasser-, Boden- und Pflanzenproben (Kooperation mit SP 5) mit einer von SP 4 entwickelten Methode ermitteln. Auf diese Weise liefert SP 4 mikrobielle und Resistenzdynamik-Daten für das von SP7 zu entwickelnde konzeptuelle und quantitative Modell und trägt zum ganzheitlichen Verständnis des Einflusses der Abwasserqualität auf die Wechselwirkungen zwischen Schadstoffen und Antibiotika-resistenten Bakterien in Abwasserbewässerungssystemen bei.

1 2 3 4 510 11 12