Egypt passed a revolution and changed its political system, but many problems are still lacking a solution. Especially in the field of water the North African country has to face many challenges. Most urgent are strategies to manage the limited water resources. About 80% of the available water resources are consumed for agriculture and the rest are for domestic and industrial activities. The management of these resources is inefficient and a huge amount of fresh water is discarded. The shortage of water supply will definitely influence the economic and cultural development of Egypt. In 2010, Egypt was ranked number 8 out of 165 nations reviewed in the so-called Water Security Risk Index published by Maplecroft. The ranking of each country in the index depends mainly on four key factors, i.e. access to improved drinking water and sanitation, the availability of renewable water and the reliance on external supplies, the relationship between available water and supply demands, and the water dependency of each countrys economy. Based on this study, the situation of water in Egypt was identified as extremely risky. A number of programs and developed strategies aiming to efficiently manage the usage of water resources have been carried out in the last few years by the Egyptian Government. But all these activities, however, require the availability of trained and well-educated individuals in water technology fields. Unfortunately, the number of water science graduates are decreasing and also there are few teaching and training courses for water science offered in Egypt. However, there is still a demand for several well-structured and international programs to fill the gap and provide the Egyptian fresh graduates with the adequate and up-to-date theoretical and practical knowledge available for water technology. IWaTec is designed to fill parts of this gap.
In den Geowissenschaften beschreibt eine Topographie die Erdoberfläche. In aquatischen Systemen wird der Begriff oft synonym zum Begriff “Bathymetrie” für die Höhenlage der Gewässersohle verwendet. Die Maximalhöhe (zmax) bezeichnet die höchsten jemals erfassten Höhenlagen der Gewässersohle (bezogen auf mNHN, Tiefen sind negativ). <strong>Datenerzeugung: </strong>Die Datengenerierung erfolgt auf Basis einer umfassenden Aggregation historischer See- und Landvermessungsdatenbestände aus dem Zeitraum 1812-2024, die unterschiedliche Höhensysteme, Messmethoden und Genauigkeiten umfassen. Für jeden Rasterknoten eines Rastergrids wird anschließend eine zeitliche Punktwolke aller relevanten Messungen aufgebaut. Im Rahmen der Vermessungskampagnen erfolgt die Übertragung der vorliegenden nähesten Messpunkte auf die Rasterpunkte mittels räumlicher Interpolationsverfahren. Abschließend wird durch eine algorithmische Auswertung der Zeitreihen der höchste jemals erfasste Höhenwert identifiziert und als Z-Werte gesetzt. <strong>Produkt: </strong>Es wird ein gerastertes topographisches Modell in der 12 Seemeilen Zone des Wattenmeers (NL, DE, DK) mit einer Rasterauflösung von 10 m als GeoTIFF bereitgestellt. Es repräsentiert nicht die absoluten historischen physikalischen Maxima an jeder Rasterknotenposition, sondern den höchsten in den Vermessungsdaten erfassten Wert pro Rasterknotenposition.
In den Geowissenschaften beschreibt eine Topographie die Erdoberfläche. In aquatischen Systemen wird der Begriff oft synonym zum Begriff “Bathymetrie” für die Höhenlage der Gewässersohle verwendet. Die Maximalhöhe (zmax) bezeichnet die höchsten jemals erfassten Höhenlagen der Gewässersohle (bezogen auf mNHN, Tiefen sind negativ). <strong>Datenerzeugung: </strong>Die Datengenerierung erfolgt auf Basis einer umfassenden Aggregation historischer See- und Landvermessungsdatenbestände aus dem Zeitraum 1812-2024, die unterschiedliche Höhensysteme, Messmethoden und Genauigkeiten umfassen. Für jeden Rasterknoten eines Rastergrids wird anschließend eine zeitliche Punktwolke aller relevanten Messungen aufgebaut. Im Rahmen der Vermessungskampagnen erfolgt die Übertragung der vorliegenden nähesten Messpunkte auf die Rasterpunkte mittels räumlicher Interpolationsverfahren. Abschließend wird durch eine algorithmische Auswertung der Zeitreihen der höchste jemals erfasste Höhenwert identifiziert und als Z-Werte gesetzt. <strong>Produkt: </strong>Es wird ein gerastertes topographisches Modell in der 12 Seemeilen Zone des Wattenmeers (NL, DE, DK) mit einer Rasterauflösung von 10 m als GeoTIFF bereitgestellt. Es repräsentiert nicht die absoluten historischen physikalischen Maxima an jeder Rasterknotenposition, sondern den höchsten in den Vermessungsdaten erfassten Wert pro Rasterknotenposition.
<span><strong>Definitionen:</strong> Hydrodynamik beschreibt die Bewegung von Fluiden und die dabei wirkenden Kräfte.</span> <span><strong>Datenerzeugung:</strong> Die veröffentlichten Daten basieren auf validierten, hydronumerischen Modellsimulationen und werden von unstrukturierten Modellergebnissen auf regelmäßige Raster inter- und extrapoliert.</span> <span><strong>Produkte:</strong> Für jedes Jahr stehen für die Deutsche Bucht, das niederländische und dänische Wattenmeer 4 netCDF-Dateien im Download-Bereich zur Verfügung. Die Dateien haben folgenden Inhalt:</br> - Tidedynamik (tides): Wasserstand und tiefengemittelte Strömungsgeschwindigkeit</br> - Transport (transport): Salzgehalt, Temperatur und Schwebstoffgehalt (alle tiefengemittelt, an der Gewässersohle und an der Wasseroberfläche)</br> - Seegang (waves): signifikante Wellenhöhe, mittlere Wellenperiode, Peak Wellenperiode, Wellenperiode 1. und 2. Moment, mittlere Wellenrichtung und die Richtungsaufweitung</br> - Bodenschubspannung (shear_stress)</span> <span><strong>English:</strong> The map service TrilaWatt: Hydrodynamic (WMS) contains tidal dynamics, sea water salinity, sea water temperature, suspended sediment concentration, bed shear stress and waves on a 500m regular grid in 20-minute intervals.</span> <span><strong>Download:</strong> A download is located under references (in German: "Verweise und Downloads"). </span>
Lake Runstedt, around 30 km west of Leipzig, is a post-mining lake created by the flooding of the former Großkayna open-cast mine. After the end of the lignite mining, the pit was partially filled with industrial waste and fly ash for several decades. With high concentrations of ammonium in the sediment, oxygen consumption due to nitrification of ammonium released into the lake is a major challenge to the lake’s water quality. To ensure the oxygen supply in the hypolimnion (i.e. the bottom lake layer that is not affected by wind mixing) in summer, three aerators are operated in the lake by the Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft (LMBV). In 2023, the Freiberg University of Mining and Technology was commissioned by the BGR to carry out three measurement campaigns (end of July/beginning of August, mid-September, mid-October) on the lake using an autonomous surface vehicle (here: a catamaran-shaped robotic device) to assess the spatial effects of the aeration on lake water quality. The data set provided contains the collected three-dimensional data of water temperature, oxygen content, pH, electrical conductivity, turbidity and chlorophyll. In addition, laboratory analyses of water samples obtained with a Ruttner sampler are included. The data reflect the conditions before and after operation of the aerators. Detailed explanations can be found in the publication “Spatial heterogeneity of dissolved oxygen and sediment fluxes revealed by autonomous robotic lakewater profiling” (2025) by Röder et al. in the journal Limnology and Oceanography (http://doi.org/10.1002/lno.70174).
Definitionen: In den Geowissenschaften beschreibt eine Topographie die Erdoberfläche. In aquatischen Systemen wird der Begriff oft synonym zum Begriff “Bathymetrie” für die Höhenlage der Gewässersohle verwendet. Im Forschungsprojekt TrilaWatt bezeichnen topographische Daten die subtidale, intertidale und supratidale Höhenverteilung im Bereich der 12 Seemeilen-Zone des Wattenmeers. Datenerzeugung: Die Basis der Datenerzeugung bilden topographische Modelle aus einer umfangreichen Datenbasis von See- und Landvermessungen verschiedenster Datentypen. Diese werden mit einem datengetriebenem Simulationsmodell über räumlich-zeitliche Interpolationsverfahren zusammengelegt. Als Kompromisse zwischen der ständige morphodynamische Aktivität im Wattenmeer und der deutlich geringeren Messfrequenz werden in TrilaWatt topographische Modelle als Jahrestopographien erstellt. Produkt: Für den Zeitraum von 2015 bis einschließlich 2021 wird ein gerastertes topographisches Modell in der 12 Seemeilen Zone des Wattenmeers mit einer gerasterten Auflösung von 10 m in Raum und Zeit zum jeweiligen Gültigkeitszeitraum des 01.07. interpoliert. Das Datenprodukt wird im GeoTIFF Format bereitgestellt. Zur Einschätzung der Unschärfe des topographischen Datensatzes werden zu jedem Datenprodukt Datenquellenkarten veröffentlicht. Weiterhin werden prototypische Topographien für die Jahre 1996-2014 (NL) sowie für 2022 (NL und DE) bereitgestellt. Weitere Produkte: Min-Z/Max-Z, Morphologischer Raum und Morphologischer Drive (2015-2021). Zitat für diesen Datensatz (DOI) - Zeitraum 2015-2021: Milbradt, P., Pineda Leiva, D. F. (2024): TrilaWatt: Topographie (2015-2021) [Dataset]. Bundesanstalt für Wasserbau. https://doi.org/10.48437/366eab-3640c8 Zitat für diesen Datensatz (DOI) - Zeitraum 1996-2014, 2022: Milbradt, P., Pineda Leiva, D. F. (2025): TrilaWatt: Topographie (1996-2014, 2022) [Data set]. Bundesanstalt für Wasserbau. https://doi.org/10.48437/4baaf0-aeaf58 English: Topography describes the study of the forms and features of land surfaces. Topographic data in aquatic systems is often also referred to as bathymetry. TrilaWatt topography data merged a large number of observational data to annual topographies using a data-driven interpolation model. Data are distributed in 10m grids as GeoTIFF files within the 12 nautical mile zone of the Wadden Sea's coast line. Additional products: Min-Z/Max-Z, Bed Elevation Range and morphological Drive (2015-2021). Download A download is located under references (in German: "Verweise und Downloads").
Seit den 1930er-Jahren wurde im Raum Duisburg/Wesel der Steinkohlenbergbau auch unter dem Rheinstrom und seinen Vorländern betrieben. In Duisburg befindet sich das Bergwerk Walsum, dessen regelmäßiger Förderbetrieb im Jahr 1936 aufgenommen wurde. Die maximale Jahresförderung von ca. 3,4 Mio. t Steinkohle erbrachte die Zeche mit knapp 4.600 Beschäftigten im Jahr 1984. Als Folge des Untertagebaus traten im Bereich Walsum (Rhein-km 793 bis 798) Geländesenkungen von bis zu 9 m auf, die durch eine Anpassung der Bauwerke und durch Sohlaufhöhungen im Hauptstrom kompensiert wurden. Im Bereich der Rheinaue ist nun allerdings eine Ausuferung bereits ab mittleren Abflüssen zu beobachten. Diese lokalen Veränderungen der Abflussdynamik und des Sedimenttransportvermögens bergen die Gefahr von Anlandungen im Hauptstrom, welche die Sicherheit und Leichtigkeit des Schiffsverkehrs negativ beeinflussen können. Die Auswertung aktueller Peildaten lässt Anlandungstendenzen im Streckenbereich zwischen Walsum und Stapp erkennen. Mitte 2008 wurde, entgegen der ursprünglichen Planung, der Bergbau im Grubenfeld Walsum eingestellt und die Zeche stillgelegt. Der Beschluss zur Stilllegung war für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Anlass, Prognosen zur Stabilität der Stromsohle in dem betroffenen Rheinabschnitt zu erstellen und erforderlichenfalls geeignete Maßnahmen einzuleiten. Bereits Mitte der 1970er-Jahre hatte die WSV begonnen, die bergsenkungsbedingten Massenverluste der Stromsohle durch die Verklappung von Waschbergematerial zu kompensieren. Insgesamt wurden 13,8 Mio. t dieses Nebenprodukts der Steinkohlengewinnung im Zeitraum von 1976 bis 2008 im Stromabschnitt zwischen Rhein-km 793 und 808 eingebaut. In einigen Bereichen des Streckenabschnitts beträgt die Mächtigkeit dieser Waschbergeschichten mehrere Meter. Laboruntersuchungen belegen, dass Waschbergematerial andere Materialeigenschaften aufweist und sich in seinem Verwitterungsverhalten von natürlichem Rheinkies unterscheidet. Mobilisiertes Waschbergematerial unterliegt auf der Gewässersohle Zerfallsprozessen, mit der Tendenz, relativ schnell zwischen den deutlich härteren Kiesfraktionen zerrieben, in Suspension überführt und schließlich aus der Strecke ausgetragen zu werden. Die Untersuchungen der BAW konzentrierten sich in einem ersten Schritt auf die Ermittlung der durch die Bergsenkungen verursachten Auswirkungen auf die Morphologie der Stromsohle im Bereich von Duisburg bis Wesel. Dabei kam ein zweidimensionales Feststofftransportmodell (2D-FTM) zum Einsatz. Für diese hydromorphologischen Betrachtungen war im Vorfeld der Aufbau eines historischen Geländemodells erforderlich, welches den Vorlandzustand des Untersuchungsgebiets vor Beginn der Bergbautätigkeiten erfasst. Dieses Geländemodell wurde mit Hilfe topografischer Karten der Preußischen Landesaufnahme aus dem Jahr 1892 erstellt.
Hydraulische Beanspruchung von Gewässersohle und Ufersicherung infolge Schiffswellen Das Vorhaben steht in Bezug zu laufenden FuE-Vorhaben der Abteilung Geotechnik. So sollen Modellerweiterungen das entstehen von scher-induzierten Porenwasserdrücken (Fragestellungen des Referats G2) und das wirken von Wurzeln im Bodenmaterial (Fragestellung des Referats G4) in der numerischen Abbildung beurteilbar machen. Aufgabenstellung und Ziel Der Schiffsverkehr führt zu temporären Wasserspiegelschwankungen, die auf die Kanalsohle und die Uferbereiche in Form von induzierten Strömungskräften einwirken. Diese hydraulischen Einwirkungen sind gerade aufgrund ihres zeitlichen Verlaufs von besonderer Bedeutung für die Scherfestigkeit der Gewässersohle und damit für die Standsicherheit der Ufereinfassungen. Ziel des Forschungsvorhabens ist ein besseres Verständnis der Wechselwirkungen zwischen Grundwasserströmung und Korngerüst, die durch Schiffswellen in der Gewässersohle hervorgerufen werden. Die Gewässersohle wird dabei als poröses Medium betrachtet, das aus den Bodenkörnern, dem Korngerüst sowie dem Porenfluid besteht. Die hydraulische Durchlässigkeit (bezogen auf die Absunkgeschwindigkeit), die Steifigkeit des Korngerüstes und die Steifigkeit des Porenfluids sind entscheidende Faktoren für die Entstehung von lokalen Porenwasserüberdrücken und die sich daraus ergebenden Strömungsprozesse. Wobei die Steifigkeit des Korngerüsts im Wesentlichen durch die Menge der natürlich vorkommenden Gasblasen im Porenraum beeinflusst wird. Dieses Projekt untersucht die Interaktion zwischen den Wasserspiegelschwankungen in Oberflächengewässern und der Gewässersohle anhand von mathematisch-analytischen sowie numerischen Methoden. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Ziel ist es, eine umfassende und fundierte Beratung der Wasserstraßen- und Schifffahrtsverwaltung des Bundes sicherzustellen. Dazu ist es erforderlich, geeignete Modellierungswerkzeuge weiterzuentwickeln und deren Qualität zu sichern. Diese Analysemethoden sollten in der Lage sein, die Wechselwirkungen zwischen Strömung, Bodenverformung und Grundwasserströmung zu beschreiben. Ein vertieftes Prozessverständnis soll eine sicherheitstechnisch und wirtschaftlich zuverlässige Auslegung von Ufersicherungen unterstützen. Untersuchungsmethoden Grundlage der Untersuchungen bildet eine zeitliche, schiffsinduzierte Druckrandbedingung auf dem Gewässerbett, die durch eine lineare Approximation vereinfacht wird. Diese vereinfachte Darstellung dient als Randbedingung für eine analytische Lösung (Montenegro et al. 2015). Für eine eindimensionale Bodensäule und homogene Bodenverhältnisse liefert diese Gleichung, die aus der Druckrandbedingung resultierenden Porenwasserüberdruckverteilungen zu beliebigen Zeitpunkten. Diese analytische Lösung wird verwendet, um den Einfluss einer Wasserspiegelabsenkung auf einen kohäsionslosen Boden zu untersuchen. Hierzu wird die Porenwasserdruckverteilung am Zeitpunkt des maximalen Wellenabsunks ausgewertet. Ein Absunk von 0,6 m in 5 s wurde als charakteristischer Bugabsunk an den Wasserstraßen ermittelt. Aus den daraus resultierenden Druckverteilungen werden die entsprechenden Verteilungen des hydraulischen Gradienten und der effektiven Spannung bestimmt, um die Sohlstabilitäten für verschiedene Baugrundbedingungen zu beurteilen.
Einzelfragen des Sauerstoffhaushalts von Fliessgewaessern werden untersucht, um die Grundlagen fuer wasserwirtschaftliche Berechnungen zu verbessern. Schwerpunkte: der Einfluss der Primaerproduktion auf den Stoffhaushalt. Der Einfluss der Nitrifikation auf den Stoffhaushalt. Beteiligung der Gewaessersohle am Stoffhaushalt. Sauerstoffhaushalt von Altarmen.
Im Rahmen des Hochwasserschutzkonzeptes Nr. 5 (Verbesserung des Hochwasserschutzniveaus im Müglitztal) beabsichtigt der Betrieb Oberes Elbtal der Landestalsperrenverwaltung des Freistaates Sachsen die Errichtung eines ökologisch durchgängigen Hochwasserrückhaltebeckens (HRB). Im Osterzgebirge, ungefähr 5,0 km südlich der Ortslage Glashütte, wird dazu ein begrünter Steinschüttdamm mit Asphaltkerndichtung geplant, welcher die Biela im Hochwasserfall noch oberhalb der Mündung in die Müglitz stauen soll. Im Modellversuch sollen zwei Anlagenteile auf ihre hydraulische Leistungs- und Funktionsfähigkeit getestet werden, der Gewässerdurchlass sowie die Hochwasserentlastungsanlage (HWE). Zur Durchleitung der Biela dient ein (b x h) 4,0 x 4,5 m, mit natürlichem Sohlsubstrat versehener Durchlass, der im Hochwasserfall verschlossen werden kann. Während eines Hochwasserereignisses wird stattdessen das Wasser über eine Bypassleitung mit integrierter Gegenstromtoskammer in Dammmitte abgeführt und über ein Wehr wieder in den Gewässerdurchlass eingeleitet. Der Abfluss der Bypassleitung wird über zwei parallel angeordnete Betriebsschützen geregelt. Im Modellversuch (Teilmodell 1) wird die im Damminneren angeordnete Gegenstromtoskammer im Maßstab 1:12 nachgebildet, untersucht und optimiert. Das Teilmodell 2 ist eine im Maßstab 1:20 verkleinerte Nachbildung der geplanten HWE, einer einseitig angeströmten Hangseitenentlastung, bestehend aus dem Einlaufbauwerk, der Sammel-, Übergangs- und Schussrinne, dem räumlichen Tosbecken sowie dem Unterwasserbereich.
Origin | Count |
---|---|
Bund | 561 |
Land | 351 |
Wirtschaft | 37 |
Wissenschaft | 201 |
Type | Count |
---|---|
Daten und Messstellen | 185 |
Ereignis | 5 |
Förderprogramm | 455 |
Kartendienst | 2 |
Taxon | 3 |
Text | 165 |
Umweltprüfung | 84 |
unbekannt | 162 |
License | Count |
---|---|
geschlossen | 330 |
offen | 709 |
unbekannt | 19 |
Language | Count |
---|---|
Deutsch | 753 |
Englisch | 357 |
Resource type | Count |
---|---|
Archiv | 51 |
Bild | 38 |
Datei | 182 |
Dokument | 239 |
Keine | 463 |
Multimedia | 3 |
Unbekannt | 10 |
Webdienst | 18 |
Webseite | 212 |
Topic | Count |
---|---|
Boden | 829 |
Lebewesen und Lebensräume | 884 |
Luft | 514 |
Mensch und Umwelt | 1057 |
Wasser | 1058 |
Weitere | 1018 |