API src

Found 5659 results.

Related terms

Bauabfälle

<p>Der Bausektor gehört zu den ressourcenintensivsten Wirtschaftssektoren. Entsprechend hoch sind auch die anfallenden mineralischen Bauabfälle. Im Jahr 2022 waren es insgesamt fast 208 Mio. t derartiger Abfälle. Das entspricht etwa 61 Prozent des Gesamtabfallaufkommens in Deutschland. Der größte Teil der Abfälle wurde recycelt oder anderweitig verwertet.</p><p>Verwertung von Bau- und Abbruchabfällen</p><p>Deutschland befindet sich in einer notwendigen Transformation zu einer ressourcenschonenden und auf ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=Nachhaltigkeit#alphabar">Nachhaltigkeit</a>⁠ ausgerichteten Kreislaufwirtschaft. Für den Umgang mit Abfällen, die beim Bau und beim Abbruch von Gebäuden anfallen, aber auch etwa bei Bau und Sanierung von Straßen, Gleisen oder Tunneln, bedeutet dies dreierlei:</p><p>Nur so können natürliche Rohstoffe und Deponieraum eingespart und die Ziele des <a href="https://www.bmuv.de/gesetz/kreislaufwirtschaftsgesetz">Kreislaufwirtschaftsgesetzes</a>, der europäischen <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32008L0098&amp;qid=1651054748037">Abfallrahmenrichtlinie </a>oder des <a href="https://www.bmuv.de/publikation/deutsches-ressourceneffizienzprogramm-iii-2020-bis-2023">Deutschen Ressourceneffizienzprogramms (ProgRess III)</a> erreicht werden.</p><p>Die Daten aus den folgenden Darstellungen stammen aus dem im Jahr 2024 erschienenen Bericht zum Aufkommen und zum Verbleib mineralischer Bauabfälle im Jahr 2022 <a href="https://kreislaufwirtschaft-bau.de/Download/Bericht-14.pdf">(14. Monitoring-Bericht der Bauwirtschaft)</a>.</p><p>Mineralische Bauabfälle</p><p>Bauabfälle fallen als Bauschutt, Straßenaufbruch, Boden und Steine sowie als Baustellenabfälle an. Bauabfälle auf Gipsbasis werden separat erfasst. Im Jahr 2022 waren die mineralischen Bauabfälle einschließlich des Bodenaushubs – das sind Böden und Steine – mit 207,9 Millionen Tonnen (Mio. t) die mengenmäßig wichtigste Abfallgruppe in Deutschland (siehe Abb. „Statistisch erfasste Mengen mineralischer Bauabfälle 2022“).</p><p>Boden und Steine, Bauschutt und Straßenaufbruch</p><p>Im Jahr 2022 fielen 294,4,1 Mio. t an Bodenaushub, Baggergut, Gleisschotter, Bauschutt und Straßenaufbruch an.</p><p>Bauabfälle auf Gipsbasis und Baustellenabfälle</p><p>Im Jahr 2022 fielen etwa 0,640 Mio. t Bauabfälle auf Gipsbasis an. Mit 0,38 Mio. t wurden 59,5 % im übertägigen Bergbau und im Deponiebau verwertet. 0,26 Mio. t (40,5 %) wurden auf Deponien beseitigt (siehe Abb. „Verbleib von Bauabfällen auf Gipsbasis 2022“). Wegen der hohen Nachfrage durch die – aus ökologischer Sicht umstrittene – sonstige Verwertung im Bergbau ist das hochwertige Recycling von Bauabfällen auf Gipsbasis in den letzten Jahren nicht im erwünschten Maße in Gang gekommen.</p><p>Bei den Baustellenabfällen haben sich im Vergleich zum vorigen Berichtsjahr 2020 der Anfall und die Verwertungsrate nur geringfügig geändert. Von den insgesamt 12,9 Mio. t wurden 0,1 Mio. t (0,8 %) deponiert, 0,3 Mio.&nbsp;t (2,3 %) recycelt und 12,5 Mio.&nbsp;t (96,9 %) sonstig verwertet, d.h. thermisch verwertet, also für Energie- und Wärmeerzeugung verbrannt, oder verfüllt (siehe Abb. „Verbleib der Baustellenabfälle 2022“).</p><p>Recycling Baustoffe</p><p>Recycling-Baustoffe werden überwiegend als Gesteinskörnungen im Straßen-, Erd- und Deponiebau eingesetzt.</p><p>Von den recycelten Baustoffen wurden lediglich 14,5 Mio. t als Gesteinskörnung in der Asphalt- und Betonherstellung eingesetzt. Weitere 35,8 Mio. t wurden im Straßenbau verwertet, 18,4 Mio. t im Erdbau und 6,6 Mio. t in sonstigen Anwendungen wie dem Bau von Deponien (siehe Abb. „Verbleib der Recycling-Baustoffe 2022“). Diese recycelten Baustoffe deckten einen Anteil von 13,3 % des Gesamtbedarfs an Gesteinskörnungen: Im Hoch- und Tiefbau sowie dem Straßenbau wurden im Jahr 2022 insgesamt 564,1 Mio. t an Gesteinskörnungen verwendet. Technisch ließen sich bereits heute noch mehr Recycling-Gesteinskörnungen aus dem Hochbau wieder im Hochbau einsetzen, wie das <a href="https://www.umweltbundesamt.de/publikationen/ermittlung-von-ressourcenschonungspotenzialen-bei">Umweltbundesamt </a>im Jahr 2010 am Beispiel des Betonbruchs zeigte. Mittelfristig ist es wichtig, die große Abhängigkeit vom Straßen(neu)bau bei der Entsorgung von Abbruchabfällen zu reduzieren, denn der materialintensive Neubau von Straßen wird, vor allem in strukturell benachteiligten Regionen, abnehmen. In Regionen mit eher geringem Neubau von Straßen liegen die ökologischen Vorteile, Gesteinskörnungen im Hochbau zu verwerten, auf der Hand.</p><p>Baustoffrecycling wird gefördert</p><p>Einige Bundesländer wollen den Einsatz gütegesicherter Recyclingbaustoffe und damit die Kreislaufwirtschaft am Bau fördern. Die Landesregierung in Rheinland-Pfalz ging voran. Sie gründete ein Bündnis für eine diskriminierungsfreie Ausschreibung von gütegesicherten Recycling-Baustoffen. Dieses Bündnis <a href="https://kreislaufwirtschaft-bau.rlp.de/buendnis-kreislaufwirtschaft-bau">Kreislaufwirtschaft auf dem Bau</a> wirbt für Ressourcenschonung und Wiederverwertung im Baubereich. An der Initiative beteiligen sich auch die Landesverbände der kommunalen Spitzenverbände, die Architektenkammer, die Ingenieurkammer, der Landesverband Bauindustrie, der Baugewerbeverband, der Industrieverband Steine und Erden und der Baustoffüberwachungsverein. Die Vereinbarung für die umfassende Wiederverwertung von Bauabfällen auf dem Bau finden Sie <a href="https://kreislaufwirtschaft-bau.rlp.de/fileadmin/kreislaufwirtschaft-bau/Startseite/Buendnis/Buendnis_Kreislaufwirtschaft.pdf">hier</a>.</p>

Bundesweites Flächenziel für die Gewässerentwicklung

<p>In einem breiten Korridor kann sich die Wümme eigendynamisch entwickeln.</p><p>Die Fließgewässer in Deutschland nehmen nur noch etwa 1 Prozent der Landesfläche ein. Das ist nur ein Bruchteil ihrer ursprünglichen Ausdehnung. Sie sind touristisch kaum noch erlebbar und nur wenig resilient gegenüber den Folgen des Klimawandels. Diese Situation lässt sich erheblich verbessern, indem Bächen und Flüssen in unserer Kulturlandschaft wieder mehr Fläche zurückgegeben wird.</p><p>Ziele der Wasserrahmenrichtlinie erreichen – den Gewässern Naturfläche zurückgeben</p><p>Deutschland wird von einem dichten Netz von Bächen und Flüssen durchzogen. Die gesamte Länge aller Fließgewässer beträgt etwa 590.000 Kilometer. Dieses Gewässernetz wird intensiv genutzt und wurde zu Gunsten von Siedlungen, Landwirtschaft, Verkehr und Energiegewinnung weitreichend umgestaltet. Auf Grund der vielfältigen Eingriffe gilt nur noch 1 Prozent aller Fließgewässer als unbelastet. Die Ziele des Gewässerschutzes werden deutlich verfehlt. Die europäische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a>⁠ fordert bis 2015 einen guten ökologischen Zustand der Fließgewässer herzustellen. Noch im Jahr 2022 wurde dieses Ziel in 90 Prozent der Bäche und Flüsse nicht erreicht <a href="https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/221010_uba_fb_wasserrichtlinie_bf.pdf">(Wasserrahmenrichtlinie – Gewässer in Deutschland 2021. Fortschritte und Herausforderungen).</a></p><p>Ein guter ökologischer Zustand und vielfältige Lebensraumangebote für unterschiedlichste Organismen sind eng miteinander verknüpft. Bäche und Flüsse können diese typischen Lebensräume jedoch nur ausbilden, wenn ihnen dafür Fläche zur Verfügung steht. Mehr Fläche bedeutet mehr Lebensraum und mehr ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a>⁠.</p><p>Mehr Fläche für Gewässer schafft nicht nur die nötigen Randbedingungen für einen nachhaltigen Gewässerschutz. Naturnahe Fluss- und Auenlandschaften können nachweislich über 40 verschiedene Funktionen erfüllen und sind multifunktonal ( <a href="https://www.umweltbundesamt.de/leistungen-nutzen-renaturierter-fluesse">Leistungen und Nutzen renaturierter Flüsse</a>). Das Erschließen der Multifunktionalität eines Flächenziels für die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gewsserentwicklung#alphabar">Gewässerentwicklung</a>⁠ ist daher auch Inhalt des <a href="https://www.bundesumweltministerium.de/natuerlicher-klimaschutz">Aktionsprogramms Natürlicher Klimaschutz</a> und der <a href="https://www.bundesumweltministerium.de/wasserstrategie">Nationalen Wasserstrategie</a>.</p><p>Wie wird die Gewässerentwicklungsfläche ermittelt?</p><p>Bei der <a href="https://www.umweltbundesamt.de/publikationen/den-gewaessern-raum-zurueckgeben">Berechnung der nötigen Gewässerentwicklungsfläche</a> macht man sich Gesetzmäßigkeiten der natürlichen Flussentwicklung zu nutze. Ein Gewässerbett wird beispielsweise umso breiter, je mehr Wasser ein Bach oder Fluss normalerweise mit sich führt, je geringer das Gefälle ist und je mehr Widerstand dem fließenden Wasser entgegengebracht wird. Für die Berechnung der Gewässerbettbreite werden daher Informationen zum Talgefälle, Windungsgrad, Böschungsneigung, Sohlrauheit und Breiten-Tiefen-Verhältnis sowie zum mittleren bordvollen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Abfluss#alphabar">Abfluss</a>⁠ benötigt. Diese Informationen liegen z.B. in Form von typspezifischen <a href="https://www.umweltbundesamt.de/publikationen/hydromorphologische-steckbriefe-der-deutschen">Gewässersteckbriefen</a> vor.</p><p>Wie viel Fläche benötigen unsere Flusslandschaften?</p><p>Im Rahmen eines Forschungsvorhabens wurde der Flächenbedarf unserer Fließgewässer berechnet. Alle Ergebnisse des Vorhabens sind in dem Bericht <a href="https://www.umweltbundesamt.de/publikationen/den-gewaessern-raum-zurueckgeben">„Den Gewässern Raum zurückgeben. Ein bundesweites Flächenziel für die Gewässerentwicklung</a>“ und in dem Hintergrundpapier des Umweltbundesamtes <a href="https://umweltbundesamt.de/publikationen/fluessen-baechen-wieder-mehr-raum-zurueckgeben">„Flüssen und Bächen wieder mehr Raum zurückgeben“</a> publiziert.</p><p>Aus den Berechnungen hat sich ein Flächenbedarf von insgesamt 11.400 Quadratkilometern für das gesamte Fließgewässernetz Deutschlands ergeben. Zwei Drittel dieser Fläche stehen heute nicht mehr zur Verfügung. Das bedeutet, dass den <strong>Flüssen und Bächen 7.000 Quadratkilometer an Entwicklungsfläche zurückgegeben werden muss</strong>, um die Ziele im Gewässerschutz erreichen zu können. Dies entspricht <strong>etwa 2 Prozent der Fläche Deutschlands</strong>.</p><p>Ursprünglich dürften den Bächen und Flüssen etwa 7 Prozent der Fläche Deutschlands zur Verfügung gestanden haben. Diese Fläche wurde durch den Gewässerausbau und Eingriffe in Auen- und Gewässerflächen auf ca. 1 – 1,4 Prozent reduziert. Mit der Realisierung eines Flächenziels von 2 Prozent, würde den Fließgewässern daher der Entwicklungsraum zurückgegeben werden, den das Fließgewässer- und Auensystem im Minimum benötigt.</p><p>Naturfern begradigtes Gewässer (links) im Vergleich zu einem renaturierten Fluss (rechts). 2 Prozent mehr Fläche für Gewässer sind in Deutschland nötig.<br> Stephan Naumann (links), Wolfgang Kundel (terra-air services / Landkreis Verden) (rechts)</p><p>Diagramm, in dem auf der y-Achse die Fläche Deutschlands und auf der x-Achse die Zeit dargestellt. Es wird schematisch gezeigt, wie viel an Gewässerentwicklungsfläche durch den Gewässerausbau verloren wurde und wie viel Fläche für einen guten Ökologischen Zustand benötigt wird</p><p>Große Steine und Baustämme sorgen als Strömungslenker für eine Verzweigung der Fulda.</p><p>Gewundener Verlauf der neuen Wern mit deutlich erkennbarem Verlauf eines alten geradlinigen Grabens, der streckenweise in die Renaturierung integriert ist.<br> Wasserwirtschaftsamt Bad Kissingen</p><p>An der Wümme und ihren Nebengewässern wurden Gewässerrandstreifen auf einer Gewässerlänge von insgesamt ca. 35 km geschaffen.</p><p>An der renaturierten Ruhr hat sich schnell naturnaher Uferbewuchs eingestellt. Zudem verändert die Ruhr sich ständig. Laufverzweigungen und Inseln kommen und gehen.</p><p>Flüsse und Bäche beanspruchen je nach Typ unterschiedlich große Entwicklungsbreiten</p><p>Die berechneten Gewässerentwicklungsbreiten, die benötigt werden, um einen guten ökologischen Zustand erreichen zu können, weisen eine große Spannweite auf. In der Gewässerentwicklungsbreite ist sowohl die eigentliche Breite des Gewässers als auch die Breite enthalten, die ein Gewässer aktiv zum Beispiel bei Hochwasser umgestaltet. Wenn ein Fluss also eine Gewässerentwicklungsbreite von 50 m aufweist und das Gewässer selbst 10 Meter breit ist, werden links und rechts des Flusses also jeweils 20 Meter Fläche benötigt.</p><p>Bäche mit einem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Einzugsgebiet#alphabar">Einzugsgebiet</a>⁠ größer als 10 Quadratkilometer benötigen, je nach Einzugsgebietsgröße und Gewässertyp, eine Entwicklungsbreite von 20 bis 40 Meter. Ihre Gewässerbreite beträgt natürlicherweise 4 bis 9 Meter. Noch kleinere Bäche mit einem Einzugsgebiet von weniger als 10 Quadratkilometer, sollten typischerweise Gewässerentwicklungsbreiten zwischen 7 und 14 Metern zur Verfügung gestellt bekommen.</p><p>Die Entwicklungsbreiten der kleinen Flüsse der Alpen und des Alpenvorlandes und die Mittelgebirgsflüsse betragen im Mittel 70 bis 110 Meter. Die potenziell natürliche Gewässerbreite dieser Gewässer liegt zwischen 15 und 22 Metern. Organisch geprägte Flüsse und Tieflandflüsse werden in der Regel bis 40 Meter breit. Das Ausmaß ihrer nötigen Gewässerentwicklungsbreite erreicht Werte von 150 bis über 200 Meter.</p><p>Werden die Einzugsgebiete der Flüsse noch größer und erreichen 1.000 bis 10.000 Quadratkilometer, nehmen auch ihr ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Abfluss#alphabar">Abfluss</a>⁠ und ihre Breite zu. Diese großen Flüsse können in Einzelfällen bis zu 130 Meter breit werden. Im Normalfall sind es 40 bis 100 Meter. Sie können bereits über 500 Meter Gewässerentwicklungsbreite beanspruchen, um ihr vollständiges Strukturinventar entwickeln zu können. Die mittleren Breiten der Gewässerentwicklungskorridore werden für 25 verschiedene Fließgewässertypen in den <a href="https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/41_2025_texte_v2.pdf">Hydromorphologischen Steckbriefen</a> &nbsp;für verschiedene ökologische Gewässerzustände angegeben.</p><p>Darstellung der 3 methodischen Schritte und Anteile, welche die Breite des Gewässerentwicklungskorridors bestimmen.</p><p>Diagramm der Gewässerentwicklungskorridorbreiten in Abhängigkeit vom Gewässertyp</p><p>Literaturangaben</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BfN#alphabar">BfN</a>⁠ [Hrsg.] (2012): <a href="https://www.bfn.de/publikationen/schriftenreihe-naturschutz-biologische-vielfalt/nabiv-heft-124-oekosystemfunktionen">Ökosystemfunktionen von Flussauen - Analyse und Bewertung von Hochwasserretention, Nährstoffrückhalt, Kohlenstoffvorrat, Treibhausgasemissionen und Habitatfunktio</a>n. NaBiV Heft 124</p><p>BfN [Hrsg.] (2023): <a href="https://www.bfn.de/publikationen/broschuere/den-fluessen-mehr-raum-geben">Den Flüssen mehr Raum geben. Renaturierung von Auen in Deutschland</a></p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMUV#alphabar">BMUV</a>⁠ [Hrsg.] (2023): <a href="https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Naturschutz/nbs_indikatorenbericht_2023_bf.pdf">Indikatorenbericht 2023 der Bundesregierung zur Nationalen Strategie zur biologischen Vielfalt</a></p><p>BMUV/⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ [Hrsg.] (2022): <a href="https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/221010_uba_fb_wasserrichtlinie_bf.pdf">Die Wasserrahmenrichtlinie – Gewässer in Deutschland 2021</a>. Fortschritte und Herausforderungen. Bonn, Dessau.</p><p>Bundesregierung (2023a): Aktionsprogramm Natürlicher ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>⁠. Kabinettsbeschluss vom 29. März 2023</p><p>Bundesregierung (2023b): Nationale Wasserstrategie. Kabinettsbeschluss vom 15. März 2023</p><p>Ehlert, T. &amp; S. Natho (2017): Auenrenaturierung in Deutschland – Analyse zum Stand der Umsetzung anhand einer bundesweiten Datenbank. Auenmagazin 12/2017.</p><p>Janssen, G., Wittig, S., Garack, S., Koenzen, U., Reuvers, C., Wiese, T., Wetzel, N. (2022): Wissenschaftlich fachliche Unterstützung der Nationalen Wasserstrategie - Kohärenz der flächenbezogenen Gewässerentwicklungsplanung gemäß WRRL mit der Raumplanung. Umweltbundesamt [Hrsg.] UBA -Texte 71/2022. Dessau.</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LAWA#alphabar">LAWA</a>⁠ [Hrsg.] (2016): ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LAWA#alphabar">LAWA</a>⁠ Verfahrensempfehlung „Typspezifischer Flächenbedarf für die Entwicklung von Fließgewässern“ LFP Projekt O 4.13. Hintergrunddokument.</p><p>LAWA [Hrsg.] (2019b): LAWA-Verfahrensempfehlung zur Gewässerstrukturkartierung - Verfahren für mittelgroße bis große Fließgewässer.</p><p>Linnenweber, C., Koenzen, U., Steinrücke J. (2021): Gewässerentwicklungsflächen. Auenmagazin 20 / 2021. 4-9.</p><p>Müller, A., Kranl J., Pottgiesser, T., Schmidt,S., Albert, C., Greassidis, S., Stolpe H., Jolk C. (2025): Den Gewässern Raum zurückgeben. Ein bundesweites Flächenziel für die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gewsserentwicklung#alphabar">Gewässerentwicklung</a>⁠. Umweltbundesamt [Hrsg.] UBA-Texte xx/2025: 92 Seiten, Dessau.</p><p>Statistisches Bundesamt (o. J.): FS 3 Land- und Forstwirtschaft, Fischerei, R. 5.1 Bodenfläche nach Art der tatsächlichen Nutzung, verschiedene Jahrgänge.</p><p>UBA [Umweltbundesamt, Hrsg.] (2023a): Flächenverfügbarkeit und Flächenbedarfe für den Ausbau der Windenergie an Land. CLIMATE CHANGE 32/2023. Autoren: Marian Bons, Martin Jakob, Thobias Sach, Dr. Carsten Pape, Christoph Zink, David Geiger, Dr. Nils Wegner, Olivia Boinski, Steffen Benz, Dr. Markus Kahles. Dessau.</p><p>WHG (2009): Wasserhaushaltsgesetz vom 31. Juli 2009 (BGBl. I S. 2585), das zuletzt durch Artikel 7 des Gesetzes vom 22. Dezember 2023 (BGBl. 2023 I Nr. 409) geändert worden ist.</p><p> <a href="https://www.lpv.de/uploads/tx_ttproducts/datasheet/DVL-Leitfaden_17_WRRL-web.pdf"><i></i> Kleine Fließgewässer kooperativ entwickeln</a> <a href="https://www.hcu-hamburg.de/fileadmin/documents/REAP/files/SCHWARK_etal_2005_Fliessgewaesserrenaturierung_heute_Effizienz_Umsetzungspraxis_BMBF-Abschlussbericht.pdf"><i></i> Schwark et al.: Fließgewässerrenaturierung heute – Effizienz und Umsetzungspraxis</a><a href="https://www.gewaesser-bewertung.de/"><i></i> UBA &amp; LAWA: Informationsplattform zur Bewertung der Oberflächengewässer gemäß Europäischer Wasserrahmenrichtlinie</a> </p>

Bodenklassenübersichtskarte für Erdarbeiten nach DIN18300:2012-09 (ZURÜCKGEZOGEN) 1 : 50 000 - Höchste Bodenklasse von 1 bis 2m

Seit 2015 sind nach der VOB bzw. DIN 18300:2016-09 projektspezifisch zu definierende Homogenbereiche anstatt der bisher allgemein definierten Bodenklassen festzulegen. Für diese Homogenbereiche sind die gemäß DIN 18300:2016-09 vorgegebenen Eigenschaften und Kennwerte sowie deren Bandbreite anzugeben, die ggf. gezielte Feld- und Laboruntersuchungen erfordern. Homogenbereiche können i.d.R. erst mit den Planungen und den Angaben zu Verfahrenstechniken festgelegt werden. Da in vielen bestehenden Planungen/Bauvorhaben die „Bodenklassen nach DIN 18300:2012-09“ verwendet wurden und in Altprojekten tlw. noch verwendet werden, wird die Bodenklassenübersichtskarte nach DIN 18300:2012-09 für einen Übergangszeitraum weiter dargestellt. Für die Planung, Kalkulation und Abrechnung von Erdarbeiten wurden die anstehenden Sedimente und Gesteine nach den Allgemeinen Technischen Vertragsbedingungen für Bauleistungen (ATV) in der Vergabe- und Vertragsordnung für Bauleistungen (VOB) in so genannte Bodenklassen eingeteilt. Für Erd- und Felsarbeiten gemäß DIN 18300:2012-09 galten die in dieser DIN enthaltenen Bodenklasseneinstufungen. Bodenklasse 1: Oberboden Bodenklasse 2: Fließende Bodenarten Bodenklasse 3: Leicht lösbare Bodenarten Bodenklasse 4: Mittelschwer lösbare Bodenarten Bodenklasse 5: Schwer lösbare Bodenarten Bodenklasse 6: Leicht lösbarer Fels und vergleichbare Bodenarten Bodenklasse 7: Schwer lösbarer Fels Für Vorplanungszwecke wurden vom LBEG flächendeckend Karten der Bodenklassen für Erdarbeiten nach DIN 18300:2012-09 im Maßstab 1:50.000 bis in 2 m Tiefe (ab GOK) aus der in Niedersachsen flächendeckend vorhandenen Bodenkarte von Niedersachsen 1:50.000 (BK50) abgeleitet. Die in der BK50 dargestellten Flächeneinheiten beruhen auf einem für die Fläche typischen Bodenprofil. Den darin enthaltenen Bodenarten wurden entsprechende Bodengruppen nach DIN 18196, Bodenklassifikation für bautechnische Zwecke, zugeordnet. Die Bodengruppen und Festgesteine wurden nach den Zuordnungskriterien der DIN 18300:2012-09 den entsprechenden Bodenklassen zugeteilt. Dargestellt werden die jeweils höchste Bodenklasse in den Tiefenprofilen: 0 m bis 1 m, sowie 1 m bis 2 m und die vorherrschenden Bodenklassen (Gewichtung nach der Mächtigkeit, max. 3 Klassen bei gleicher Gewichtung) in den Tiefenprofilen: 0 m bis 1 m, 1 m bis 2 m, sowie 0 m bis 2 m. Die tatsächlichen Verhältnisse können von der maßstabsbedingt homogenisierten Kartendarstellung abweichen. So sind beispielsweise – in den Auesedimenten der Elbe, Leine und Weser (Bodenklasse 2 und 4) – lokal geringmächtige Blocklagen bekannt, die den Bodenklassen 5 oder 6 zuzuordnen wären. Es wird darauf hingewiesen, dass die "Bodenklassenübersichtskarte für Erdarbeiten nach DIN 18300:2012-09 1:50 000" eine geotechnische Erkundung des Baugrundes nach DIN EN 1997 2:2010-10 mit ergänzenden Regelungen DIN 4020:2010-12 und nationalem Anhang DIN EN 1997 2/NA:2010-12 nicht ersetzen kann.

Meßtischblatt Kaltenhof/ Insel Poel (Blatt 1934/2034)

Durch geologische Untersuchungen eines Geländesausschnittes, der durch die TK 25 vorgegeben ist, wird eine vollständige Sammlung aller im Gelände zu gewinnenden Informationen über Art und Aufbau der Gesteine und Schichten durchgeführt. Dazu gehören Aufnahme aller natürlichen und künstlichen Einschnitte, von Bohrsondierungen und Schürfen, Beurteilung des Reliefs. Die Informationen werden analog erfaßt und auf die topographische Karte übertragen (Feldblätter), nach Abschluß der Feldarbeiten werden die hergestellten Karten zur Vervielfältigung aufbereitet (z.B. Druck). Zusätzliche Informationen Datengewinnung: digital u. analog, liegt vor als: Karte, beziehbar: analog, digital Drucklegung in 2003

Herstellung von Kalksandsteinen aus Bruchmaterial von Kalksandsteinmauerwerk mit anhaftenden Resten von Daemmstoffen sowie weiterer Baureststoffe

Fuer eine umweltvertraegliche Mauersteinproduktion sind Fragen der Wiederverwertung von Abbruchmaterial aus Bauwerken von wichtiger Bedeutung. Fruehzeitig hat sich deshalb die Kalksandsteinindustrie entschlossen, Forschungsaktivitaeten auf das Recyclingverhalten von Kalksandsteinen zu konzentrieren. Damit bekennt sie sich zu dem Ziel des im Herbst 1996 verabschiedeten Kreislaufwirtschaftsgesetzes, das eine moeglichst weitgehende Wiederverwertung von Baurestmassen anstrebt. Neben der Entlastung der Deponien von wiederverwertbarem Abfall kann durch das Recycling von Kalksandsteinmauerwerk eine Schonung wertvoller Rohstoffressourcen erreicht werden. Die Zugabe von reinem KS-Bruchmaterial zur KS-Rohmischung und dessen Auswirkung auf die qualitaetskennzeichnenden Eigenschaftswerte von Kalksandsteinen wurde mit dem Forschungsvorhaben 'Wiederverwertung von Kalksandsteinen aus Abbruch von Bauwerken bzw aus fehlerhaften Steinen aus dem Produktionsprozess' (erschienen im August 1994, Forschungsvereinigung Kalk-Sand eV) ausfuehrlich untersucht. Das Ergebnis dieses ersten Forschungsvorhabens zum Recycling von Kalksandstein besteht in der Erkenntnis, dass die Zugabe von reinem KS-Buchmaterial ohne wesentliche Aenderungen der Eigenschafswerte der KS-Pruefkoerper grundsaetzlich moeglich ist. Einbussen bei der Steindruckfestigkeit kann mit Hilfe von gezielten - jedoch kostenintensiven - produktionstechnischen Massnahmen (zB Erhoehung der Kalkdosis, Verlaengerung der Haertezeit) entgegengewirkt werden. Die vorliegende Arbeit ist die Fortsetzung des og Forschungsvorhabens und beschreibt die Untersuchungen ueber die Verwertung von Kalksandsteinbruchmaterial mit Resten anhaftender anderer Baustoffe als Zuschlagstoff fuer die KS-Herstellung. Die grundsaetzlichen Auswirkungen unterschiedlicher Zugabemengen an verunreinigtem Bruchmaterial auf wesentliche Eigenschaften von Kalksandsteinen werden nach baustofftechnischen Gesichtspunkten untersucht. Insgesamt zeigen die vorliegenden Untersuchungsergebnisse, dass die Herstellung von Kalksandsteinen unter Verwendung von zerkleinertem KS-Bruchmaterial mit Resten anhaftender anderer Baustoffe in den meisten Faellen prinzipiell moeglich ist. Im allgemeinen resultieren aus der Zugabe von KS-Bruchmaterial mit Fremdtoffen zur KS-Rohmischung zum Teil jedoch erhebliche Einbussen bei den qualitaetskennzeichnenden Eigenschaftswerten der Kalksandsteine und bei produktions- und umweltrelevanten Kenndaten (zB Einbussen bei der Steindruckfestigkeit). Im Einzelfall werden dagegen ebenfalls geringfuegige Verbesserungen bei der Steindruckfestigkeit festgestellt (zB Zugabe von KS-Bruchmaterial mit Normalbeton bzw Porenbeton). Die Messwerte der Waermeleitfaehigkeit und die Schwindwerte liegen im allgemeinen in der Groessenordnung handelsueblicher Kalksandsteine. Die Mindesthaftscherfestigkeit nach DIN 1053 wird in nahezu jedem Fall eingehalten....

IS GK 100 DS - Informationssystem Geologische Karte von Nordrhein-Westfalen 1:100.000 - Datensatz

Der Datensatz zum Informationssystem Geologische Karte von Nordrhein-Westfalen 1:100.000 [IS GK 100] stellt geologische Fachdaten über Alter, Beschaffenheit und Verbreitung der Gesteine zur Verfügung. Das Kartenwerk enthält eine flächendeckende, blattschnittfreie und durch neue Kartiererkenntnisse in regelmäßigen Abständen aktualisierte Karte. Es ist eine wichtige Planungsgrundlage bei großräumigen Nutzungsvorhaben der Landesplanung: Rohstoffgewinnung, Baugrundsicherung, Grundwassererschließung oder Ausweisung von Naturschutzgebieten. Verfügbare Kartenthemen: Geologische Oberflächenkarte bis 2 Meter Tiefe (Deckschichten), Geologische Karte in 2 Meter Tiefe (Hauptschichten) und Verlauf der Verwerfungen (Tektonik).

Entwicklung von Parametern fuer den modellhaften Einsatz eines Lasergeraetes zur Beseitigung von Umweltschaeden an wertvollen Kulturguetern

Schutzgebiete_INS - Naturdenkmale

Der Kartendienst stellt die für INSPIRE gemeldete Schutzgebietsdaten des Saarlandes dar.:Naturdenkmale - flächenhaft - Schutzgebietskategorie nach dem saarländischen Naturschutzgesetz. Naturdenkmäler sind unter Schutz gestellte Einzelobjekte der Landschaft wie beispielsweise ein bemerkenswerter Baum oder ein Felsen. Die Schutzwürdigkeit ergibt sich aus der Seltenheit, dem besonderen Charakter, der Schönheit oder auch dem wissenschaftlichen Wert eines Naturdenkmals. Beispiele für bedeutende Naturdenkmäler des Saarlandes sind die Schlossberghöhlen in Homburg oder der Brennende Berg in Dudweiler.

Bebauungsplaene Merzig/Merzig (I) - 1. Aenderung des Bebauungsplanes Am weissen Fels

Bebauungspläne und Umringe der Kreisstadt Merzig (Saarland), Stadtteil Merzig:Bebauungsplan "1. Aenderung des Bebauungsplanes Am weissen Fels" der Kreisstadt Merzig, Stadtteil Merzig

Geotope Saarland

Geotope sind erdgeschichtliche Bildungen der unbelebten Natur, die Kenntnisse über die Entwicklung der Erde oder des Lebens vermitteln. Sie umfassen Aufschlüsse von Gesteinen, Böden, Mineralien und Fossilien sowie natürliche Landschaftsteile. Dargestellt werden Punktdaten für 110 Objekte. Die Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Wert Geologie modelliert, die sich zusammensetzt aus der flächenhaften Featureklasse GDZ2010.A_ghgeowt (enthält die Gk100, die GK25, und die Rohstoffflächen), der linienhaften Featureklasse GDZ2010.L_ghgeowt (enthält die GK15_Bänke, die GK25_Tektonik und die GK100_Tektonik), der punkthaften Featureklasse GDZ2010.P_ghgeowt (enthält die Geotope) und der dazugehörigen Businessklasse GDZ2010.ghgeowt. Anschließend wurden die Werte für die Objektart = gt exportiert in die Filegeodatabase GDZ_GDB. Folgende Attribute sind relevant: TYP: Geotoptyp; KURZFORM: Kürzel; BEZEICHNUNG: Name bzw. Lage des Geotops; BESCHREIBUNG: Beschreibung des Geotops.

1 2 3 4 5564 565 566