s/geologisches 3d modell/Geologisches 3D-Modell/gi
Der 200-km große Chicxulub-Einschlagskrater in Yucatán, Mexiko, wurde im Rahmen der IODP-ICDP Expedition 364 erbohrt. Die Bohrung hat zum ersten Mal eine zentrale Ringstruktur (Peak Ring) erfasst, welche ein gebirgiger Ring ist, der in großen Impaktstrukturen auftritt und sich innerhalb des Kraterrands über die Topographie des Kraterbodens erhebt. Dieser Antrag befasst sich mit zwei Hauptfragen, die im Rahmen der Expedition 364 gestellt wurden: 1) Welche Eigenschaften und Bildungsmechanismen sind für Peak Rings wichtig? 2) Wie werden Gesteine während großer Impakte entfestig, um dabei den Kollaps und die Bildung relativ weiter, flacher Krater zu ermöglichen?In Bezug auf die erste Frage gibt es zwei konkurrierende Modelle der Peak Ring-Bildung: i) Ein konzeptionelles geologisches Modell, das auf geologische und fernerkundliche Beobachtungen des Mondes und anderer planetarer Körper fußt, und die Rolle eines großen Anteils an Impaktschmelze für die Peak Ring-Bildung betont, und ii) ein numerisches Modell, das Hydrocode-Simulationen einsetzt, um die Peak Ring-Bildung zu berechnen. Die zwei Modelle prognostizieren deutlich unterschiedliche kinematische Pfade und strukturelle Deformationsmerkmale in den Peak Rings, und eine Voruntersuchung der Kerne von Expedition 364 zeigt, dass diese Merkmale grundsätzlich vorhanden sind. Wir werden die Kerne mit quantitativen mikro- und makrostrukturellen Methoden untersuchen, um die Deformationsgeschichte des Peak Rings zu entschlüsseln und damit Grundsatzdaten liefern, die diese Modelle bestätigen.Die zweite Frage spricht die Problematik der vorübergehenden Schwächung des Targets an, die für die Kraterbildung nötig ist, und ein fortwährendes Problem der Kratermechanik darstellt. Drei Modelle liegen vor: 1) Akustische Fluidisierung sieht die Reduktion der Reibung durch seismische Erschütterungen vor. 2) Thermal Softening postuliert eine Erhitzung durch Stoßwellen und plastische Verformung. 3) Strain Rate Weakening/Frictional Melting setzt z.B. eine lokale Herabsetzung der Reibung durch Schmelzen voraus. Die Bohrkerne ermöglichen es uns, die Relevanz der drei Modelle einzuschätzen. Wir werden die die Kerne auf spezifische mikrostrukturelle Merkmale untersuchen, um zwischen den Schwächungsmechanismen zu unterscheiden. Zudem wird die Entfestigung durch Impaktschädigung mittels mechanischer Versuche im Labor untersucht. Wir werden die Bedeutung der ratenabhängigen Spröddeformation auswerten als ein Prozess, der durch Pulverisierung die Gesteinsfestigkeit beeinflusst.Unsere makro- und mikrostrukturellen Analysen werden wir zu einem kinematischen Modell für den Chicxulub-Peak Ring zusammenführen. Als Beitrag zu einem vertieften Verständnis der Peak Ring-Bildung im Sonnensystem kann dies zu einer verbesserten Interpretation von Fernerkundungsstudien an großen Kratern führen. Potentiell werden hierdurch auch die speziellen Prozesse des Chicxulub-Impakts besser verstanden, die das K-Pg Aussterbeereignis auslösten.
Im Gebiet der Ausschließlichen Wirtschaftszone (AWZ) der deutschen Nordsee wurden von der BGR im Rahmen des GEOSTOR-Projektes detaillierte statische geologische 3D-Modelle für zwei potenzielle CO2-Speicherstrukturen im Mittleren Buntsandstein erstellt. Eine der untersuchten potenziellen Speicherstrukturen befindet sich in der zentralen deutschen Nordsee im südwestlichen Teil des Westschleswig-Block, im Bereich des Salzkissens Henni. Für dieses Gebiet, bezeichnet als Pilotgebiet A, wurde für die Zeit-Tiefenwandlung das im Rahmen des TUNB-Projektes von Bense et al. (2022) für die zentrale Deutsche Nordsee rekonstruierte regionale Geschwindigkeitsmodell von Groß (1986) und Jaritz et al. (1991) weiterentwickelt. Die dem TUNB-Geschwindigkeitsmodell zugrundeliegenden regionalen Modellflächen wurden durch die detaillierteren Neuinterpretationen im Pilotgebiet ersetzt, um eine höhere räumliche Auflösung im Vergleich zu den im TUNB-Projekt verwendeten regionalen Modellflächen zu erzielen. Die Geschwindigkeitsintervalle und zugehörigen Parameter des verwendeten V0/K-Ansatzes entsprechen denen des TUNB-Geschwindigkeitsmodells (siehe Bense et al. 2022). Das im Rahmen von GEOSTOR für Pilotgebiet A weiterentwickelte Geschwindigkeitsmodell liegt als seismisches Volumenmodell im SEG-Y Format vor, das die Geschwindigkeitsparameter in Form von Durchschnittsgeschwindigkeiten enthält. Bense, F., Deutschmann, A., Dzieran, L., Hese, F., Höding, T., Jahnke, C., Lademann, K., Liebsch-Dörschner, T., Müller, C.O., Obst, K., Offermann, P., Schilling, M., Wächter, J. (2022): Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken (TUNB) - Phase 2: Parametrisierung. Abschlussbericht. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), p. 193. Groß, U. (1986): Gaspotential Deutsche Nordsee – Die regionale Verteilung der seismischen Anfangsgeschwindigkeiten in der Deutschen Nordsee. 58; Hannover (Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)). Jaritz, W., Best, G., Hildebrand, G. & Juergens, U. (1991): Regionale Analyse der seismischen Geschwindigkeiten in Nordwestdeutschland. Geologisches Jahrbuch, Reihe E, 45: 23-57.
As part of the CDRmare joint project GEOSTOR (https://geostor.cdrmare.de/), the BGR created detailed static geological 3D models for two potential CO2 storage structures in the Middle Buntsandstein in the Exclusive Economic Zone (EEZ) of the German North Sea and supplemented them with petrophysical parameters (e.g. porosities, permeabilities). The 3D geological model (Pilot area B; ~560 km2) is located in the north-western part of the German North Sea sector, the so-called “Entenschnabel”, an approximately 150 kilometer long and 30 kilometer wide area between the offshore sectors of the Netherlands, Denmark and Great Britain (pilot region B). The model in the Ducks Beak is based on several high-resolution 3D seismic data and geophysical/geological information from four exploration wells. It includes 20 generalized faults and the following 16 horizon surfaces: 1) Sea Floor, 2) Mid Miocene Unconformity, 3) Base Tertiary, 4) Base Upper Cretaceous, 5) Base Lower Cretaceous, 6) Base Upper Jurassic, 7) Base Lower Jurassic, 8) Base Muschelkalk, 9) Base Röt, 10) Base Solling Formation, 11) Base Detfurth Formation, 12) Base Volpriehausen Wechselfolge, 13) Base Volpriehausen Formation, 14) Base Triassic, 15) Base Zechstein, 16) Top Basement. The reservoir formed by sandstones of the Middle Buntsandstein is located within the Mads Graben, which is bounded to the west by the extensive Mads Fault (normal fault). Marine mudstones of the Upper Jurassic and Lower Cretaceous serve as the main seal formations. Petrophysical analyses of all considered well data were conducted and reservoir properties (including porosity and permeability) were calculated to determine the static reservoir capacity for these potential CO2 storage structures. The model parameterized and can be used for further dynamic simulations of storage capacity, geo-risk, and infrastructure analyses, in order to develop a comprehensive feasibility study for potential CO2 storage within the project framework. The 3D models were created by the BGR between 2021 and 2024. SKUA-GOCAD was used as the modeling software. We would like to thank AspenTech for providing licenses for their SSE software package as part of the Academic Program (https://www.aspentech.com/en/academic-program).
As part of the CDRmare joint project GEOSTOR (https://geostor.cdrmare.de/), the BGR created detailed static geological 3D models for two potential CO2 storage structures in the Middle Buntsandstein in the Exclusive Economic Zone (EEZ) of the German North Sea and supplemented them with petrophysical parameters (e.g. porosities, permeabilities). The 3D geological model (Pilot area A; ~1300 km2) is located on the West Schleswig Block in the area of the Henni salt pillow (pilot region A). It is based on 2D seismic data from various surveys and geophysical/geological information from four exploration wells. The model comprises 14 generalized faults and the following 14 horizon surfaces: 1) Sea Floor, 2) Mid Miocene Unconformity, 3) Base Rupelian, 4) Base Tertiary, 5) Base Upper Cretaceous, 6) Base Lower Cretaceous, 7) Base Muschelkalk, 8) Base Röt (Pelite), 9) Base Röt (Salinar), 10) Base Solling Formation, 11) Base Detfurth Formation, 12) Base Volpriehausen Formation, 13) Base Triassic, 14) Base Zechstein. The selected potential reservoir structure in the Middle Buntsandstein is formed by an anticline created by the uplift of the underlying Henni salt pillow. The primary reservoir unit is the 40-50 m thick Lower Volpriehausen Sandstone, the main sealing units are the Röt and the Lower Cretaceous. Petrophysical analyses of all considered well data were conducted and reservoir properties (including porosity and permeability) were calculated to determine the static reservoir capacity for these potential CO2 storage structures. Both models were parameterized and can be used for further dynamic simulations of storage capacity, geo-risk, and infrastructure analyses, in order to develop a comprehensive feasibility study for potential CO2 storage within the project framework. The 3D models were created by the BGR between 2021 and 2024. SKUA-GOCAD was used as the modeling software. We would like to thank AspenTech for providing licenses for their SSE software package as part of the Academic Program (https://www.aspentech.com/en/academic-program).
Die Erforschung von Artbildungs- und Anpassungsprozessen ist zentral, um zu verstehen, wie Biodiversität entsteht und auf wechselnde Umweltbedingungen reagiert.. Ein idealer Ort für solche Studien ist das Südpolarmeer: Es beherbergt eine reiche und hochgradig endemische Fauna. Neuere Studien zeigen, dass viele benthische Arten aus Gruppen von genetisch distinkten Kladen bestehen, die als früher übersehene Arten pleistozänen Ursprungs interpretiert werden. Diese kryptischen Arten können durch molekulare Methoden (z. B. DNA-Barcoding) und z.T. auch durch morphologische Analysen unterschieden werden. Es wird angenommen, dass die Artbildung per Zufall erfolgte, als ehemals große Populationen während glazialer Maxima in kleinen allopatrischen Refugien isoliert wurden, wo sie starker genetischer Drift ausgesetzt waren. Alternative Artbildungsmodelle wurden bislang wegen fehlender molekularer Methoden kaum erforscht. Studien aus anderen Ökosystemen zeigen, dass ökologische Artbildung, d.h. Aufspaltungsereignisse durch unterschiedliche Selektion, ein naheliegendes alternatives Artbildungsmodell ist. In dem hier vorgestellten Projekt sollen erstmals hochauflösende genomische Methoden zusammen mit morphologischen Analysen benutzt werden, um konkurrierende Artbildungsmodelle für das Südpolarmeer zu testen. Als Fallstudie sollen hierfür Muster genetischer Drift und Selektion in einer besonders erfolgreichen Gruppe benthischer Arten des Südpolarmeeres untersucht werden, den Asselspinnen (Pycnogonida). Aufbauend auf vorangehenden Studien sollen genomische Muster neutraler und nicht neutraler Marker bei zwei Artkomplexen untersucht werden: Colossendeis megalonyx und Pallenopsis patagonica. Diese beiden Artkomplexe von Asselspinnen sind aufgrund mehrerer Merkmale hervorragende Modelle für die Themen dieses Antrages: 1) Es existieren zahlreiche genetisch divergente kryptische Arten, 2) erste morphologische Unterschiede wurden gefunden, 3) die weite Verbreitung der Vertreter sowohl auf dem antarktischen Kontinentalschelf als auch in weniger von den Vereisungen betroffenen subantarktischen Regionen, 4) ihre geringe Mobilität. Sollte eine durch genetische Drift bedingte allopatrische Artbildung in glazialen Refugialpopulationen der Hauptantrieb der Evolution sein, ist zu erwarten, dass Zufallsfixierung neutraler Allele und Signaturen von Populations-Bottlenecks in stark vereisten Gebieten am höchsten sind. Wenn andererseits natürliche Selektion der Hauptantrieb der Artbildung war, so sind starke Signaturen von Selektion auf Geno- und Phänotyp zu erwarten. Diese sollte am stärksten bei sympatrischen Arten sein (Kontrastverstärkung). Die Variation entlang von Genomen soll untersucht werden, um das Ausmaß zufälliger bzw. nicht zufälliger Variation einzuschätzen. Das vorgeschlagene Projekt wird ein wichtiger erster Schritt einer systematischen Erforschung der relativen Bedeutung von genetischer Drift und Selektion für die Evolution im Südpolarmeer sein.
Storage of CO2 in deep geological formations is one possibility of reducing CO2 emissions from industry that are difficult to avoid. High-quality geological models and capacity estimates are crucial for the successful planning and implementation of safe storage projects. This study analyses the storage potential of the Middle Buntssandstein (Lower Triassic) and Lower to Middle Jurassic within the Exclusive Economic Zone (EEZ) of the German North Sea. The dataset includes maps of potential storage sites and classifications. Link https://geostor.cdrmare.de/
Der Geologische Dienst SH beschäftigt sich mit der Erkundung des tieferen Untergrundes. Zur Landesaufnahme und für Potenzialstudien wurde ein landesweites geologisches 3D-Modell entwickelt, das die Tiefe und Verbreitung von relevanten Formationen des Norddeutschen Beckens zeigt. Die Arbeiten erfolgten im Rahmen des Projektes Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken - TUNB, das die Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Norddeutschen Geologischen Diensten durchführte. Das Modell besteht aus 17 Basisflächen lithostratigraphischer Horizonte zwischen der Basis des Zechsteins und der Geländeroberfläche, Hüllflächen von Salzdiapiren und Störungsflächen. Die Eingangsdaten der Modellierung sind Daten des Geotektonischen Atlas von NW-Deutschlands (Baldschuhn et al. 2001), Bohrungen und seismische Profile der KW-Industrie sowie Bohrungen des Landesarchivs SH.
Die Bearbeitung erfolgt unter Nutzung der Ergebnisse des BMBF-Projektes SASO II und in Fortsetzung des DFG-Projektes VPSS I. Im Rahmen dieser Projekte wurden mit einem gezielten Reprocessing industrieseismischer Felddaten gravierende Qualitätsverbesserungen erreicht und durch eine detaillierte digitale Interpretation in grundsätzlich neue geologische Aussagen umgesetzt. Mit dem Projekt VPSS I wurde in einem 5 km schmalen Streifen die zwischen dem landseismischen DEKORP- Hauptprofil BASIN 9601 und dessen seewärtiger Fortsetzung PQ 2-004 klaffende Lücke bis in den Tiefenbereich der Grundgebirgsoberfläche vorerst nur zweidimensional geschlossen. Hauptaufgabe des Forschungsvorhabens VPSS II ist es, diese Lücke zu schließen. Das wird durch eine digitale geologische Interpretation von 1000 km zu reprozessierender CDP-seismischer Felddaten des Industrieprofilnetzes (ca. 3 km/km2) erreicht und gleichzeitig die geologisch-geophysikalische Datenbasis ergänzt. Dadurch wird eine integrierte dreidimensionale geologische Modellierung des oberpermisch-mesozoischen Strukturbaus (Vorpommern-Störungsystem) und der TRANSEUROPEAN FAULT bis in den Tiefenbereich der Grundgebirgsoberfläche gestützt. Die Bearbeitung erfolgt in ständiger enger Abstimmung mit der DEKORP-Arbeitsgruppe am GFZ Potsdam.
Origin | Count |
---|---|
Bund | 215 |
Land | 58 |
Wissenschaft | 10 |
Type | Count |
---|---|
Förderprogramm | 91 |
Text | 116 |
unbekannt | 59 |
License | Count |
---|---|
geschlossen | 120 |
offen | 125 |
unbekannt | 21 |
Language | Count |
---|---|
Deutsch | 235 |
Englisch | 40 |
Resource type | Count |
---|---|
Archiv | 9 |
Bild | 1 |
Dokument | 45 |
Keine | 131 |
Webdienst | 14 |
Webseite | 95 |
Topic | Count |
---|---|
Boden | 233 |
Lebewesen & Lebensräume | 132 |
Luft | 60 |
Mensch & Umwelt | 266 |
Wasser | 75 |
Weitere | 239 |