s/gesundheitliche-auswirkungen/Gesundheitliche Auswirkungen/gi
Erfassung des Ist-Zustandes mit dem Ziel, Aussagen ueber gesundheitliche Auswirkungen machen zu koennen und gewonnene Erkenntnisse bei Stadtplanung zu verwerten.
Spurenelemente in sedimentären Abfolgen können sowohl positive als auch negative Aspekte haben. Positive Aspekte haben Spurenelements, weil (1) ihre Konzentrationsmuster als Proxies für die Rekonstruktion der Umweltbedingungen zum Zeitpunkt der Ablagerung verwendet werden können, (2) sie Informationen über diagenetische Prozesse liefern können und (3) sie abgebaut werden können, um den strategischen Mineralbedarf zu decken. Andererseits können sie aufgrund der Wasser-Gestein-Wechselwirkung in das Grundwasser gelangen, wo sie sich nachteilig auf die betrieblichen und gesundheitlichen Aspekte dieser kritischen Ressource auswirken. Wir wissen erstaunlich wenig über die beiden Spurenelemente As und Mo in karbonatischen Sedimenten. Dies erscheint überraschend, da Karbonate zu den am häufigsten vorkommenden Sedimentgesteinstypen gehören und As und Mo Elemente von erheblichem ökologischen und wissenschaftlichen Interesse sind. Um unser Verständnis zu verbessern, wird das übergeordnete Ziel der vorgeschlagenen Studie sein, die diagenetische Geschichte und die damit einhergehende Umverteilung von As und Mo in der Karbonatmatrix eines Grundwasserleiters zu entschlüsseln. Die Kombination dieser Informationen mit detaillierten mineralogischen Beobachtungen wird gekoppelte chemische Transportmodelle verbessern und dabei helfen, Bereiche, Regionen und Zeitalter potenzieller Kontaminationen zu identifizieren, was die Suche nach sicherem Trinkwasser unterstützen wird. Ein Prozessverständnis der diagenetischen Umverteilung von Mo und seinen Isotopen wird es ermöglichen Mo isotope als Werkzeug für die Rekonstruktion von Paläobedingungen während der Ablagerung von Karbonaten zu nutzen. Somit wird es die Möglichkeit der Paläorekonstruktion, in anderen marinen Umgebungen als euxinischen Becken, geben.
Das Vorhaben vergleicht verschiedene Verfahren und Kriterien zur Beurteilung des nächtlichen Fluglärms an Flughafenstandorten und dessen gesundheitliche Auswirkungen. Hierfür wurden neben Literaturauswertungen und Analysen von Gesundheitsdaten auch Befragungen von Akteur*innen im Umfeld von drei deutschen Flughäfen durchgeführt. Im Ergebnis wird vorgeschlagen, eine Aufwachreaktion (AWR = 1) als Schwellenwert des AWR-Kriteriums festzulegen. Dies bedeutet, dass Gebiete, in denen im Durchschnitt pro Nacht eine oder mehr AWR durch Fluglärm hervorgerufen werden, in der nach Fluglärmgesetz definierten Nachtschutzzone liegen sollten. Veröffentlicht in Texte | 31/2025.
Das Projekt ÖkoKauf der Stadt Wien hat es sich zum Ziel gesetzt, durch die Erstellung von ökologischen Kriterien, Pilotprojekte und durch Bewusstseinsarbeit das Beschaffungswesen im Magistrat Wien weiter zu ökologisieren. In diesem Rahmen widmete sich der Arbeitskreis 'Desinfektionsmittel unter der Leitung der Wiener Umweltanwaltschaft (WUA) der Aufgabe, für Hygienefachleute ein Instrument zur Beurteilung der Auswirkungen von Desinfektionsmitteln auf Gesundheit und Umwelt zu erstellen. Das Österreichische Ökologie-Institut führte eine Daten- und Literaturrecherche durch, das Umweltbundesamt nahm ergän-zende ökotoxikologische Tests an Wirkstoffen und -produkten vor und 'die umweltberatung ermittelte stationsbezogene Desinfektionsmittelverbräuche in Wiener Krankenanstalten. Die Recherche- und Testergebnisse zu Desinfektionsmittelwirkstoffen und -produkten wurden in einer vom IFZ konzipierten und von der Magistratsabteilung 14 realisierten Datenbank zusammengefasst. Um die ökotoxikologischen Produkteigenschaften vergleichbar zu machen, wurde vom IFZ ein Bewertungsraster entwickelt und in die Datenbank integriert. Dabei werden nachteilige Wirkungen auf die Gesundheit anhand von vier Wirkungskategorien erfasst: Akute Giftigkeit; Reizwirkung auf die Haut; Sensibilisierung, allergenes Potenzial sowie Erbgutschädigende, krebserzeugende und fruchtschädigende Eigenschaften. Zusammen mit der Berücksichtigung des Verhaltens in Oberflächengewässern (Abbauverhalten, Bioakkumulationspotenzial, Toxizität für Wasserorganismen) sowie dem Verhalten in Kläranlagen werden insgesamt sechs Bewertungszahlen generiert, die auf einer Skala von 1 (vernachlässigbar) bis 5 (sehr hoch) das gesamte Gefährdungsprofil des Stoffes beschreiben sollen. Das Gefährdungsprofil eines Handelsproduktes errechnet sich aus den Gefährdungsprofilen der darin enthaltenen Wirkstoffe anhand eines Algorithmus: Dabei wird die Annahme getroffen, dass die Produkteigenschaften von der Konzentration der darin enthaltenen Wirkstoffe abhängen. Bei der Bewertung ist außerdem zu gewährleisten, dass ein Wirkstoff mit einem hohen Gefährdungspotenzial angemessen berücksichtigt wird, auch und gerade wenn seine Konzentration im Produkt gering ist. In der Literatur wird dazu eine logarithmische Skalierung vorgeschlagen. Die Bewertung berücksichtigt derzeit die Wirkstoffe sowie Anwendungsverdünnungen. Die Zusammenfassung der Produkte in Verwendungs- bzw. Expositionskategorien ermöglicht letztlich eine vergleichende Bewertung. Da das Bewertungsraster gerade auf eine vergleichende Bewertung von Produkten abzielt, unterliegt er einer ständigen kritischen Diskussion, die auch häufig von den Herstellern geführt wird. Dieser Umstand sowie das Faktum von Produktlebenszyklen erfordern ein ständiges Update der in der Datenbank enthaltenen Informationen und eine Anpassung des Bewertungsmodells an den aktuellen Stand von Forschung sowie Standards der Stoff- und Produktpolitik.
Die aktuell in Europa geltenden Luftqualitätsgrenzwerte sind teilweise mehr als 20 Jahre alt und entsprechen nicht den heutigen wissenschaftlichen Erkenntnissen über die gesundheitlichen Auswirkungen von Luftverschmutzung. Im Ergebnis eines umfangreichen Fitness Checks der aktuell geltenden Luftqualitätsrichtlinie hat die EU-Kommission am 26. Oktober 2022 ihren Vorschlag für eine Überarbeitung der Luftqualitätsrichtlinie vorgelegt, dem am 24. April 2024 durch das Europäische Parlament politisch zugestimmt wurde. Die Broschüre stellt die wichtigsten Neuerungen im Vergleich zu den derzeit gelten Luftqualitätsrichtlinien vor. Veröffentlicht in Hintergrundpapier.
Was ist eigentlich wirklich damit gemeint, wenn vom „1,5-Grad-Ziel“ für das Klima gesprochen wird? Woher kommt dieser Wert und wie wird er gemessen? Was passiert, wenn wir das Ziel überschreiten – gibt es danach noch ein Zurück unter 1,5 Grad Erderwärmung? Dieser Text geht auf die Hintergründe des 1,5-Grad-Ziels ein und erklärt, warum wir dieses Ziel in Reichweite halten müssen. Mit der Verabschiedung des Übereinkommens von Paris (ÜvP) auf der Weltklimakonferenz im Dezember 2015 setzte sich die Weltgemeinschaft das gemeinsame Ziel, dass „der Anstieg der durchschnittlichen Erdtemperatur deutlich unter 2 °C über dem vorindustriellen Niveau gehalten wird und Anstrengungen unternommen werden, um den Temperaturanstieg auf 1,5 °C über dem vorindustriellen Niveau zu begrenzen […]“. Das darin enthaltene 1,5-Grad-Ziel wurde in den folgenden Jahren zum Maßstab des politischen Handelns im globalen Klimaschutz . Die Bedeutung dieser Temperaturobergrenze für den Schutz von Menschen und Umwelt wurde unter anderem durch den Sonderbericht des Weltklimarats (Intergovernmental Panel on Climate Change, IPCC ) aus dem Jahr 2018 über 1,5 Grad globale Erwärmung unterstrichen. Hier das UBA-Positionspapier zum 1,5-Grad-Ziel lesen. Was bedeutet das 1,5-Grad-Ziel? Das 1,5-Grad-Klimaziel, das 2015 im ÜvP festgelegt wurde, bezieht sich auf den Anstieg der globalen Durchschnittstemperatur im Vergleich zum vorindustriellen Niveau (1850-1900). Eine Erwärmung um 1,5 Grad würde zwar immer noch erhebliche Auswirkungen haben, aber diese wären deutlich weniger katastrophal als eine Erwärmung von zwei Grad oder mehr. Im ÜvP selbst wurde die Basislinie, also der genaue Referenzzeitraum, für vorindustrielle Messungen nicht definiert. Der IPCC verwendet jedoch eine Basislinie von 1850 bis 1900. Dies ist der früheste Zeitraum mit zuverlässigen, nahezu globalen Messungen. Ein kurzer Ausflug in die Geschichte Das 1,5-Grad-Ziel wurde 2015 im Rahmen des ÜvP festgelegt, aber seine Wurzeln reichen weiter zurück: 1992 wurde die Klimarahmenkonvention der Vereinten Nationen ( UNFCCC ) auf der UNO -Konferenz für Umwelt und Entwicklung in Rio de Janeiro beschlossen, um eine globale Antwort auf den Klimawandel zu koordinieren. 1997 setzte das Kyoto-Protokoll erstmals rechtlich bindende Emissionsziele für Industrieländer fest, jedoch ohne spezifische Temperaturziele. 2010 wurde mit dem Cancun-Abkommen auf der Klimakonferenz in Cancun das langfristige Ziel bestätigt, die Erwärmung auf unter zwei Grad zu begrenzen. Der 1,5-Grad-Grenzwert wurde von besonders betroffenen Staaten gefordert. 2015 einigten sich die Staaten als Ergebnis wissenschaftlicher Forschung und intensiver diplomatischer Verhandlungen auf der COP21 in Paris mit dem Übereinkommen von Paris auf das Ziel, die Erwärmung auf deutlich unter zwei Grad zu begrenzen und Anstrengungen zu unternehmen, sie auf 1,5 Grad zu beschränken. Warum 1,5 Grad? Wissenschaftliche Erkenntnisse und Studien, größtenteils zusammengetragen in den Berichten des IPCC , haben gezeigt, dass eine Erwärmung über 1,5 Grad hinaus schwerwiegende und möglicherweise irreversible Auswirkungen auf das Klima haben kann. Schon bei 1,5 Grad Erwärmung sind Meeresspiegelanstiege, der Verlust großer Eisflächen, Hitzewellen und die Bedrohung für Inselstaaten signifikant. Bei zwei Grad globaler Erwärmung und darüber hinaus werden sehr wahrscheinlich irreversible Kipppunkte erreicht, die das Klimasystem destabilisieren und unumkehrbare Veränderungen nach sich ziehen würden. Zu den drastischen Auswirkungen des fortschreitenden Klimawandels zählen: Extremwetterereignisse: Eine Erwärmung über 1,5 Grad würde die Häufigkeit und Intensität von extremen Wetterereignissen wie Hitzewellen, Starkregen und Wirbelstürmen noch weiter erhöhen. Diese Ereignisse können erhebliche Schäden an Infrastruktur und Landwirtschaft verursachen und die Lebensgrundlagen vieler Menschen bedrohen. Meeresspiegelanstieg: Eine Begrenzung der Erwärmung auf 1,5 Grad würde den Anstieg des Meeresspiegels verlangsamen, was besonders wichtig für Inselstaaten und küstennahe Regionen ist. Folgen des Meeresspiegelanstiegs sind u. a. Überschwemmungen und der Verlust von Landflächen. Ökosysteme und Biodiversität : Viele Ökosysteme, darunter Korallenriffe und arktische Lebensräume, sind bei einer Erwärmung von mehr als 1,5 Grad stark gefährdet. Der Erhalt dieser Ökosysteme ist entscheidend für die Biodiversität und das Wohlergehen vieler Tier- und Pflanzenarten. Gesundheitliche Auswirkungen: Eine geringere Erwärmung würde auch die negativen gesundheitlichen Auswirkungen reduzieren, die durch Hitzewellen, Luftverschmutzung und die Ausbreitung von Krankheiten entstehen können. Wirtschaftliche Stabilität: Klimawandelbedingte Schäden können erhebliche wirtschaftliche Kosten verursachen. Eine Begrenzung der Erwärmung würde helfen, wirtschaftliche Verluste zu minimieren und neue Arbeitsplätze im Bereich der grünen Technologien zu schaffen. Haben wir die 1,5-Grad-Marke schon überschritten? Im Jahr 2024 wurde durch aktuelle Messdaten der europäischen Klimadaten-Agentur Copernicus bestätigt, dass die Erde erstmals ein volles Jahr lang eine Erwärmung von mehr als 1,5 Grad über dem vorindustriellen Niveau erreicht hat. Das bedeutet jedoch noch nicht, dass das langfristige Ziel des ÜvP bereits überschritten ist. Die globale Erwärmung wird als langjährige Durchschnittstemperatur (in der Regel 20- bis 30-jährige Mittel) gemessen, nicht anhand einzelner heißer Jahre oder Monate, da kürzere Zeiträume stark von natürlichen Schwankungen dominiert werden können. Legt man den aktuellen Erwärmungstrend zugrunde, würde die Welt zwischen 2030 und 2040 das 1,5-Grad-Ziel langfristig überschreiten. Wie lässt sich das 1,5-Grad-Ziel noch erreichen? Die Debatte um die Einhaltbarkeit und die Auslegung des 1,5-Grad-Ziels verdeutlicht, wie dringend wir globalen und wirksamen Klimaschutz brauchen und wie komplex die politischen, wirtschaftlichen und technologischen Herausforderungen sind, die damit einhergehen. Während einige Fachleute skeptisch sind, ob das ÜvP-Ziel überhaupt noch erreichbar ist, gibt es immer noch Hoffnung, dass der Klimawandel durch rasches Handeln auf ein erträgliches Maß begrenzt werden kann. Um das Ziel von 1,5 Grad zu erreichen, müssten die globalen Treibhausgasemissionen bis 2030 um 43 Prozent im Vergleich zu 2019 reduziert werden, bis 2035 dann um 60 Prozent, und spätestens in den frühen 2050er Jahren muss die Bilanz des Ausstoßes und der Entnahme von CO 2 aus der Atmosphäre mittels Senken ausgeglichen sein - also globale CO 2 -Neutralität erreicht werden. Dies erfordert drastische Maßnahmen wie die Reduktion der Abhängigkeit von fossilen Brennstoffen und eine ambitioniertere Förderung erneuerbarer Energien. Weltweit müssen die Emissionen stark gesenkt und bis auf nicht vermeidbare Restemissionen reduziert werden. Internationale Kooperationen im Klimaschutz, insbesondere zwischen großen Emittenten wie den USA, China und der EU, werden als entscheidend angesehen. Ein Überblick der wichtigsten Klimaschutz-Maßnahmen: Erneuerbare Energien : Investitionen in Solar- und Windkraft, um fossile Brennstoffe zu ersetzen. Energieeffizienz : Verbesserung der Energieeffizienz in allen Sektoren. Aufforstung : Schutz und Wiederherstellung von Wäldern, um CO 2 aus der Atmosphäre zu binden. Technologische Innovationen : Entwicklung und Einsatz neuer Technologien zur Emissionsreduktion. Kreislaufwirtschaft : Übergang zu einer nachhaltigen, regenerativen und treibhausgasneutralen Kreislaufwirtschaft. Verhaltensänderungen: Förderung nachhaltiger Lebensstile und Konsummuster, z. B. Mobilitätssuffizienz . Internationale Zusammenarbeit : Globale Unterstützung und Zusammenarbeit, besonders für Entwicklungsländer. Was passiert, wenn wir 1,5 Grad überschreiten? Gibt es danach noch einen Weg zurück? Ein „Overshoot“, also ein Überschreiten der 1,5-Grad-Marke würde schwerwiegende Folgen haben. Beispielsweise wäre das Schmelzen der Eisschilde auf Grönland und in der Antarktis kaum mehr aufzuhalten, was den Meeresspiegel langfristig ansteigen ließe. Auch das Risiko von Extremwetterereignissen wie Dürren und Hitzewellen würde zunehmen. Es wäre theoretisch möglich, auch nach einem Overshoot wieder eine Absenkung unter die 1,5-Grad-Marke zu erreichen. Dies würde aber enorme Anstrengungen und neben der ohnehin nötigen Stärkung natürlicher CO 2 -Senken wie Wäldern den großflächigen Einsatz von Technologien zur Kohlenstoffdioxidabscheidung und -speicherung bedeuten. Diese Technologien, die CO 2 aus der Atmosphäre entfernen und beispielsweise in geologischen Formationen speichern, sind bisher nur in kleinem Maßstab verfügbar, extrem teuer, ressourcenintensiv und ihre potenziellen Auswirkungen auf die Umwelt sind (noch) nicht absehbar. Deshalb ist es wichtig, den globalen Temperaturanstieg so gering wie möglich zu halten: Jede noch so kleine vermiedene Temperaturerhöhung zählt. Eine vorübergehende Überschreitung der 1,5-°C-Marke muss im Ausmaß so gering und in der Dauer so kurz wie möglich gehalten werden. Denn jedes Überschreiten kann schwerwiegende und möglicherweise irreversible Veränderungen im Klimasystem zur Folge haben, mit unvorhersehbaren Auswirkungen auf Menschen und Umwelt. Daher gilt weiterhin die Prämisse, frühzeitig und konsequent zu handeln, um solche Szenarien zu vermeiden. Für wen gilt das 1,5-Grad-Ziel? Das 1,5-Grad-Ziel gilt für alle Länder, die das ÜvP unterzeichnet haben. Insgesamt 195 Länder haben sich verpflichtet, nationale Klimaschutzbeiträge (Nationally Determined Contributions, NDCs) zu erstellen, um ihre Treibhausgasemissionen zu reduzieren und Anpassungsstrategien zu entwickeln. Diese Unterschiede sind wichtig: Industrieländer: Sie tragen eine besondere Verantwortung, da sie historisch gesehen die meisten Treibhausgase ausgestoßen haben und über mehr Ressourcen verfügen, um Maßnahmen gegen den Klimawandel zu ergreifen. Diese Länder müssen ihre Emissionen drastisch senken und Entwicklungsländer finanziell und technologisch unterstützen. Entwicklungsländer: Diese Länder sind oft am stärksten von den Auswirkungen des Klimawandels betroffen und haben die geringsten Ressourcen, um sich anzupassen. Internationale Unterstützung und Zusammenarbeit sind daher besonders wichtig. Besonders verwundbare Staaten: Kleine Inselstaaten und niedrig gelegene Küstenländer sind besonders gefährdet durch den Anstieg des Meeresspiegels und extreme Wetterereignisse. Diese Länder haben sich in den Verhandlungen besonders stark für das 1,5-Grad-Ziel eingesetzt. Fazit: Das 1,5-Grad-Ziel ist nach wie vor von zentraler Bedeutung für die internationale Klimapolitik. Ziel ist, die Begrenzung des globalen Temperaturanstiegs auf 1,5 Grad in Reichweite zu halten. Darüber hinaus ist das ÜvP völkerrechtlich bindend. Um gefährliche Auswirkungen ungebremster Erderwärmung zu verhindern oder zu minimieren, muss die Weltgemeinschaft weiterhin ambitionierte Klimaschutzmaßnahmen umsetzen. Die Begrenzung der Erderwärmung bedeutet eine lebenswertere Zukunft für uns alle und ist für vulnerable Gesellschaften und Gruppen sowie auch für viele bedrohte Arten und die Biodiversität überlebensnotwendig. Hier weiterlesen: Das UBA-Positionspapier zum 1,5-Grad-Ziel nach dem Übereinkommen von Paris .
Die digitale Berliner Luftkarte – so war Luftqualität an Ihrem Ort 2024 Wo ist die Luftbelastung am höchsten? Warum saubere Luft so wichtig ist Wie funktioniert die Luftkarte? Was bedeutet ein „Bedarf für Luftverbesserungen“ konkret? Wie werden die Werte berechnet? Dank der Unterstützung der Open Data Informationsstelle Berlin (ODIS) wurde die digitale Berliner Luftkarte entwickelt. Sie ermöglicht es den Bewohnerinnen und Bewohnern Berlins, schnell zu überprüfen, wie es um die Luftqualität in verschiedenen Teilen der Stadt bestellt ist. Durch die Eingabe einer Adresse oder einen Klick auf die Karte lässt sich der jeweilige Standort bestimmen. Jeder markierte Bereich umfasst eine Fläche von 50 × 50 Metern. Die Luftkarte basiert auf der Analyse der drei bedeutendsten Luftschadstoffe: Stickstoffdioxid (NO 2 ), grober Feinstaub (PM 10 ) und feiner Feinstaub (PM 2.5 ). Anhand dieser Daten wird bewertet, wie dringend Maßnahmen zur Verbesserung der Luftqualität erforderlich sind. Die Einstufung einer Fläche erfolgt nach dem Schadstoff mit dem höchsten Belastungswert, wobei sie in eine von fünf Kategorien eingeordnet wird: sehr niedriger, niedriger, mäßiger, erhöhter oder hoher Bedarf für Luftverbesserungen. Derzeit existiert in Berlin kein Bereich mit einem sehr niedrigen Bedarf für Luftverbesserungen. Ein solcher würde sich durch eine Schadstoffkonzentration auszeichnen, die nach Einschätzung der Weltgesundheitsorganisation (WHO) kaum Gesundheitsrisiken birgt. Die Berliner Senatsverwaltung setzt sich dafür ein, dass die WHO-Grenzwerte in Zukunft eingehalten werden können. Wichtige Hinweise: Die Karte zeigt die durchschnittlichen Werte für das gesamte Jahr 2024 (Jahresmittelwerte). Die Daten beziehen sich ausschließlich auf die Außenluft. Die angezeigten Werte sind unabhängig von kurzfristigen Verkehrsschwankungen, Windverhältnissen oder der Etage, in der man wohnt. Während Wetter-Apps oft aktuelle Momentaufnahmen basierend auf Messwerten und Modellierungen darstellen, bietet die Berliner Luftkarte eine durchschnittliche Bewertung der Luftqualität über ein ganzes Jahr. Ein Blick auf die Verteilung der Kategorien innerhalb Berlins zeigt, dass 48 % der Stadtfläche nur einen geringen Bedarf an Luftverbesserungen haben. Leider liegen diese Gebiete oft nicht dort, wo die Menschen wohnen – nur 15 % der Berliner Bevölkerung lebt in solchen Zonen. Besonders gute Luft findet sich vor allem in Regionen mit wenig Bebauung, wie am Müggelsee oder im Grunewald. Im Gegensatz dazu leben 74 % der Berlinerinnen und Berliner in Gebieten mit mäßigem Handlungsbedarf, obwohl diese nur 46 % der Stadtfläche ausmachen. Meist handelt es sich dabei um Wohngebiete in Straßennähe oder Regionen, in denen häufig mit Holz geheizt wird. 6 % der Stadtfläche weisen eine erhöhte Luftbelastung auf, was sich auf 11 % der Bevölkerung auswirkt. Diese Orte befinden sich oft an stark befahrenen Hauptstraßen oder Autobahnen. Die höchste Belastungskategorie („hoher Bedarf für Luftverbesserungen“) betrifft weniger als 0,3 % der Stadtfläche und Bevölkerung und wird daher in den Diagrammen nicht gesondert ausgewiesen. Ebenso gibt es keine Bereiche, in denen die WHO-Grenzwerte vollständig eingehalten werden. Luftverschmutzung hat nachweislich erhebliche Auswirkungen auf die Gesundheit von Mensch und Natur. Über die Atemwege gelangen Schadstoffe wie Feinstaub in den Körper und verteilen sich über den Blutkreislauf bis in die Organe. Dies kann zu vielfältigen gesundheitlichen Schäden führen: Rußpartikel erhöhen das Krebsrisiko. Schwermetalle können sich im Gehirn ablagern und neurologische Erkrankungen begünstigen. Atemwegsreizungen können chronischen Husten, Asthma oder verstärkte allergische Reaktionen hervorrufen. Ungeborene Kinder sind ebenfalls betroffen: Eine hohe Schadstoffbelastung erhöht das Risiko für geringes Geburtsgewicht und Frühgeburten. Es gibt keinen unbedenklichen Feinstaub Besonders kritisch ist Feinstaub: Je kleiner die Partikel, desto gefährlicher. Winzige Partikel können die natürlichen Schutzbarrieren des Körpers überwinden, tief in Organe eindringen und sich dort ablagern. Einige gelangen sogar über den Riechnerv direkt ins Gehirn. Wissenschaftliche Erkenntnisse belegen, dass selbst geringe Mengen Feinstaub gesundheitsschädlich sind – es gibt also keine unbedenkliche Feinstaubbelastung. Jede markierte Fläche (50 × 50 Meter) enthält folgende Basisinformationen: Zeitraum : Jahresdurchschnitt 2024 Luftschadstoffe : NO 2 , PM 10 und PM 2.5 in Mikrogramm pro Kubikmeter (µg/m³) Die Kategorisierung erfolgt auf Grundlage der WHO-Empfehlungen, die Grenzwerte für eine möglichst geringe Gesundheitsgefährdung definieren. Da diese Werte nur selten eingehalten werden, hat die WHO Zwischenstufen zur schrittweisen Annäherung an das Ziel festgelegt. Diese Zwischenwerte dienen als Basis für die Kategorisierung der Berliner Luftqualität. Die höchste Schadstoffkonzentration innerhalb einer Zelle bestimmt dabei deren Einordnung. Um die WHO-Grenzwerte für saubere Luft zu erreichen, sind Maßnahmen auf verschiedenen Ebenen notwendig – sowohl durch Behörden als auch durch individuelles Handeln. Beispiele für Handlungsbedarf: Verkehrsreiche Straßen : Maßnahmen wie Umweltzonen, Tempolimits oder der Ausbau umweltfreundlicher Verkehrsmittel können die Belastung durch Stickstoffdioxid (NO 2 ) und durch Feinstaub (PM 10 und PM 2.5 ) verringern. Dabei gilt: jeder vermiedene Autokilometer verbessert die Luftqualität. Auch E-Autos produzieren Feinstaub durch Abriebe. Heizungen : Der Einsatz moderner Filteranlagen oder emissionsarmer Heizsysteme reduziert Schadstoffe wie Feinstaub (PM). Auch Holzöfen können sauber betrieben werden, wie der Ofenführerschein zeigt. Industriegebiete & Überregionale Schadstoffquellen : Schadstoffe können in der Atmosphäre über weite Distanzen transportiert werden. Die Behörden haben die Aufgabe, europaweit für saubere Industrieanlagen zu sorgen. Zur Berechnung der Luftqualität kommt das statistische Modell „FAirQ“ der INWT Statistics GmbH zum Einsatz. Dieses System nutzt Methoden aus den Bereichen „Big Data“ und „Künstliche Intelligenz“, um auf Basis der folgenden Faktoren Prognosen zu erstellen: Messwerte der Berliner Luftgütemessstationen (BLUME) Verkehrsdaten von über 200 Messpunkten in der Stadt Wetterprognosen des Deutschen Wetterdienstes (DWD) Großräumige Schadstoffvorhersagen aus dem COPERNICUS-Programm (CAMS) Das Modell analysiert, wie sich diese Variablen auf die Luftqualität auswirken und nutzt sie zur Berechnung der stündlichen Belastungswerte. Diese werden über das Jahr gemittelt und auf das 50 × 50 Meter Raster übertragen. Da Modellwerte immer eine Annäherung an die Realität darstellen, gibt es kleinere Abweichungen. Besonders an Autobahnen kann die berechnete Schadstoffkonzentration höher ausfallen als in angrenzenden Wohngebieten, da sich Schadstoffe in der Atmosphäre verdünnen. Beispielsweise sinkt die Stickstoffdioxid-Belastung (NO 2 ) bereits innerhalb von 100 Metern von einer Verkehrsquelle erheblich ab. Eine detaillierte Beschreibung des Systems ist hier zu finden: Abschlussbericht zur Luftschadstoffprognose
Strahlenschutz bei der Elektromobilität Beim Betrieb von konventionellen Verbrennerfahrzeugen, Plug-in-Hybriden und Elektroautos entstehen Magnetfelder im Nieder- und Zwischenfrequenzbereich. Sie treten auch beim Laden von E-Autos auf. Wie stark Insass*innen diesen Feldern ausgesetzt sind, hängt von der eingesetzten Technologie, der Position von Bauteilen, aber auch der persönlichen Fahrweise ab. Die zum Schutz der Gesundheit empfohlenen Höchstwerte werden in allen untersuchten Szenarien unterschritten. Daher sind nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitsrelevanten Wirkungen zu erwarten. In Elektroautos sind Menschen nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder Hybridantrieb. Wie überall, wo elektrische Ströme fließen, treten auch bei elektrisch betriebenen Fahrzeugen Magnetfelder auf. Wie stark Insass*innen den Magnetfeldern im Auto ausgesetzt sind, kann sich von Fall zu Fall unterscheiden. Dies hängt von der eingesetzten Technologie, der Position von Bauteilen relativ zum Körper, aber auch der persönlichen Fahrweise ab. Bei Elektrofahrzeugen entstehen magnetische Felder vor allem im Betrieb und beim Laden der Fahrzeuge. In bisherigen Untersuchungen wurden die stärksten Felder vorwiegend im Fußraum vor den Vordersitzen festgestellt. Beim Einschalten mancher Fahrzeuge entstehen ebenfalls kurzfristig starke Felder. In Verbrennerfahrzeugen können Menschen Magnetfeldern ähnlich stark ausgesetzt sein wie in Hybrid- oder Elektrofahrzeugen. Quelle: vladim_ka/Stock.adobe.com Welche Felder kommen in Fahrzeugen vor? Bei elektrisch betriebenen Fahrzeugen entstehen statische, niederfrequente und zwischenfrequente elektrische und magnetische Felder. Die Frequenzen dieser Felder liegen zwischen null Hertz (Hz/statische Felder) und bis zu mehreren zehn oder hundert Kilohertz (kHz/niederfrequente Felder und Felder im sogenannten Zwischenfrequenzbereich). Unter Gesichtspunkten des Strahlenschutzes sind bei E-Autos vor allem die Magnetfelder relevant, die unter anderem von folgenden Quellen ausgehen: elektrischer Antriebsstrang, Leitungen und dazugehörige Elektronik, Fahrzeugbatterie, Ladeeinrichtung und Ladekabel. Unabhängig vom Antriebssystem gibt es in modernen Fahrzeugen weitere Quellen magnetischer Felder. Daher können Insass*innen auch in einem Fahrzeug mit Verbrennungsmotor Magnetfeldern ausgesetzt sein. Relevante Quellen magnetischer Felder sind hier beispielsweise: Klimaanlagen, Lüfter, Sitzheizungen, Fensterheber sowie Fahrzeugeinschaltung bzw. Anlasser. Darüber hinaus gibt es Quellen wie Assistenz-, Komfort- und Unterhaltungssysteme, die hochfrequente elektromagnetische Felder für die Erkennung von Objekten ( Radar ) oder die drahtlose Informationsübertragung per Funk nutzen. Weitere Informationen zu hochfrequenten elektromagnetischen Feldern finden Sie in unserem Übersichtsartikel " Was sind hochfrequente elektromagnetische Felder? ". Wissenschaftlich gesicherte Wirkungen von Magnetfeldern Niederfrequente und zwischenfrequente Magnetfelder dringen nahezu ungehindert in den Körper ein und können dort elektrische Felder und Ströme hervorrufen. Diese können wiederum zu Reiz- und Stimulationswirkungen in Nerven- und Muskelgewebe führen. Damit diese wissenschaftlich gesicherten Wirkungen nicht auftreten, wurden von der Internationalen Kommission zum Schutz vor nichtionisierender Strahlung ( ICNIRP ) Richtlinien entwickelt. Diese Richtlinien beschreiben, wie stark Menschen den Feldern höchstens ausgesetzt sein sollten. Dabei wird neben der Stärke und Verteilung der Magnetfelder auch das Ausmaß der im Körperinnern entstehenden elektrischen Felder berücksichtigt. Wenn die durch die Magnetfelder hervorgerufenen körperinneren Felder die von der ICNIRP vorgeschlagenen Höchstwerte nicht übersteigen, sind keine gesundheitsrelevanten Wirkungen zu erwarten. Ob neben den wissenschaftlich gesicherten Wirkungen von Magnetfeldern auch andere, bisher unentdeckte Wirkungen auftreten können, ist Gegenstand weiterer Forschung. Auftreten von Magnetfeldern bei der Elektromobilität Eine neue Studie des BfS von 2025 gibt Aufschluss zu der Frage, in welchem Maße Fahrzeuginsass*innen den Magnetfeldern von Elektroautos ausgesetzt sind. Es ist nach Einschätzung des BfS die bislang detaillierteste Untersuchung zu diesem Thema. In dieser Studie wurden gemessen an den Zulassungszahlen besonders beliebte E-Auto-Modelle und zusätzlich auch leistungsstarke E-Auto-Modelle verschiedener Automobilhersteller untersucht. Dazu wurden Magnetfeldmessungen an unterschiedlichen Stellen im Inneren der Fahrzeuge durchgeführt. Dies geschah unter realen Bedingungen, aber auch auf Teststrecken und Prüfständen. Auf den Teststrecken und Prüfständen befanden sich die Fahrzeuge beim Beschleunigen, Bremsen oder Fahren mit gleichbleibender Geschwindigkeit in festgelegten Betriebszuständen. Beim Aufladen der E-Autos wurde an Positionen innerhalb und außerhalb der Fahrzeuge gemessen sowie Normal- und Schnellladepunkte berücksichtigt. Fahrzeughersteller waren nicht an der Untersuchung beteiligt. Zum Auftreten von Magnetfeldern in Elektroautos gibt es vier hauptsächliche Erkenntnisse: Die Magnetfelder in E-Autos treten räumlich sehr ungleichmäßig auf. Hohe Werte wurden vor allem im Bereich der Beine festgestellt. Kopf und Oberkörper der Menschen im Fahrzeug sind Magnetfeldern hingegen weniger stark ausgesetzt. Die Stärke der Magnetfelder verändert sich abhängig von der Fahrweise. Beim Beschleunigen und Bremsen entstehen höhere Werte als beim Fahren mit gleichmäßiger Geschwindigkeit. Die maximale Motorleistung der Elektroautos ist nicht alleine ausschlaggebend dafür, wie stark Menschen den Magnetfeldern im Fahrzeug ausgesetzt sind. Sowohl während der Fahrt als auch bei Fahrzeugstillstand können Insass*innen Magnetfeldern ausgesetzt sein, die nicht unmittelbar vom Antriebsstrang, sondern von anderen Quellen oder Funktionen stammen. Wie stark Menschen Magnetfeldern in elektrisch betriebenen Fahrzeugen ausgesetzt sind, hängt somit weniger von der elektrischen Leistung der Elektromotoren ab. Wichtiger ist der Betriebszustand, das technische Design der Fahrzeuge (Position von Batterie, Kabeln, Leistungselektronik etc. ) und die individuelle Fahrweise. Dummy mit Messsonden im Fond eines Elektroautos Höchstwerte schützen die Gesundheit Neben der Frage, wo und in welchen Situationen Magnetfelder in Elektroautos auftreten, stellt sich aus Sicht des Strahlenschutzes eine entscheidende Frage: Sind Insass*innen den Magnetfeldern in elektrisch betriebenen Fahrzeugen so stark ausgesetzt, dass unerwünschte oder gesundheitsrelevante Wirkungen im Menschen hervorgerufen werden können? Die BfS -Studie von 2025 liefert für die untersuchten Fahrzeuge klare Antworten: Zunächst wurden die in den Fahrzeugen gemessenen Magnetfeldstärken mit Referenzwerten verglichen, die in einer EU -Empfehlung von 1999 (Empfehlung des Rates vom 12. Juli 1999 zur Begrenzung der Exposition der Bevölkerung gegenüber elektromagnetischen Feldern (0 Hz – 300 Gigahertz )) aufgeführt sind. Hierbei zeigten sich in einigen Fällen Überschreitungen dieser Referenzwerte. Eine Überschreitung der Referenzwerte führt allerdings insbesondere bei räumlich sehr begrenzten Magnetfeld -Verteilungen nicht notwendigerweise zu bedenklich starken elektrischen Feldern oder Strömen im Körper. In detaillierten Computersimulationen wurden daher für die Fälle, die aus Strahlenschutzsicht besonders relevant waren, die durch die Magnetfelder hervorgerufenen elektrischen Ströme oder Felder in Körpernachbildungen bestimmt. Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. Im Detail zeigen die Ergebnisse der BfS -Studie von 2025: Alle untersuchten Elektroautos haben die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. In reinen Elektroautos ist man nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Bei einer moderaten Fahrweise werden die Referenzwerte meist im niedrigen zweistelligen Prozentbereich ausgeschöpft. Eine sportliche Fahrweise führte in mehreren Elektrofahrzeugen sowie in einem zu Vergleichszwecken untersuchten Fahrzeug mit Verbrennungsmotor zu Überschreitungen der von der EU empfohlenen Referenzwerte. Trotz der kurzfristigen Überschreitungen der Referenzwerte wurden keine Überschreitungen der empfohlenen Höchstwerte für im Körper hervorgerufene elektrische Felder festgestellt. Mit einer Ausnahme wurden die Referenzwerte in allen Fahrzeugen im Moment des Einschaltens jeweils kurzfristig überschritten – auch in dem Fahrzeug mit Verbrennungsmotor. Quelle: Pichsakul/Stock.adobe.com Empfehlungen des BfS In den kommenden Jahren ist mit einer weiter steigenden Anzahl von Elektrofahrzeugen zu rechnen. Daher sind auch bei der Elektromobilität Strahlenschutzaspekte angemessen zu berücksichtigen. Aus grundsätzlichen Strahlenschutzerwägungen sollten Verbraucher*innen den Feldern von Produkten, zu denen auch Fahrzeuge gehören, möglichst gering ausgesetzt sein. Auch wenn in der Untersuchung des BfS von 2025 keine Überschreitungen der zum Schutz der Gesundheit empfohlenen Höchstwerte festgestellt worden sind, so zeigte sich zwischen den untersuchten Fahrzeugen eine erhebliche Spannbreite. Mit einem intelligenten Fahrzeugdesign haben es die Hersteller in der Hand, lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten, damit auch eine kombinierte Einwirkung aus mehreren Quellen nicht zu einer Überschreitung empfohlener Höchstwerte führt. Hierfür sollte schon bei der Konzeption die Position der relevanten Bauteile elektrisch betriebener Fahrzeuge mitgedacht werden. Das Forschungsvorhaben des BfS "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität" zeigt, dass dies bei Kraftfahrzeugen technisch möglich ist. Es zeigen sich erhebliche Unterschiede allein aufgrund der Positionierung relevanter Bauteile. Darüber hinaus sieht das BfS Bedarf, die Normen und Regulierungen weiterzuentwickeln. Aktuelle Bewertungsverfahren decken nicht alle relevanten oder ungünstigen Fälle ab. Personen mit aktiven Körperhilfsmitteln (Herzschrittmacher, Neurostimulatoren etc. ) sollten zudem ihren behandelnden Arzt oder ihre behandelnde Ärztin fragen, ob die Funktion des bei ihnen verwendeten Medizinprodukts durch Magnetfelder beeinflusst werden kann. Forschung des BfS zur Elektromobilität Stand: 08.04.2025
Das dürfte Sie brennend interessieren. Kaminöfen bringen Wärme und Gemütlichkeit in jeden Raum. Doch Heizen mit Holz stößt erhebliche Mengen an Feinstaub und Schadstoffen aus. Werden Sie zum Ofenspezialisten und machen Sie den Berliner Ofenführerschein! Weitere Informationen Bild: Berliner Forsten Überblick zur Holzverbrennung Die Beliebtheit von Kaminöfen ist hoch. Die Energiekrise sorgt aktuell mit steigenden Gas- und Heizölpreisen sowie der Sorge um eine unzureichende Heizversorgung im Winter zu einer erhöhten Nachfrage von Kaminöfen. Weitere Informationen Bild: gioiak2 / Depositphotos.com Richtig Heizen mit Holz Der richtige Betrieb des Kaminofens ist wichtig für eine saubere und damit umweltverträgliche Verbrennung. Das kann spürbar dazu beitragen die gesundheitlichen Folgen zu minimieren. Wenn Sie mit Holz heizen, sollten Sie diese Punkte beachten. Weitere Informationen Bild: Melica / Depositphotos.com Wie wird der Schadstoffausstoß von Kaminöfen begrenzt? Die Begrenzung des Schadstoffaustoßes aus Feuerungsanlagen gewinnt zunehmend an Bedeutung und stellt eine große Herausforderung dar. Besonders mit Holz befeuerte Kleinfeuerungsanlagen tragen maßgeblich zur Feinstaubbelastung bei. Hierbei sind es vor allem die Einzelraumfeuerungsanlagen (z. B. Kaminöfen), die nur einen Raum und nicht die ganze Wohnung heizen und als Zusatzheizung oder zum Komfort betrieben werden. Weitere Informationen Messbericht Holzverbrennung (Zeitraum 2012-2014) Holzverbrennung in Öfen und Kaminen ist eine potentielle Feinstaubquelle in Berlin und Brandenburg, die zu erhöhten Feinstaubbelastungen und zur Überschreitung des Feinstaub-Tagesgrenzwertes gerade in der kalten Jahreszeit beitragen kann. Der Bericht zum Forschungsprojekt wurde 2015 veröffentlicht. Weitere Informationen Sollten Sie sich von Holzfeuerungen in der Nachbarschaft belästigt fühlen, ist es zunächst sinnvoll, ein offenes Gespräch mit dem verantwortlichen Nachbarn zu führen. Sollten Sie Hinweise haben, dass ungeeignete Brennstoffe oder sogar Müll verbrannt werden, können Sie bei Nichteinsicht und Wiederholung des verantwortlichen Nachbarn die zuständige Behörde informieren . Ansprechpartner sind das Ordnungs- oder das Umweltamt in Ihrem Bezirk .
Der Klimawandel hat in der Arktis weitreichende direkte und indirekte Auswirkungen auf die Gesundheit der indigene und nicht-indigene Bevölkerung. Die Klima- und Wetterbedingungen der nördlichen Breiten und die jüngsten dramatischen Klimaveränderungen führen zu Temperaturextremen, die sich auf die soziale und wirtschaftliche Struktur der städtischen und ländlichen Gebiete auswirken werden. Eine eingehende Analyse dieser Veränderungen sollte sich sowohl mit den spezifischen natürlichen und sozialen Merkmalen befassen als auch mit den Anliegen der indigenen Bevölkerung. Das menschliche Wohlbefinden im Kontext von Klima- und Wetterextremen lässt sich mit dem Universal Thermal Climate Index (UTCI) erfassen. Während die Lufttemperatur allein ein guter Indikator für die aktuellen und zukünftigen Wetter- und Klimabedingungen ist, kann das Wohlbefinden durch starke Winde und hohe Luftfeuchtigkeit beeinflusst werden. Gerade in Küstengebieten verschärfen sich die klimatischen Situationen im Winter durch das Zusammenspiel von Wind und Kälte. Das Projekt zielt darauf ab, die aktuellen bioklimatischen Bedingungen zu identifizieren und mittels dem UTCI zu bewerten. Der Schwerpunkt liegt auf der thermischen Belastung für den menschlichen Körper und der Bewertung der sozialen Anfälligkeit, die sich aus den rezenten extremen klimatischen Schwankungen in der Arktis ergeben. Es werden auch die positiven Folgen der globalen Klimaerwärmung und der gesellschaftliche Nutzen aus diesen Veränderungen der nördlichen Breitengrade diskutiert. Zur Bestimmung der sozialen Verwundbarkeit und der sozialen Sensibilität und Anpassungsfähigkeit in den nördlichen Breiten berechnen wir den Social Vulnerability Index (SVI). Die SVI konkretisiert die sozialen Probleme, die sich aus dem fortschreitenden Klimawandel ergeben und liefert Erkenntnisse für die Entwicklung von Anpassungsstrategien in dieser Region. Um sich in die regionalen Details des SVI zu vertiefen, wird das sozioökonomische Umfeld der Gemeinden im Norden Norwegens als Fallstudie betrachtet. Die Ergebnisse des Projekts können als nützliches Instrument zur Minimierung von Bevölkerungsverlusten und zur Gewährleistung der sozialen Sicherheit in der Arktis dienen und politischen Entscheidungsträgern eine solide wissenschaftliche Grundlage für die Prävention und Eindämmung von Klimakatastrophen bieten, was für die Menschen in den nördlichen Gebieten äußerst wichtig ist in Zeiten des Klimawandels.
Origin | Count |
---|---|
Bund | 787 |
Europa | 1 |
Land | 97 |
Wissenschaft | 2 |
Zivilgesellschaft | 5 |
Type | Count |
---|---|
Ereignis | 9 |
Förderprogramm | 446 |
Gesetzestext | 1 |
Text | 205 |
unbekannt | 222 |
License | Count |
---|---|
geschlossen | 396 |
offen | 482 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 719 |
Englisch | 305 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 7 |
Datei | 23 |
Dokument | 119 |
Keine | 528 |
Multimedia | 6 |
Unbekannt | 1 |
Webseite | 295 |
Topic | Count |
---|---|
Boden | 661 |
Lebewesen & Lebensräume | 776 |
Luft | 699 |
Mensch & Umwelt | 883 |
Wasser | 623 |
Weitere | 800 |