Das Projekt "FS SONNE (SO 168) ZEALANDIA: Causes and Effects of Plume and Rift-related Cretaceous and Cenozoic Volcanism on Zealandia" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Ziele: Klärung der Entwicklung des Hikurangi Plateaus im Zusammenhang mit dem Auseinanderbrechen von Gondwana und der anschließenden Neuordnung der Kontinente (vgl. auch Vorhaben SO 169 - CAMP), sowie die Untersuchung des jungen Vulkanismus auf dem neuseeländischen Mikrokontinent. Neben der bathymetrischen Vermessung sollen vor allem mit Dredgen, dem TV-Greifer und dem Kastengreifer Proben genommen werden. Die Wochenberichte der Forschungsfahrt finden sich auf der Internetplattform des FS SONNE (BGR).
Das Projekt "European Hot Dry Project Soutz, Phase I - Gesteinsphysik im Europäischen Hot-Dry-Rock-Projekt Soutz - Phase I" wird vom Umweltbundesamt gefördert und von Universität Bochum, Institut für Geologie, Mineralogie und Geophysik, Fachbereich Geophysik, Arbeitsgruppe Experimentellen Geophysik durchgeführt. Die Gesteinsphysik an der Ruhr Universität Bochum ist seit fast 30 Jahren an der HDR-Forschung beteiligt und hat wesentlich zur Entwicklung des Europäischen HDR-Projekts Soultz-sous-Forets beigetragen. Im Zeitraum von 2001-2004 werden folgende Fragestellung untersucht: (i) Wechselwirkung zwischen hydraulischen stimulierten und natürlichen Rissen im granitischen Untergrund mittels Laborversuchen an triaxial belasteten Granitproben mit vorgegebenen Rissen und bruchmechanischer Modellrechnungen. (ii) Untersuchung des Druckverlustes an der Schnittstelle Bohrung-Rissfläche aufgrund turbulenter Strömung am Risseinlass mittels Injektionsversuchen an Bohrkernen mit axialer Bohrung und induziertem Riss. (iii) Gesteinsphysikalische Charakterisierung von Bohrkernen und Bohrklein aus den Soutz-Bohrungen mit Labormethoden. (iv) Teilnahme an Stimulations- und Zirkulationsexperimenten im HDR-Projekt Soultz inkl. Teilauswertung zur Durchlässigkeit und Druckverteilung. Die Arbeiten sind mit dem Gesamtprojekt abgestimmt.
Das Projekt "Ultramafic rocks in the Haskard Highlands, Northern Shackleton Range: tracer of a Ross orogenic suture zone?" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, GeoZentrum Nordbayern, Lehrstuhl für Mineralogie durchgeführt. Die Shackleton Range in der Antarktis ist ein Beispiel für alpinotype ultramafische Gesteine, die als Linsen in hochgradigen Gneisen auftreten. Diese bestehen aus Granat- und/oder Spinellführenden Peridotiten und Pyroxeniten, die in den Haskard Highlands vorkommen und während der GEISHA-Expedition 1987/1988 durch W. Schubert (Mitantragsteller) beprobt wurden. Granat ist in Olivin-führenden Gesteinen ein Indikator für Hochdruckbedingungen. Eine solche, zuvor noch nicht belegte Hochdruckmetamorphose, könnte durch eine panafrikanische Kollision bedingt sein. Als Marker von Suturzonen sind Uftramafitite ein wichtiger Schlüssel für die Rekonstruktion der Gondwana-Amalgamation, vorausgesetzt, ihre PTt-Geschichte ist bekannt. Hauptziel des geplanten Projektes ist die Rekonstruktion der Druck-Temperatur-Zeit(PTt)- Entwicklung der ultramafischen und der eng assoziierten mafischen Gesteine der nördlichen Shackleton Range. Diese sind das erste Beispiel für eklogitfazielle ultramafische Gesteine in einem panafrikanischen Orogen. Die Entschlüsselung der PT-Pfade soll im wesentlichen im ersten Projektjahr erfolgen und in der ersten Hälfte des zweiten Jahres fortgesetzt werden. Geochronologische (Lu-Hf, Sm-Nd und Ar-Ar) und geochemische Untersuchungen an Ultramafititen und assoziierten Metabasiten sind für das zweite und dritte Jahr geplant. Letztere sind notwendig, um die Herkunkt der Ultramafitite (subkontinentaler oder subozeanischer lithosphärischer Mantel, möglicherweise ozeanische Kruste?) zu klären.
Das Projekt "Erfassung und Beschreibung von Mikrotrennflächen in Festgestein" wird vom Umweltbundesamt gefördert und von GeoForschungsZentrum Potsdam durchgeführt. Mikrotrennflächen spielen eine zentrale Rolle in der Ingenieurgeologie, Gesteinsphysik und Felsmechanik. Um die Entwicklung von Mikrorissen und Risssystemen in Gesteinen besser vorhersagen zu können, soll in Fortsetzung der bisherigen Arbeiten am GeoForschungsZentrum Potsdam das Mikrorisswachstum unter Modus I und II Belastung untersucht werden. Hierzu sollen fortgeschrittene Verfahren zur Analyse der bei der Rissbildung abgestrahlten akustischen Emissionen (AE) eingesetzt werden, um den Anteil unterschiedlicher Mikrorisstypen bei Rissbildung unter Modus I und II Belastung zu bestimmen. Diese Untersuchungen sollen dazu beitragen, den Zusammenhang zwischen Mikrorissverteilung in der Prozesszone und Bruchzähigkeit für unterschiedliche Belastungsarten zu erfassen. Im ersten Teil der Studie wurde ein Verfahren zur Bestimmung der Modus II Bruchzähigkeit (PTS-Test) entwickelt. Dies soll nun weiterentwickelt werden, um es in der Anwendung als Standardverfahren (International Society of Rock Mechanics (ISRM) Suggested Method) einsetzen zu können. Hierzu sollen der Einfluss der Probengröße und der Belastungsgeschwindigkeit auf die Bruchzähigkeit untersucht werden.
Das Projekt "FHInvest 2014: In-Situ Borehole and Geofluid Simulator (IBGS)" wird vom Umweltbundesamt gefördert und von Hochschule Bochum, Bochum University of Applied Sciences, Institut für Wasser und Umwelt, Labor für Geothermie und Umwelttechnik durchgeführt. Das Arbeitsziel des IBGS besteht in der Bereitstellung und Nutzung einer innovativen experimentellen Einrichtung zur Durchführung von großskaligen Versuchen unter in-situ Bedingungen geothermischer Reservoire. Dazu wird eine Apparatur genutzt, in der Gesteinsproben Druck- und Temperaturbedingungen von Tiefen bis zu 5 km ausgesetzt werden. Die Dimensionierung und Konzipierung des IBGS erlaubt es, Bohrprozesse mit real genutztem Bohrgerät nachzustellen, und dabei sowohl Bohrfluide als auch Porenfluide im Gestein unter Druck aufzubringen. Gleichzeitig dienen akustische Sensoren entlang der Probe der Aufzeichnung des Bohrgeräuschs und der Dokumentation von Mikroseismizität. Dadurch können mit dem IBGS aktuelle Fragen der Grundlagenforschung sowie anwendungsorientierte und industrienahe Forschung und Entwicklung für die geothermische Energieversorgung gleichermaßen entgegengetreten werden. Die Herstellung des IBGS erfolgt innerhalb von einem halben Jahr. Bereits während der Herstellung werden Kooperationen mit wissenschaftlichen Einrichtungen und der Industrie in den Herstellungsprozess integriert, um langfristig technischen Bedürfnissen begegnen zu können und so eine nachhaltige Nutzung des IBGS zu sichern. Im Anschluss an die Lieferung erfolgt eine etwa zwölfmonatige Nutzungsphase, die mit einer initialen Testphase beginnt und in eine wissenschaftliche Anwendungsphase unter anderem mit dem Hochschuleigenen Bohrgerät übergeht.
Das Projekt "FS SONNE (SO 202) INOPEX: Innovatives Nordpazifik Experiment - Magnetik" wird vom Umweltbundesamt gefördert und von Universität Bremen, Fachbereich 5 Geowissenschaften durchgeführt. Ziel des Vorhabens INOPEX ist die Beschreibung der pleistozänen paläoozeanographischen und -klimatischen Entwicklung im arktischen/subarktischen Pazifik und Beringmeer. Durch Schaffung umfangreicher Datensätze soll eine Wissenslücke in einem für die globale Klimaentwicklung bedeutenden aber bislang noch nicht ausreichend bearbeiteten Gebiet geschlossen werden. Die Untersuchungen stützen sich auf einen innovativen 'Multi-Proxy'-Ansatz und sollen wesentliche weitere Grundlagen legen, mit denen die Mechanismen, die die globale Klimaentwicklung steuern, besser verstanden und modelliert werden können. Gestützt auf akustische Erkundung soll geeignetes Probenmaterial aus Sedimenten auf Profilschnitten im arktischen/subarktischen Pazifik zwischen Japan und Alaska und im Beringmeer gewonnen werden. Unter Einbindung hochrangiger nationaler und internationaler Arbeitsgruppen sollen unter Einsatz neuer Methoden Paläoklimazeitreihen erarbeitet, die zeitlich hochauflösende Korrelationen mit Eiskernen, sibirischen und marinen Abfolgen ermöglichen, mit denen Anfachungs-, Verstärkungs- und Übertragungsmechanismen von Klimaänderungen verstanden werden können. Ergänzt durch biologische und geochemische Untersuchungen in der Wassersäule sollen Prozesse, die Klimasignale erzeugen, in direktem Bezug zu den geowissenschaftlichen Programmen untersucht werden. INOPEX liefert für die Dokumentation und das Verständnis der Klimaentwicklung und speziell für die Klimamodellierung vergangener und zukünftiger Klimazustände wesentliche neue Daten. Der Nordpazifik, mit seiner zentralen Stellung zwischen dem nordamerikanischen Kontinent und Asien hat wesentliche Einwirkung auf die atmosphärische Zirkulation und ihren Interaktionen in der Nordhemisphäre und damit auch auf Europa. INOPEX-Daten werden auch seine Bedeutung und Wirkungsgrößen auf das globale Klima als Endglied der globalen thermohalinen Zirkulation besser verstehen und modellieren lassen. Der Fahrtbericht wird als Hardcopy bei der Technischen Informationsbibliothek in Hannover vorliegen und die Wochenberichte der Forschungsfahrt finden sich auf der Internetplattform des FS SONNE (BGR).
Das Projekt "Umwelt- und paläomagnetische 'Datierung' der mittel- bis hochwürmzeitlichen Lösse der Wachau (Österreich) und der Ostkarpaten (Rumänien)" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl Geomorphologie durchgeführt. Löß ist ein einzigartiges Archiv pleistozäner Umweltbedingungen. Seine weite Verbreitung und seine oft quasi-kontinuierliche Sedimentation ermöglichen zeitlich und räumlich hoch aufgelöste Rekonstruktionen der Paläoumwelt. Darüber hinaus sind besonders die mittel- und jungwürmzeitlichen Löße hervorragende archäologische Archive. In Zentral- und in SE-Europa findet sich eine große Zahl bedeutender jungpaläolithischer Fundplätze eingebettet in mächtige Lößabfolgen. Löß kann, wie auch andere Sedimente, die zeitlichen Variationen des Erdmagnetfeldes auf Skalen von Jahrhunderten bis Jahrhunderttausenden aufzeichnen. Untersucht der Umweltmagnetismus die magnetischen Eigenschaften des 'Tonbandes' (hier Löß), so ist die möglichst genaue Rekonstruktion der darauf gespeicherte 'Musik' der Erdmagnetfeldvariationen Gegenstand des Paläomagnetismus. Ist die zeitliche Variabilität des Erdmagnetfeldes bekannt, so kann das in einem konkreten Profil erkannte Variationsmuster zur indirekten Datierung des Profils herangezogen werden. Seit September 2005 werden Grabungsprofile in der Wachau und in den rumänischen Ostkarpaten paläo- und umweltmagnetisch bearbeitet. Ziel der Untersuchungen ist -neben einer unabhängigen zeitlichen Einstufung- die Rekonstruktion des Paläoklimas zur Zeit der paläolithischen 'Besiedlung'.
Das Projekt "Projektteil 3, Petrophysik" wird vom Umweltbundesamt gefördert und von Universität Bonn, Mineralogisch-Petrologisches Institut und Museum, Lehrstuhl für Mineralogie und Kristallographie durchgeführt. Ziel des Verbundvorhabens COMICOR ist es, die Änderung von Gesteinseigenschaften infolge intensiver Kohlendioxid-Einwirkung zu untersuchen. Die geplanten Untersuchungen sollen an Abfolgen des Buntsandsteins in der Hessischen Senke durchgeführt werden, wo vulkanisches Kohlendioxid eine Alteration der Gesteine hervorgerufen hat. Diese Abfolgen stellen somit ein natürliches Analogon für die Wechselwirkung zwischen Gesteinen und Fluiden dar, wie sie auch bei der geologischen Kohlendioxid-Speicherung zu erwarten sind. Der Verbund beabsichtigt, die Eigenschaften von Nebengesteinen in Störungszonen mit sedimentologischen, mineralogischen und strukturgeologischen Methoden zu untersuchen. Weiterhin sind Experimente bei definierten Druck- und Temperaturbedingungen geplant, um die Reaktivität der Gesteine mit Kohlendioxid zu bestimmen. Außerdem ist beabsichtigt, ein dreidimensionales Modell zur Nebengesteinsalteration und zur störungsabhängigen Ausbreitung der Fluide zu erstellen sowie die Bedingungen zu untersuchen, bei denen eine Reaktivierung bzw. Neubildung von Störungen wahrscheinlich ist. Die Zusammenfassung der experimentellen, geologischen und mineralogischen Daten in einem thermodynamischen Modell ermöglicht eine verbesserte Abschätzung der Wechselwirkungen zwischen kohlendioxidhaltigen Fluiden und dem Nebengestein. Hieraus lassen sich wiederum genauere Prognosen zur Eignung und Langzeitsicherheit potentieller Kohlendioxid-Speicherstandorte ableiten. An dem Verbund sind die Lehrstühle für Allgemeine Geologie und für Strukturgeologie der Universität Jena sowie das Mineralogische Institut der Universität Bonn beteiligt. Die Universität Jena (Lehrstuhl für Allgemeine Geologie) ist für petrographische, sedimentologische, mineralogische sowie geo- und hydrochemische Analysen von Sand- und Tonsteinen aus dem Untersuchungsgebiet zuständig. Mit Hilfe dieser Untersuchungen soll geklärt werden, welchen Einfluss die Fluide auf die Zusammensetzung und die Porosität bzw. Permeabilität der Gesteine hatten. Weiterhin soll untersucht werden, woher die Fluide stammen, welche Zusammensetzung sie hatten, ob die Fluidmigration anhand der Mineralreaktionen nachvollzogen werden kann und unter welchen Druck- bzw. Temperaturbedingungen die Reaktionen abliefen. Das umfangreiche Analyseprogramm bildet die Grundlage für die geplante thermodynamische Reaktionsmodellierung von Mineralgleichgewichten und Transportprozessen. Die Universität Bonn ist für die Durchführung von Laborexperimenten an alterierten und nicht alterierten Proben aus dem Untersuchungsgebiet zuständig. Es ist geplant, petrophysikalische und thermodynamische Kennwerte zu ermitteln und die Geometrie des Porenraums zu analysieren. Mit den Experimenten sollen Fragestellungen zu Mineralreaktionen unter Kohlendioxid-Einfluss und deren Auswirkungen auf die Porosität bzw. Permeabilität der Gesteine geklärt werden. (Text gekürzt)
Das Projekt "Vorhaben: Bestimmung kinetischer Daten für abiotische Redoxreaktionen mit H2 und Untersuchung der Auswirkung von H2-Reaktionen auf TransporTeilprojekt rozesse in Gesteinssystemen" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Fachgruppe für Geowissenschaften und Geographie, Lehrstuhl für Geologie, Geochemie und Lagerstätten des Erdöls und der Kohle (LEK) durchgeführt. Das Forschungsvorhaben H2-ReacT befasst sich mit der Speicherung von Wasserstoff in geologischen Formationen. Molekularer Wasserstoff (H2) ist ein wichtiger Rohstoff in der chemischen Industrie. Da sich das Gas leicht durch Elektrolyse von Wasser gewinnen lässt, kann es auch für die Zwischenspeicherung überschüssiger Primärenergie, z.B. aus Windkraftanlagen verwendet werden. Dabei könnten ausgeförderte Erdgas- und Erdöl-Lagerstätten oder Salzkavernen als Wasserstoffspeicher genutzt werden. Da Wasserstoff ein sehr reaktives Gas ist und insbesondere von vielen Mikroorganismen als Energiequelle genutzt werden kann, muss untersucht werden, welche Reaktionen in geologischen Wasserstoffspeichern stattfinden können und wie schnell sie ablaufen. Außerdem muss festgestellt werden, wie sich das Gas in den unterirdischen Hohlräumen verteilt und ob es möglichst verlustfrei wieder an die Oberfläche gefördert werden kann. Zu diesem Zweck führen die an H2-ReacT beteiligten Forschungsinstitute Experimente durch in welchen die Wechselwirkungen von H2-Gas mit verschiedenen Gesteinstypen untersucht werden. Dabei geht es sowohl um anorganische Reaktionen (z.B. mit Eisenoxiden) als auch um mikrobielle Prozesse (z.B. Bildung von Biofilmen in den Gesteinsporen). Die Experimente müssen dazu unter ähnlichen Druck- und Temperaturbedingungen durchgeführt werden, wie sie im tiefen Untergrund herrschen. Reaktionen und Transportportprozesse von molekularem Wasserstoff spielen auch bei der nuklearen Endlagerung eine Rolle. Durch Korrosionsprozesse wird langsam aber stetig H2 gebildet und kann zu einem Druckaufbau führen wenn das Gasvolumen nicht durch Diffusion oder Reaktionen reduziert wird. Im H2-ReacT Projektverbund werden exemplarisch drei Speicherszenarien untersucht: H2-Porenspeicher mit toniger Abdeckung, H2-Porenspeicher mit Salz Abdeckung und H2-Speicher in Salzkavernen. Projektpartner sind zwei Hochschulinstitute der Rheinisch-Westfälischen Technischen Hochschule Aachen (RWTH) und zwei außeruniversitären Forschungseinrichtungen (Bundesanstalt für Geowissenschaften und Rohstoffe; BGR; GeoForschungsZentrum Potsdam; GFZ). Alle verfügen über langjährige Erfahrungen in der experimentellen geowissenschaftlichen Forschung und bringen ihre Expertise auf den Gebieten Geochemie, Mineralogie und Grenzflächenchemie, Geomikrobiologie, Sedimentologie und Petrophysik ein. Die wissenschaftlichen Arbeiten sind in vier Arbeitspakete unterteilt. AP1: Abiotische und mikrobielle Redoxreaktionen von H2 (BGR) AP2: H2-Adsorption an Mineraloberflächen (RWTH/CIM) AP3: Einfluss H2-bedingter Reaktionen auf die Transporteigenschaften von Gesteinen (RWTH/LEK) AP4: Löslichkeit von H2 in Porenfluiden (GFZ)
Das Projekt "Teilprojekt C: Geschwindigkeitsmodell und Simulation der Strömungs- und Wärmetransportprozesse" wird vom Umweltbundesamt gefördert und von G.E.O.S. Ingenieurgesellschaft mbH durchgeführt. Gesamtziel des Verbundvorhabens ist die Erhöhung der Erfolgsaussichten bei der Exploration und Erschließung geothermischer Reservoire zur Wärme- und Stromerzeugung vor allem im südlichen und südwestlichen bayerischen Molassebecken. Dies soll am Sidetrack der Bohrung Geretsried GEN-1 demonstriert werden. Die Schwerpunkte der Arbeit von G.E.O.S. liegen dabei in der Verbesserung des Geschwindigkeitsmodells um die Targets auf den identifizierten Strukturen (Störungen) mit hoher Präzision zu treffen. Dies ist ganz besonders für das störungsbasierte Erschließungskonzept für den Sidetrack wichtig und soll über die Auswertung des geplanten Checkshot erfolgen. Auf dieser Grundlage und mit den Informationen aus der Bohrphase wird das geologische Modell fortlaufend angepasst. Zudem werden geothermische Simulationen mit ECLIPSE vergleichend zu FEFLOW- Simulationen des Partners GTN durchgeführt. Hauptziele sind einerseits die Verifizierung der Modelle und andererseits die Identifikation von Grenzen für die Permeabilität von Störung und Matrix für eine für die Fündigkeit ausreichende Schüttung. Dabei soll die so ermittelte Permeabilität mit den Untersuchungen der TUM abgeglichen werden. Nach Abschluss der Testarbeiten werden diese systematisch unter Nutzung des Tools G.E.O.S.I.M. ausgewertet, welches dazu verifiziert und erweitert werden soll. Um die wirtschaftlichen und wissenschaftlichen Ziele des Gesamtvorhabens zu erreichen, sollen in diesem Teilprojekt folgende Arbeiten von der G.E.O.S. Ingenieurgesellschaft mbH durchgeführt werden: ' Auswertung Checkshot und Erstellung eines Geschwindigkeitsmodells ' Präzisierung des geologischen Modells vor, während und nach der Bohrphase ' Durchführung von geothermischen Reservoirsimulationen mit ECLIPSE und Vergleich der Ergebnisse mit FEFLOW ' Auswertung der Fördertests und Validierung und Erweiterung des von G.E.O.S. entwickelten Simulationstools G.E.O.S.I.M.
Origin | Count |
---|---|
Bund | 90 |
Type | Count |
---|---|
Förderprogramm | 90 |
License | Count |
---|---|
offen | 90 |
Language | Count |
---|---|
Deutsch | 90 |
Englisch | 6 |
Resource type | Count |
---|---|
Keine | 18 |
Webseite | 72 |
Topic | Count |
---|---|
Boden | 90 |
Lebewesen & Lebensräume | 70 |
Luft | 40 |
Mensch & Umwelt | 90 |
Wasser | 42 |
Weitere | 90 |