Salinity reduces the productivity of cucumber (Cucumis sativus L.) through osmotic and ionic effects. For given atmospheric conditions we hypothesize the existence of an optimal canopy structure at which water use efficiency is maximal and salt accumulation per unit of dry matter production is minimal. This canopy structure optimum can be predicted by integrating physiological processes over the canopy using a functional-structural plant model (FSPM). This model needs to represent the influence of osmotic stress on plant morphology and stomatal conductance, the accumulation of toxic ions and their dynamics in the different compartments of the system, and their toxic effects in the leaf. Experiments will be conducted to parameterize an extended cucumber FSPM. In in-silico experiments with the FSPM we attempt to identify which canopy structure could lead to maximum long-term water use efficiency with minimum ionic stress. The results from in-silico experiments will be evaluated by comparing different canopy structures in greenhouses. Finally, the FSPM will be used to investigate to which extent the improvement of individual mechanisms of salt tolerance like reduced sensitivity of stomatal conductance or leaf expansion can contribute to whole-plant salt tolerance.
Das Schicksal von Umweltchemikalien in hoeheren Pflanzen wird bei verschiedenen Applikationsraten in Gewaechshaus- und Freilandversuchen untersucht. Die Metaboliten werden identifiziert und erneut appliziert bis zur Identfizierung der Endprodukte des Abbaus. Diese Versuche sollen einen Hinweis auf moegliche Rueckstaende von Umwandlungsprodukten in Nahrungsmitteln geben.
Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
Mit dem Forschungsvorhaben wird das Ziel verfolgt, den Einfluss von Pflanzenpathogenen auf das Parasitierungsverhalten von Encarsia formosa bei der Weissen Fliege Trialeurodes vaporariorum zu klären. Da eine multiple Befallssituation verschiedener Pflanzenpathogene einerseits und tierischer Schaderreger andererseits in vielen Unterglas-Kulturen gegeben ist, soll die Bedeutung dieser Interaktionen für biologische Schädlingsbekämpfungsmassnahmen in diesem System exemplarisch bearbeitet werden. Durch räumliche und zeitliche Variation der Pathogeninfektionen wird sowohl die Bedeutung physikalischer Parameter (=Blattoberfläche) als auch physiologischer Parameter (=Wirtspflanzenmetabolismus) und die daraus resultierende ernährungsphysiologische Beeinflussung der Larven der Weissen Fliege auf die Parasitierungseffizienz von Encarsia formosa untersucht werden.
In den Gewächshäusern und Gärten botanischer Anlagen werden Pflanzen aus aller Welt gehegt und gepflegt. Die Einrichtungen sind Orte der Umweltbildung und der Forschung zur biologischen Vielfalt. Als lebendige Archive tragen sie wesentlich dazu bei, Artenvielfalt und genetische Vielfalt zu erhalten. In Berlin gibt es gleich drei solcher Anlagen: den Botanischen Garten und das Botanische Museum der Freien Universität Berlin, den Botanischen Volkspark Blankenfelde-Pankow und das Späth-Arboretum der Humboldt-Universität. Das Späth-Arboretum ist auch am Projekt „Urbanität und Vielfalt“ beteiligt, in dem seltene Wildpflanzen vermehrt und wieder in Berlin ausgepflanzt werden. Die Einrichtung im Süden Berlins gehört mit rund 20.000 Pflanzenarten, fast vier Millionen getrockneter Herbarbelege, einer DNA-Bank und einer Saatgutbank für Wildpflanzen zu den weltweit wichtigsten Sammlungs- und Forschungsstätten für Pflanzen, Pilze und Algen. Auf dem 43 Hektar großen Gelände finden sich 15 Gewächshäuser, eine pflanzengeografische Anlage, die die Pflanzenwelten verschiedener Erdteile nachbildet, und ein Arboretum. Eine Botanikschule unterstützt – als Kooperationseinrichtung der Senatsverwaltung für Bildung, Jugend und Familie –Berlins Schulen bei den Themen Botanik, Umweltbildung und nachhaltige Entwicklung. Die Schule bildet Lehrkräfte, Erzieherinnen und Erzieher weiter, entwickelt Unterrichtsmaterialien und bietet Schulklassen die Möglichkeit, anschaulich vor Ort zu lernen. Der Botanische Garten Berlin bildet dabei eine Schnittstelle zwischen Wissenschaft und Gesellschaft: Die Forschung, die hier in Zusammenarbeit mit Institutionen weltweit geleistet wird, liefert Wissensgrundlagen, um die Biosphäre zu schützen und nachhaltig zu nutzen. Eins dieser internationalen Projekte ist „World Flora Online“, das 2020 erstmals alle 350.000 Landpflanzenarten der Welt in einer Online-Datenbank dokumentiert hat – ein Meilenstein der globalen Biodiversitätsforschung. Das Botanische Museum wird derzeit neu konzipiert. 2023 soll es Besucherinnen und Besuchern wieder offenstehen. Botanischer Garten und Botanisches Museum Berlin Die heute denkmalgeschützte Anlage in Pankow entstand 1949 als städtischer Schulgarten auf einem ehemaligen Rieselfeld am Stadtrand. Ihre Gestaltung orientiert sich am Raster dieser Rieselfelder. Nahe des Eingangs liegen, eingefasst von vielen Stauden, Schaugewächshäuser und ein Arboretum seltener Baumarten aus Asien und Osteuropa. Die anschließenden Parzellen spiegeln die eiszeitlich geprägte Kulturlandschaft mit Äckern und Alleen wider. Die weitgehend naturbelassene Niederung um den Zingerteich bildet ein Tor zur offenen Landschaft. Auf zwei Rieselfeldparzellen werden neue Formen urbaner Landwirtschaft praktiziert, die Umweltbildung und nachhaltige Entwicklung fördern: Die eine ist einer der vier Standorte des Bauerngartens. Hobbygärtnerinnen und -gärtner können auf kreisförmigen Beeten unter Anleitung Gemüse ziehen – zertifiziert mit dem Bioland- und dem europäischen Bio-Siegel. Auf der zweiten Parzelle macht ein Weltacker anschaulich, wieviel Anbaufläche heute nötig ist, um einen Menschen zu versorgen. Botanischer Volkspark Blankenfelde-Pankow Das Arboretum wurde 1879 als Schau- und Versuchsgarten der privaten Baumschule Ludwig Späth eröffnet. Ab 1961 entwickelte die Humboldt-Universität die Anlage zum botanischen Garten weiter, der heute rund 4.000 Arten beherbergt. Neben einer großen Sammlung an Gehölzen finden sich ein Steingarten, ein Teich mit Mooranlage, ein Gewächshaus und eine systematische Abteilung, in der die Pflanzen nach ihrer natürlichen Verwandtschaft sortiert sind. Forschungsschwerpunkte sind die Vielfalt und Evolution der Pflanzen mit Schwerpunkten auf Farnpflanzen und „Schmarotzerpflanzen“, also Arten, die ihren Wasser- und Nährstoffbedarf decken, indem sie Wurzeln oder Sprosse anderer Pflanzen anzapfen. Späth-Arboretum der Humboldt-Universität zu Berlin Besuchen Sie Berlins botanische Anlagen! Lernen Sie im Botanischen Garten und Botanischen Museum Berlin aktuelle Bürgerwissenschaftsprojekte kennen, helfen Sie beim Entziffern alter Herbaretiketten oder nehmen Sie eins der vielen weiteren Angebote wahr!
Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.
Die Bedeutung der mikrobiellen Besiedlung von Wurzeloberfläche und Rhizosphäre für Stoffumsätze in Böden soll im Gewächshaus mit vier Gefäßversuchen erfasst werden. Im ersten Versuch wird die Eignung Ergosterol und Muraminsäure zur Quantifizierung von Pilz- und Bakterienbiomasse auf Wurzeloberflächen mit anderen, insbesondere mikroskopischen Methoden überprüft. Im zweiten Versuch wird der Einfluss der Pflanzenart auf die mikrobielle Besiedlung der Wurzeloberfläche untersucht. Im dritten Versuch wird ermittelt, ob die mikrobielle Biomasse eines Bodens und deren Zusammensetzung, dargestellt durch die Quotienten von Ergosterol (Biomarker für Pilze) bzw. Muraminsäure (Biomarker für Bakterien) und mikrobieller Biomasse, die mikrobielle Besiedlung von Wurzeloberflächen beeinflusst. Im vierten Versuch wird das Verhalten der rhizoplanen Organismen während des Absterbens der Wurzel beobachtet und untersucht, inwieweit es zu Interaktionen mit den Mikroorganismen der Rhizosphäre und des Gesamtbodens kommt. Dazu wird nicht nur die mikrobielle Biomasse quantifiziert, sondern auch der Übergang der Wurzelbiomasse in mikrobielle Residuen als Zwischenspeicher für Nährstoffe speziell beachtet. Es ist davon auszugehen, dass die Interaktionen zwischen Pflanze, mikrobieller Biomasse und mikrobiellen Residuen eine wichtige Funktion für die Immobilisierung und Mobilisierung von Pflanzennährstoffen haben.
Organismen können durch ihre aktive Rolle als 'Verwitterungsmotor' zur Oberflächenformung beitragen. Pflanzen und Bodenmikroorganismen sind in der Lage, Nährstoffe effizient zu nutzen und damit den Bedarf zu reduzieren, Nährstoffe aus dem Ausgangsgestein freizusetzen. Das könnte gerade bei fortgeschrittener Verwitterung hin zu feuchteren Bedingungen der Fall sein. Zusätzlich wird der Nährstoffkreislauf von höheren trophischen Ebenen, insbesondere von Herbivoren beeinflusst. Bisher ist noch nicht geklärt, wie das Klima, insbesondere der Niederschlag, mit Herbivorie gemeinsam auf Nährstoffkreisläufe und Streuabbau wirken. Unser übergeordnetes Ziel ist es, die relative Bedeutung von biotischen (Pflanzen, Mikroorganismen, Herbivore) und abiotischen Faktoren (Geologie, Klima) für Verwitterungs- und biogeochemische Prozesse zu eruieren. Dafür werden wir biologische und geochemische Prozesse wie folgt direkt verknüpfen. Zum einen untersuchen wir im Detail Prozesse an der Schnittstelle zwischen der 'grünen', der 'braunen' und der 'grauen Welt', für die wir in Phase 1 die Grundlage gelegt haben. Zum anderen werden wir eine integrierte Analyse dieser und der in Phase 2 zu erfassenden Daten vornehmen, die durch die Kooperationen eines großen interdisziplinären Konsortiums in unserem Trockenexperiment ermöglicht wird. Wir werden unseren anfänglichen Fokus auf die Rückkopplung zwischen Pflanzen, Boden und Geologie sowohl 'nach unten' als auch 'nach oben' erweitern. Im Detail konzentrieren wir uns auf a) die Nährstofflimitierung und die Nährstoffeffizienz von Pflanzen und Bodenmikroorganismen und b) den Einfluss von Herbivorie auf die Abbaubarkeit von Streu. Beide beeinflussen indirekt biogeochemische Verwitterungsprozesse. Hierzu kombinieren wir den 'Space-for-time' Ansatz mit mechanistisch ausgerichteten Feldversuchen, welche direkt die Niederschläge entlang eines klimatischen Gradienten in Chile manipulieren. Mit dieser Herangehensweise möchten wir folgende Leitfragen beantworten: Können räumliche Gradienten als Resultat von langfristigen Klimaeinflüssen auf die Erdoberfläche für die Ableitung von zeitlichen (kurz- bis mittelfristigen) Klimaveränderungen genutzt werden? Welche Prozesse ('grün' vs. 'braun' vs. 'grau') können mit einem solchen räumlichen Gradienten abgebildet werden? Diese Fragen werden wir mit Hilfe von Beobachtungen und Experimenten im Gelände und Pflanzen- und Herbivorieversuchen im Gewächshaus beantworten. Wir werden Nährstoffanalysen von Pflanzen, Boden, und Bodenmikroorganismen durchführen, die durch innovative Methoden unter Nutzung von Stabilisotopentracern ergänzt werden. Da wir uns explizit der Rolle von Organismen im Nährstoffkreislauf widmen, können wir deren potenzielle Rolle als 'Verwitterungsmotor' ableiten, welches die Säule des EarthShape-Programms darstellt. Unser Projekt untersucht zudem erstmalig in Chile den Einfluss von Klimaveränderungen auf Ökosystemprozesse basierend auf aufwändigen Geländeversuchen.
The overarching goal of our proposal is to understand the regulation of organic carbon (OC) transfor-mation across terrestrial-aquatic interfaces from soil, to lotic and lentic waters, with emphasis on ephemeral streams. These systems considerably expand the terrestrial-aquatic interface and are thus potential sites for intensive OC-transformation. Despite the different environmental conditions of ter-restrial, semi-aquatic and aquatic sites, likely major factors for the transformation of OC at all sites are the quality of the organic matter, the supply with oxygen and nutrients and the water regime. We will target the effects of (1) OC quality and priming, (2) stream sediment properties that control the advective supply of hyporheic sediments with oxygen and nutrients, and (3) the water regime. The responses of sediment associated metabolic activities, C turn-over, C-flow in the microbial food web, and the combined transformations of terrestrial and aquatic OC will be quantified and characterized in complementary laboratory and field experiments. Analogous mesocosm experiments in terrestrial soil, ephemeral and perennial streams and pond shore will be conducted in the experimental Chicken Creek catchment. This research site is ideal due to a wide but well-defined terrestrial-aquatic transition zone and due to low background concentrations of labile organic carbon. The studies will benefit from new methodologies and techniques, including development of hyporheic flow path tubes and comparative assessment of soil and stream sediment respiration with methods from soil and aquatic sciences. We will combine tracer techniques to assess advective supply of sediments, respiration measurements, greenhouse gas flux measurements, isotope labeling, and isotope natural abundance studies. Our studies will contribute to the understanding of OC mineralization and thus CO2 emissions across terrestrial and aquatic systems. A deeper knowledge of OC-transformation in the terrestrial-aquatic interface is of high relevance for the modelling of carbon flow through landscapes and for the understanding of the global C cycle.
Origin | Count |
---|---|
Bund | 909 |
Europa | 1 |
Land | 69 |
Wissenschaft | 8 |
Zivilgesellschaft | 4 |
Type | Count |
---|---|
Ereignis | 3 |
Förderprogramm | 856 |
Messwerte | 8 |
Strukturierter Datensatz | 7 |
Taxon | 22 |
Text | 42 |
Umweltprüfung | 11 |
unbekannt | 33 |
License | Count |
---|---|
geschlossen | 91 |
offen | 873 |
unbekannt | 14 |
Language | Count |
---|---|
Deutsch | 770 |
Englisch | 332 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 2 |
Datei | 7 |
Dokument | 38 |
Keine | 650 |
Unbekannt | 1 |
Webdienst | 2 |
Webseite | 290 |
Topic | Count |
---|---|
Boden | 671 |
Lebewesen & Lebensräume | 910 |
Luft | 592 |
Mensch & Umwelt | 978 |
Wasser | 587 |
Weitere | 936 |