API src

Found 877 results.

Related terms

Koordinierung der systematischen Testung (Evaluierung) von Genmaterial auf Resistenz und Werteigenschaften

a) Evaluierungsuntersuchungen, um das Genmaterial in die Arbeiten der Zuechtungsforschung und praktischen Zuchtbetriebe einbeziehen zu koennen. b) Zusammenarbeit bzw. Abstimmung mit einschlaegigen Fachinstituten zur Durchfuehrung von Freiland-, Gewaechshaus- und Laborversuchen bzw. -untersuchungen. c) Freilandversuche waehrend der Vegetationsperiode in Abhaengigkeit von der betr. Pflanzenart; Gewaechshausversuche ueber das ganze Jahr, ebenso Laboruntersuchungen; langfristig.

Nachhaltige Arten der Gewächshausproduktion und ressourceneffiziente Technologien für zukünftige Kultivierung, Analyse der Potenziale von Deep Water Culture in Bezug auf Nachhaltigkeit und Marktwirtschaftlichkeit mit begleitendem Wissenstransfer

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik, Teilprojekt B

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik, Teilprojekt C

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

Der Einfluss von Tauniederschlag auf den Wasser- und Nährstoffhaushalt der Vegetation von Stipa tenacissima dominierten Hängen unterschiedlicher Exposition im semi-ariden Südosten Spaniens

In vielen Lebensräumen ist Wasser der bedeutendste limitierende Faktor für das Wachstum und die Verbreitung der Pflanzen. Neuere Arbeiten zeigen, dass auch Arten, die nicht über spezielle Blattorgane zur Aufnahme von Wasser verfügen, auf Tau mit einer Erhöhung des Wasserpotentials und der Photosynthese sowie mit gesteigertem Wurzelwachstum reagieren. Das Ziel des Projekts ist die Evaluierung des Einflusses und die Untersuchung der Wirkungsweise von Tau auf die Vegetation von Stipa tenacissima dominierten Hängen entlang eines Niederschlags-Tauniederschlags-Transekts in SO-Spanien. An S. tenacissima und an ausgewählten annuellen Arten wird der Einfluss von Tau auf den Wasserhaushalt, die Photosynthese und die Fähigkeit der Wurzeln zur Wasseraufnahme im Freiland und im Gewächshaus bestimmt. Seine Wirkungsweise, eventuelle Aufnahmewege, Verlagerungen im Boden sowie sein Einfluss auf die Nährstoffverfügbarkeit werden untersucht. Die Bestimmung der Taumenge und -häufigkeit, verbunden mit Mikroklimamessungen, ermöglicht eine Abschätzung des Beitrags von Tau zur Wasserbilanz der untersuchten Hänge. Das Projekt wird Fragen des Wasser- und Nährstoffhaushalts der Vegetation in ariden und semi-ariden Gebieten beantworten. Dies trägt zu einem besseren Verständnis der Ökologie und der Verbreitung der Pflanzen dieser Gebiete bei, welches für die zukünftige Bewirtschaftung und Rehabilitation von degradierten Flächen in diesen Ökosystemen wichtig ist.

Poplar communication with its environment

Terpenes (=isoprenoids) are volatile organic compounds (VOCs) emitted by plants but their ecological functions are not fully understood. Poplars are strong isoprene emitters. In preceding studies we have constructed non-isoprene emitting poplars and started with their characterization. We have also constructed poplars expressing pinene synthase. We aim to study the role of isoprene and monoterpenes in herbivore and mycorrhizal interactions. In addition to wild type poplar plants (isoprene and non-monoterpene emitters) we will make use of transgenic poplar lines, that are either non-isoprene emitters or non-isoprene, but constitutive monoterpene emitters. The influence of the VOC emission on the interaction with herbivores and/or ectomycorrhizal fungi will be studied under laboratory, green house and open air conditions. Furthermore, it will be investigated how attack by herbivores affects the survival of ectomycorrhizal fungi or pathogenic fungi and vice versa, and how EM changes the VOC blend emitted by the plants and the performance of leaf feeding insects. Responses of the plant and the ectomycorrhiza will be studied on a molecular level. The results of these studies will provide important knowledge about poplar interaction and defense from herbivory.

Bereitstellung von erneuerbarem CO2 aus biogenen Festbrennstoffen mittels Oxyfuel-Verbrennung, Teilvorhaben: Entwicklung und Erprobung eines Partialkondensators zur Bereitstellung von biogenem CO2

Transformation of organic carbon in the terrestrial-aquatic interface

The overarching goal of our proposal is to understand the regulation of organic carbon (OC) transfor-mation across terrestrial-aquatic interfaces from soil, to lotic and lentic waters, with emphasis on ephemeral streams. These systems considerably expand the terrestrial-aquatic interface and are thus potential sites for intensive OC-transformation. Despite the different environmental conditions of ter-restrial, semi-aquatic and aquatic sites, likely major factors for the transformation of OC at all sites are the quality of the organic matter, the supply with oxygen and nutrients and the water regime. We will target the effects of (1) OC quality and priming, (2) stream sediment properties that control the advective supply of hyporheic sediments with oxygen and nutrients, and (3) the water regime. The responses of sediment associated metabolic activities, C turn-over, C-flow in the microbial food web, and the combined transformations of terrestrial and aquatic OC will be quantified and characterized in complementary laboratory and field experiments. Analogous mesocosm experiments in terrestrial soil, ephemeral and perennial streams and pond shore will be conducted in the experimental Chicken Creek catchment. This research site is ideal due to a wide but well-defined terrestrial-aquatic transition zone and due to low background concentrations of labile organic carbon. The studies will benefit from new methodologies and techniques, including development of hyporheic flow path tubes and comparative assessment of soil and stream sediment respiration with methods from soil and aquatic sciences. We will combine tracer techniques to assess advective supply of sediments, respiration measurements, greenhouse gas flux measurements, isotope labeling, and isotope natural abundance studies. Our studies will contribute to the understanding of OC mineralization and thus CO2 emissions across terrestrial and aquatic systems. A deeper knowledge of OC-transformation in the terrestrial-aquatic interface is of high relevance for the modelling of carbon flow through landscapes and for the understanding of the global C cycle.

Bedeutung der Mineralstoffernährung der Pflanzen für ihre Resistenz gegenüber Schadorganismen unter besonderer Berücksichtigung der Wirkungen von Silizium und Calcium auf bodenbürtige Krankheiten

Im geschützten Anbau ist mit einem verstärkten Auftreten von pilzlichen Schaderregern, insbesondere Wurzelpathogenen zu rechnen. Im geschützten Anbau am Standort Bangkok ist an der vorgesehenen Hauptkultur Tomate mit einem erhöhten Befall mit Pythium zu rechnen. In diesem Teilprojekt soll am Standort Bangkok durch einen Gewächshausversuch versucht werden, die Wirkung der Ca- und Si-Versorgung in Wechselwirkung mit der Stickstoffversorgung der Pflanzen auf die Infektion, den Infektionsverlauf von Pythium zu charakterisieren und die Wirkung auf den Ertrag der Kulturen zu quantifizieren. Parallel zu den Vegetationsversuchen soll unter kontrollierten Bedingungen in Hannover schwerpunktmäßig der Einfluß von Si und Ca auf das Pathosystem Tomate/Pythium detaillierter untersucht werden. Hierbei stehen im Mittelpunkt (i) die Quantifizierung im Wurzelapoplasten der Ca-, Si-Gehalte und -Bindungsformen und von für den Pilzbefall und die pflanzliche Reaktion auf den Pilzbefall charakteristischen Enzymaktivitäten und Metaboliten in Beziehung zu Infektion und Infektionsverlauf, (ii) die Charakterisierung des Infektionsverlaufes innerhalb des Wurzelsystems unter besonderer Berücksichtigung von Wurzelalter, lokalen Infektionsquellen und lokalem Si, und Ca-Angebot und (iii) die Charakterisierung des Leistungs- und Kompensationsvermögens des Wurzelsystems in Abhängigkeit von Intensität und Verlauf des Krankheitsbefalls. Ziel des Teilprojektes ist es, den möglichen Beitrag der Ca- und Silizium-Versorgung der Pflanzen zur Optimierung der Pflanzengesundheit am Beispiel des Pathosystems Tomate/Pythium zu erarbeiten und unter praktischen Anbaubedingungen zu überprüfen.

Soil-gas transport-processes as key factors for methane oxidation in soils

Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

1 2 3 4 586 87 88