API src

Found 345 results.

Related terms

Hydromorphologische Steckbriefe der deutschen Fließgewässertypen

Die Steckbriefe beschreiben die hydromorphologischen Bedingungen für verschiedene ökologische Zustände der deutschen Fließgewässertypen. Die hydromorphologischen Bedingungen sind in Form von textlichen Beschreibungen und Fotos, tabellarischen Zusammenstellungen der Ausprägungen einzelner Parameter der ⁠ Gewässerstruktur ⁠, der Durchgängigkeit und des Wasserhaushalts sowie Habitatskizzen für jeden einzelnen ⁠ Fließgewässertyp ⁠ aufbereitet. Den Ausführungen für das Erreichen eines guten ökologischen Zustands liegen gewässerstrukturelle Orientierungswerte zu Grunde. Damit sind die hydromorphologischen Steckbriefe ein grundlegendes Werkzeug für die Planung der Renaturierung von Fließgewässern. Veröffentlicht in Texte | 41/2025.

Digital GreenTech 2 - DIWA: Digitale, vernetzte und interaktive Wasserqualitätsüberwachung, ein Konzept für autonome Frühwarnsysteme zum Gewässerschutz, Teilprojekt 5

Indikator: Eutrophierung von Flüssen durch Phosphor

Die wichtigsten Fakten An mehr als der Hälfte aller Messstellen an deutschen Flüssen werden zu hohe Phosphor-Konzentrationen gemessen und die ⁠ Gewässergüte ⁠ muss herabgestuft werden. Messstellen mit hohen Konzentrationen sind seit Beginn der 1980er Jahre um rund ein Drittel zurückgegangen. Extreme Belastungen treten nur noch selten auf. Ziel der Nachhaltigkeitsstrategie ist es, die Phosphor-Orientierungswerte spätestens 2030 in allen Gewässern einzuhalten. Dafür muss die Landwirtschaft ihre Düngepraxis verändern und besonders kleine Kläranlagen die Phosphorelimination an den Stand der Technik anpassen. Welche Bedeutung hat der Indikator? Die Gewässer Deutschlands sind mehrheitlich in keinem guten Zustand (siehe Indikatoren zum ökologischen Zustand der Flüsse , Seen und Meere ). Die Überdüngung der Gewässer (⁠ Eutrophierung ⁠) mit Phosphor ist eines der größten Probleme, weil es ein übermäßiges Wachstum von Algen und Wasserpflanzen auslöst. Sterben diese ab, werden sie von Mikroorganismen zersetzt. Dabei wird viel Sauerstoff verbraucht. Sauerstoffdefizite im Gewässer wirken sich auf Fische und andere aquatische Organismen negativ aus; in Extremsituationen kann es zu Fischsterben führen. Um die Überdüngung zu vermeiden, muss vor allem die Belastung durch Phosphor verringert werden. Der Kartendienst „Nährstoffe und Salze“ zeigt Auswertungen für ca. 250 Messstellen in deutschen Flüssen. Wie ist die Entwicklung zu bewerten? Anfang der 1980er Jahre wurden an fast 90 % aller Messstellen überhöhte Phosphorgehalte gemessen. Seit 2018 liegt der Anteil bei knapp 60 %. Betrachtet man die unterschiedlichen Güteklassen, sieht man eine weitere Verbesserung: Insgesamt ist der Anteil der stärker belasteten Gewässer zurückgegangen. Zu dieser Verbesserung haben vor allem die Einführung phosphatfreier Waschmittel und die Phosphatfällung in den größeren Kläranlagen beigetragen. Derzeit bestehen Engpässe bei der Lieferung von Fällmitteln (z.B. Aluminiumsalze), mit denen der Phosphor in Kläranlagen aus dem Abwasser entfernt wird. Stehen diese Chemikalien zur Abwasserreinigung nicht in ausreichender Menge zur Verfügung, hat dies eine Erhöhung der Phosphorkonzentrationen im Gewässer zur Folge. Nach der europäischen Wasserrahmenrichtlinie (EU-RL 2000/60/EG) müssen alle Gewässer bis 2027 einen guten ökologischen Zustand erreichen. In Deutschland haben fast zwei Drittel der Gewässer hierfür zu hohe Phosphorgehalte. Um die Einträge in Gewässer zu reduzieren, schreibt die neue Düngeverordnung vor, auf Böden mit hohen Phosphorgehalten wenig Gülle oder phosphorhaltige Mineraldünger auszubringen. In eutrophierten Gebieten können die Anforderungen verschärft werden. Ob dies ausreicht, wird ein Wirkungsmonitoring zeigen. Daneben soll die Abwasserverordnung nach einer Anpassung regeln, dass auch kleine Kläranlagen Phosphor nach dem Stand der Technik entfernen. In größeren Anlagen erfolgt dies bereits. Gemäß Ziel 6.1.a der Nachhaltigkeitsstrategie der Bundesregierung sind die Orientierungswerte für Phosphor spätestens im Jahr 2030 einzuhalten. Wie wird der Indikator berechnet? Die Bundesländer übermitteln dem Umweltbundesamt Messwerte von etwa 250 repräsentativen Messstellen. Für die Einordnung in eine Gewässergüteklasse wird der Mittelwert der Phosphor-Konzentration mit der Konzentration verglichen, die für den guten ökologischen Zustand in dem jeweiligen Gewässertyp nicht überschritten werden sollte (OGewV 2016) . Sie liegen je nach ⁠ Fließgewässertyp ⁠ zwischen 0,1 und 0,15 mg/l Phosphor (bei einem Typ 0,3 mg/l) sowie in Übergangsgewässern bei 0,045 mg/l. Der ⁠ Indikator ⁠ entspricht dem Anteil der Messstellen, die diese Orientierungswerte nicht einhalten.

Fließgewässer (AWGN)

Alle wasserwirtschaftlich relevanten Fließgewässer Baden-Württembergs sind erfasst. Insbesondere sind dies: - ständig fließende Gewässer; - Gewässer mit einer Länge von über 500 m; - Gewässer, die zur Verortung gewässerbezogener Objekten benötigt werden; - Gewässer, die Gegenstand wasserwirtschaftlicher Planung sind. Die Hierarchie im Gewässernetz wird durch die bundesweit eindeutige Gewässerkennzahl (GKZ) dargestellt. Zur Verortung von Objekten auf der Gewässergeometrie steht die Basisstationierung zur Verfügung. Dies ist eine Längenunterteilung in Kilometerstationen (Passpunkten) und beginnt immer an der Mündung (Ausnahme Rhein). Dazwischen werden Längen als Promille des Passpunktabstandes angegeben. Wenn sich die Geometrie eines Gewässers ändert, werden nur die Passpunkte verschoben, die im veränderten Bereich liegen. Dadurch bleiben alle Stationsangaben außerhalb des veränderten Bereichs unverändert. Aus der Basisstationierung ergibt sich daher nicht die Entfernung auf der Gewässergeometrie zwischen 2 Punkten! Wird diese Entfernung benötigt, kann sie mit üblichen GIS-Werkzeugen ermittelt werden. Das Gewässernetz wird in 3 Varianten bereitgestellt: - Gewässernetz (AWGN-Fluss10)als measured-shape von der Mündung bis zur Quelle (durchgehende Linie). - Gewässername, mit den lokalen Gewässernamen, soweit bekannt - Gewässerordnung gemäß Wassergesetz BW, mit Gewässerstrecken, die entsprechend dem WG (Fassung 2018) definiert sind. Die Bildung von Teilnetzen ist möglich (z.B. GeStruk, biozönotischer Gewässertyp). Die Teilnetze Wasserrahmenrichtlinie und Hochwassergefahrenkarte werden u.a. im WASSERBLICK bereitgestellt.. Aktuell sind über 19.600 Fließgewässer mit einer Gesamtlänge von rd. 45.500 km erfasst. Hiervon befinden sich rd. 400 Gewässer (rd. 5.300 km) außerhalb der Landesgrenzen. Diese wurden lediglich orientierend zur Darstellung des räumlichen Zusammenhangs in das AWGN aufgenommen. Weitergehende Informationen: "https://www.lubw.baden-wuerttemberg.de/wasser/awgn" Dieses Datenangebot wurde mit Sorgfalt erstellt und gepflegt. Dennoch können Mängel, etwa in Vollständigkeit, Richtigkeit und Aktualität, nicht gänzlich ausgeschlossen werden.

A catalog of landslide-triggered tsunamis

A comprehensive global catalog of landslide-triggered tsunamis (LTT) was compiled by reviewing tsunami and earthquake databases, catalogs, and scientific literature. This dataset is designed to investigate the relationship between tsunami heights and the triggering landslides' characteristics, including 354 documented cases from 6200 BC to 2024. It provides detailed information on landslide characteristics, triggering and preparatory factors, type of waterbody, tsunami wave height, inundation distance, and associated effects.

WRRL Seetypen

Zu den Grundlagen der biologischen Bewertung gemäß WRRL gehören das Aufstellen einer Gewässertypologie und die Ausweisung von Gewässertypen. Diese sind elementare Grundlagen für die typspezifische biologische Bewertung, die Ausweisung der Wasserkörper und das Aufstellen eines Monitoring-Netzwerkes. Aber auch die Erstellung der Bewirtschaftungspläne und damit die Maßnahmenplanung erfolgt typspezifisch. In der Ökoregion "Norddeutsches Tiefland" werden insgesamt sieben Seetypen unterschieden, darunter sechs natürliche Typen und ein Sondertyp für künstliche Seen.

Fließgewässer-Landschaften in Schleswig-Holstein

Nutzung u.a. zur Ableitung der Fließgewässertypen nach Wasserrahmenrichtlinie (WRRL)

Fischfauna 2022

Gewässer und Fischgemeinschaften Berlins Gewässerlandschaft wurde im zweiten, dem sog. Brandenburger Stadium der Weichselkaltzeit geformt, welches vor etwa 10.300 Jahren endete. Das Berliner Urstromtal ist Teil des Glogau-Baruther Urstromtals, welches sich entlang der weichselzeitlichen Endmoränen des Brandenburger Stadiums erstreckt. Die Gewässerlandschaft Berlins ist in die norddeutsche Tiefebene eingebettet und wird durch die Flüsse Spree und Havel geprägt, die zusammen mit ihren seenartigen Erweiterungen annähernd zwei Drittel der insgesamt 5.952 ha (6,67 % der Stadtfläche) umfassenden Berliner Gewässerfläche bilden. Dahme und Spree fließen von Südosten in das Berliner Urstromtal und durchfließen das Stadtgebiet von Ost nach West auf einer Länge von 16,4 km bzw. 45,1 km. Die Havel tritt von Norden in das Berliner Urstromtal ein und durchfließt es von Nord nach Süd auf 27,1 km Länge. Die seenartige Erweiterung der Berliner Unterhavel ist mit 1.175 ha Fläche das größte Gewässer der Stadt. Neben den das Stadtbild prägenden Flüssen und Kanälen liegen insgesamt 58 Seen >1 ha zumindest teilweise auf Berliner Stadtgebiet. Unter diesen größeren Seen dominieren die durchflossenen, die sog. Flussseen, von denen der Große Müggelsee mit 766 ha Wasserfläche der größte ist. Der einzige größere, überwiegend durch Grundwasser gespeiste Landsee ist der im Südwesten Berlins auf der Grenze zu Brandenburg gelegene Groß-Glienicker See mit 667 ha. Zahlenmäßig dominieren kleinere und Kleinstgewässer. Berlin verfügt über eine Vielzahl von Teichen, Weihern, Tümpeln, Abgrabungsgewässern und künstlichen Regenrückhaltebecken, von denen insgesamt 388 registriert sind. Hinzu kommen 316 Ableiter und Gräben die – zum Teil verrohrt – eine Gesamtlänge von >390 km haben. Die Bewirtschaftung und Unterhaltung dieser stehenden und fließenden Klein- und Kleinstgewässer erfolgt überwiegend durch die Stadtbezirke. Die größeren Gewässer – Fließgewässer mit einem Einzugsgebiet >10 km 2 und Seen mit einer Fläche >50 ha – sind berichtspflichtig nach Europäischer Wasserrahmenrichtlinie (WRRL). Für diese Gewässer ist im Turnus von sechs Jahren der ökologische Zustand bzw. das ökologische Potenzial an die Europäische Kommission zu melden und sind Maßnahmen zu ergreifen, einen guten ökologischen Zustand zu erreichen. Infolgedessen konzentrieren sich gegenwärtig viele Arbeiten und Untersuchungen auf dieses reduzierte Gewässernetz der berichtspflichtigen Seen und Fließgewässer Berlins. Rund 200 km der Berliner Fließgewässer und zehn Seen unterliegen der Überwachung gemäß WRRL. Ein großer Teil der Fließgewässer sind künstliche Gewässer, Kanäle und Gräben. Aufgrund der Vielzahl durchflossener Seen dominiert auch bei den natürlichen Fließgewässertypen der Typ 21: seeausflussgeprägtes Fließgewässer. Daneben entfallen substantielle Anteile auf die Fließgewässertypen 15: sandgeprägter Tieflandfluss, 14: sandgeprägter Tieflandbach und 11: organisch geprägter Bach. Kleinere Abschnitte im Mündungsbereich der Nebenflüsse sind als Typ 19: Niederungsgewässer klassifiziert und die Panke vom Verteilerbauwerk (Abzweig des Nordgrabens) bis etwa zur Pankstraße als Typ 12: kiesgeprägter Tieflandbach. Innerhalb eines Fließgewässers sind auch Typenwechsel möglich, analog zur natürlichen Längszonierung von Flüssen. So wechselt beispielsweise die Spree etwa in Höhe der Elsenbrücke (Fluss-km 22,05) den Typ vom seeausfluss- zum sandgeprägten Tieflandfluss (SenUMVK 2021). Bei den berichtspflichtigen Seen handelt es sich überwiegend um Flussseen mit großen Einzugsgebieten vom Typ 10 (geschichtet, Aufenthaltszeit des Wassers >30 Tage, Großer Wannsee und Tegeler See), 11 (ungeschichtet, Aufenthaltszeit >30 Tage, 3 Seen) und 12 (ungeschichtet, Aufenthaltszeit 3 – 30 Tage, 4 Seen). Der nicht durchflossene Groß-Glienicker Sees ist im Sommer ebenfalls stabil geschichtet, d. h. seine warme Oberflächenwasserschicht mischt sich nicht mit dem darunterliegenden kalten Tiefenwasser und ist als See vom Typ 10 klassifiziert. Im Gegensatz zu den durchflossenen Seen hat sein Wasser eine theoretische Aufenthaltszeit von sieben Jahren (SenUMVK 2021). Im gegenwärtigen morphologischen Zustand sind sich die einzelnen Fließgewässertypen allerdings deutlich ähnlicher als es die Klassifizierung vermuten lässt. Zudem lässt das reduzierte Gewässernetz der WRRL die Vielzahl der Kleingewässer unberücksichtigt. Aus diesem Grund wurde hier analog zu früheren Übersichten zur Berliner Fischfauna eine etwas abweichende, fischfaunistisch aber durchaus relevante Typisierung der Gewässer vorgenommen. Entsprechend ihrer Fläche, Morphologie, Vernetzung, Wasserversorgung und Besiedelungsmöglichkeiten für Fische wurden Fließgewässer, Kanäle, Gräben, Flussseen, Landseen und stehende Kleingewässer (<1 ha) unterschieden. Nachfolgend werden die wichtigsten Gewässertypen kurz charakterisiert. Spree, Havel und Dahme sind die drei großen, schiffbaren Fließgewässer Berlins, mit zusammen 88,6 km Lauflänge innerhalb der Stadtgrenzen. Die wichtigsten Nebenflüsse sind Fredersdorfer Mühlenfließ (3 km in Berlin), Neuenhagener Mühlenfließ (Erpe, 4,1 km), Wuhle (15,7 km), Panke (17,6 km) und das in den Tegeler See entwässernde Tegeler Fließ (11,2 km). Die Berliner Fließgewässer sind staureguliert. So werden die Wasserspiegellagen von Havel und unterer Spree durch die Staustufe Brandenburg bestimmt. Bei Niedrigwasser ist diese Gewässerfläche beinahe ausnivelliert und die Wasserspiegeldifferenz beträgt zwischen Spandau und Brandenburg nur 0,16 m (Gefälle 0,002‰). Bei Mittelwasser beträgt das Wasserspiegelgefälle bis Brandenburg 0,006‰ (0,35 m Differenz) und bei Hochwasser 0,014‰ (0,83 m). Der Mühlendamm und die Schleuse Kleinmachnow im Teltowkanal bestimmen die Wasserstände in der oberen Spree im Stadtgebiet und in der Dahme, wo die Wasserspiegellagen ähnlich ausnivelliert sind. Selbst im weiteren Verlauf der Spree bis zum Unterspreewald überwindet die Spree nur einen Gesamt-Höhenunterschied von 14 m (0,08‰). Die Stadtspree, der mittlere Abschnitt der Spree in Berlin, wird durch die Staustufe Charlottenburg reguliert. Dementsprechend gering sind die mittleren Fließgeschwindigkeiten, die in den Hauptfließgewässern <10 cm/s betragen und nur bei höheren Abflüssen im Hochwasserfall über 0,5 m/s ansteigen. In den kleineren Nebenflüssen treten lokal – insbesondere an ehemaligen Wehrstandorten – auch höhere Fließgeschwindigkeiten auf. Fischfaunistisch sind die Berliner Hauptfließgewässer dem Unterlauf der Flüsse, d. h. der Bleiregion zuzuordnen, mit karpfenartigen Fischen – insbesondere Güster, Blei, Ukelei und Plötze – als Hauptfischarten. Sie zählen zu den artenreichen Gewässertypen im Stadtgebiet, wenn auch die aktuell festgestellte durchschnittliche Fischartenzahl (16) deutliche Defizite aufzeigt. Insgesamt wurden 38 der in Berlin vorkommenden Fischarten auch in diesem Gewässertyp zumindest als Einzelexemplare nachgewiesen. Kanäle sind künstlich angelegte Verbindungsgewässer. Aus diesem Grund haben sie einen besonders gestreckten Verlauf mit wenigen Untiefen und Ausbuchtungen. Die Ufer sind vergleichsweise steil, befestigt und monoton, d. h. über lange Strecken variieren sie nur sehr wenig in ihrer Breite, Tiefe oder Gestaltung. Berlins schiffbare Kanäle haben 80,1 km Gesamtlänge. Sie sind fast ausschließlich Bundeswasserstraßen in der Verwaltung des Wasserstraßen- und Schifffahrtsamts Berlin. Die Berliner Kanäle dienen darüber hinaus in besonderem Maße als Vorflut für gereinigte Abwässer sowie für die Überläufe der Mischwasserkanalisation. So leiten beispielsweise gleich drei Klärwerke – Stahnsdorf, Ruhleben (nur April-September; soll nach Fertigstellung der UV-Desinfektionsanlage eingestellt werden) und Waßmannsdorf – im Jahr 2022 täglich rund 758.000 m 3 , über das Jahr insgesamt 277 Mio. m 3 gereinigtes Abwasser in den Teltowkanal ein (SenStadt 2022). Der Landwehrkanal nimmt insgesamt 72 Mischwasser-Einleitungen der Berliner Wasserbetriebe auf (Abgeordnetenhaus Berlin 2020), aus denen bei Starkregen, wenn die Pumpwerke das anfallende Wasser nicht mehr bewältigen können, Schmutz- und Regenwasser (Mischungsverhältnis ca. 1:9) ungereinigt in das Gewässer abfließen. Von 2015 bis 2019 erfolgten jährlich 3 bis 33 Mischwassereinleitungen, bei denen insgesamt zwischen 550.000 m³ (2015) und 3,419 Mio. m 3 Mischwasser in den Landwehrkanal gelangten (Abgeordnetenhaus Berlin 2020). Aufgrund der monotonen Gewässerstrukturen und vergleichsweise hohen Belastungen werden die Kanäle vor allem von anspruchslosen, gegenüber Belastungen toleranten Fischarten besiedelt. Im Durchschnitt handelt es sich dabei um 15 Fischarten, wobei mehr als 90 % aller Fische auf die beiden Arten Plötze und Barsch entfallen. Insgesamt wurden 25 der in Berlin vorkommenden Fischarten auch in Kanälen nachgewiesen. Mit der 1876 begonnenen und einhundert Jahre währenden Nutzung von Rieselfeldern zur Abwasseraufbereitung wurden die sukzessive zunehmenden Rieselteichflächen durch ein dichtes Netz von Zu-, Ablauf- und Verbindungsgräben versorgt. Obwohl die meisten Gräben nach Aufgabe der Rieselfeldnutzung trockenfielen und verfüllt wurden, verfügt Berlin noch immer über eine Vielzahl von Gräben. Dabei handelt es sich um kleine, kaum strukturierte, weitgehend gerade verlaufende künstliche Fließgewässer. Etwa ein Viertel der im Berliner Gewässerverzeichnis ausgewiesenen Graben-km, insbesondere in den dicht bebauten Stadtteilen, sind verrohrt und für Fische nicht nutzbar. Die meisten Gräben führen heute nur sehr wenig Wasser, mit durchschnittlichen Abflüssen von 10 – 250 l/s. In niederschlagsarmen Jahren fallen sie gelegentlich auch komplett oder in Teilbereichen trocken. Sofern der Grabenverlauf unbeschattet ist entwickeln sich dichte Pflanzenbestände (u. a. Schilf, Rohrglanzgras, Seggen), die den gesamten Abflussquerschnitt einnehmen. Deshalb sind regelmäßige Beräumung und Mahd der Pflanzen Teil der üblichen Grabenunterhaltung. Die Gräben sind u. a. Hauptlebensraum der beiden einheimischen Stichlingsarten, Dreistachliger und Zwergstichling. Sie werden im Durchschnitt von fünf Fischarten besiedelt. Dem gegenüber war die Gesamtzahl von 28 in Gräben nachgewiesenen Fischarten überraschend hoch. Flussseen sind eine charakteristische Besonderheit der norddeutschen Tieflandflüsse. Zum einen aufgrund des sehr geringen Gefälles der Flüsse und Flusstäler, zum anderen aufgrund der jungen Entstehungsgeschichte der Landschaft, bildeten sich entlang der Flussgebiete ausgedehnte seenartige Erweiterungen aus. Diese durchflossenen Seen vereinen in sich typische Stillwasser-Lebensräume und Fließgewässer-Einflüsse in den Zu- und Ablaufbereichen. Zudem sind sie über die sie durchströmenden Flüsse untereinander und mit typischen Flussstrecken und Fließgewässer-Lebensräumen verbunden. Infolgedessen beherbergen sie neben den typischen Stillgewässerfischarten auch Arten, die z. B. zum Laichen in die Flüsse einwandern sowie Flussfischarten, die den See zumindest periodisch zur Nahrungssuche nutzen. Bis auf den Tegeler See sind die großen Berliner Flussseen relativ flach mit mittleren Tiefen zwischen 2,1 m (Großer Zug) und 5,4 m (Großer Wannsee), erwärmen sich schnell und sind sehr nährstoffreich. Sie bieten damit den typischen Fischarten der Bleiregion sehr gute Aufwuchs- und Ernährungsbedingungen. Die Flussseen sind der artenreichste Berliner Gewässertyp mit durchschnittlich 21 und einer Gesamtzahl von 37 darin nachgewiesenen Fischarten. Als Landseen wurden die größeren Gewässer (>1 ha) klassifiziert, die überwiegend durch Grundwasser gespeist sind und – wenn überhaupt – nur über marginale Zu- oder Abflüsse verfügen. Im Gegensatz zu den Flussseen ist der Wasseraustausch weitaus geringer und die mittlere Aufenthaltszeit des Wassers im See beträgt mehrere Jahre bis Jahrzehnte. Neben den natürlichen Landseen ist ein substantieller Anteil künstlichen Ursprungs, wobei es sich überwiegend um ehemalige Abgrabungsgewässer zur Rohstoffgewinnung handelt. In ihrer mittleren Fischartenzahl unterscheiden sich natürliche (12) und künstliche (11) Landseen nur geringfügig, weil beide Typen ungeachtet ihrer Entstehungsgeschichte gleichermaßen anthropogen überprägt sind, z.B. durch Fischbesatz und Nutzungen im Umland. Überraschend hoch waren daher die Unterschiede im Gesamt-Arteninventar: 25 Arten in den künstlichen Landseen und 33 in den natürlichen. Typische Fischarten nährstoffreicher, sommerwarmer Standgewässer finden in den Landseen geeignete Lebensbedingungen. In dieser Kategorie wurden alle Standgewässer kleiner 1 ha zusammengefasst, ungeachtet dessen, ob sie natürlichen oder künstlichen Ursprungs sind. Analog zu den Landseen unterlagen auch diese Kleingewässer vielfältigen Einflussnahmen, die eine weitere Differenzierung hinfällig machten. Die Palette der Kleingewässer, ihrer Uferstrukturen und Umlandnutzung war besonders vielfältig und reichte vom komplett betonierten Regenrückhaltebecken, über künstliche Parkgewässer, verlandete Abgrabungsgewässer bis hin zu natürlichen Restgewässern. Dementsprechend umfangreich war das 32 Arten umfassende Spektrum der hier insgesamt nachgewiesenen Fischarten. Aufgrund ihrer geringen Größe werden die einzelnen Kleingewässer aber nur von wenigen Fischarten – im Durchschnitt fünf – besiedelt, wobei typische Stillwasserarten wie Schleie und Rotfeder weit verbreitet waren, aber auch Plötze und Hecht. Die Umsetzung von Richtlinien des Rates der Europäischen Gemeinschaften stellen z. T. sehr umfangreiche Anforderungen an die Qualität von Fischbestandsdaten und deren Erfassung. So beinhaltet beispielsweise die Richtlinie 92/43/EWG des Rates vom 21. Mai 1992 zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen (Abl. L 206), kurz “FFH-Richtlinie” , u. a. einen Anhang II “Tier- und Pflanzenarten von gemeinschaftlichem Interesse, für deren Erhaltung besondere Schutzgebiete ausgewiesen werden müssen” (zuletzt ergänzt durch Richtlinie 2006/105/EG des Rates vom 20. November 2006)). Dieser Anhang II der EG-Richtlinie listet auch vier der aktuell in Berlin vorkommenden Fischarten auf: Bitterling , Rapfen , Schlammpeitzger und Steinbeißer . Mit der Europäischen Wasserrahmenrichtlinie (EG-WRRL) vom 23. Oktober 2000 fand erstmalig die Fischfauna als biologische Qualitätskomponente für den ökologischen Zustand eines Gewässers Eingang in Europäische Rechtsverordnungen. Anhand von Arteninventar, Häufigkeit (Abundanz) und Altersstruktur der Fischfauna sowie dem Vorhandensein typspezifischer, störungsempfindlicher Fischarten soll der ökologische Zustand von Seen und Fließgewässern bewertet werden. Ziel der EG-WRRL war das Erreichen des guten ökologischen Zustands in allen Oberflächengewässern , bzw. des guten ökologischen Potentials in allen künstlichen und stark anthropogen veränderten Gewässern schon bis zum Jahr 2015. Da die ökologischen Zustände bis zum Jahr 2015 nicht erreicht wurden, wurde bereits die zweite Fristverlängerung bis zum Jahr 2027 wahrgenommen. Die Ergebnisse aus dem FFH-Monitoring und dem WRRL-Monitoring fließen in den Umweltatlas ein.

Pflanzenschutzmittel und ihre Transformationsprodukte in stehenden Kleingewässern - Einfluss von Hydrologie, Stoffeigenschaften und Flächenmanagement

Stehende Kleingewässer erfüllen vielfältige ökohydrologische Aufgaben und sind von zentraler Bedeutung für die Biodiversität im ländlichen Raum. Aufgrund ihrer Größe/Lage stehen sie in komplexer Interaktion mit ihrer Umgebung, die man bei anderen Gewässertypen so nicht findet, und sind besonders durch Pflanzenschutzmittel (PSM) gefährdet. Das Prozessverständnis für den Transport von PSM in stehenden Kleingewässer und dessen Steuergrößen sind essentiell, um ihre Funktionsfähigkeit zu erhalten. Bisher liegt nur ein Basisverständnis zum Transport von Wasser und wenigen Nährstoffen in stehenden Kleingewässer vor. Ein zeitlich/räumlich hochaufgelöstes Messprogramm ist notwendig, das auch die im Jahresverlauf vielfältigen ökohydrologischen Situationen mit den jeweiligen hydrochemischen Bedingungen erfasst, um auch die Langzeitdynamik der PSM im Gewässer zu verstehen. Es wird in diesem Projekt der Einfluss von Hydrologie, Stoffeigenschaften und Flächenmanagement auf den Eintrag und die Dynamik von PSM über 2 Jahre bei 2 stehenden Kleingewässern unter landwirtschaftlicher Praxis im Gewässer untersucht, um diese Forschungsfragen zu beantworten:1. Wie variiert die Hydrologie von stehenden Kleingewässer, die unterschiedlich an das oberflächennahe Grundwasser angeschlossen sind? 2. Werden die PSM und ihre Transformationsprodukte (TP) über einen oder mehrere Eintragspfade in das Kleingewässer transportiert? Wie teilen sich die Frachten auf die Eintragspfade auf? 3. Werden durch die physikochemischen Eigenschaften der PSM/TP sowohl die Eintragspfade als auch die zeitliche Dynamik und Konzentration im Kleingewässer bestimmt, so dass beispielsweise weniger sorptive PSM über unterirdische Pfade in verzögerten und gedämpften Pulsen (langsame Abflusskomponente) in das Kleingewässer eingetragen werden? 4. Müssen neben der aktuellen Flächennutzung auch Langzeitspeicher im Boden (frühere Anwendungen) und Sediment sowie Flächen aus der Umgebung, die über das oberflächennahe Grundwasser mit dem Kleingewässer verbunden sein können, als Quelle für die aktuellen Befunde berücksichtigt werden? Die Ergebnisse liefern wichtige Erkenntnisse, über welche Transportpfade PSM und ihre TP in stehenden Kleingewässer eingetragen werden und welche Variablen einen hohen bzw. einen geringen Einfluss auf diese Prozesse haben. Diese Erkenntnisse werden durch die Ursachenforschung, ob die PSM/TP von der umgebenden Fläche oder aus anderen Quellen stammt, ergänzt. Die saisonale Dynamik der Konzentrationen ermöglicht eine Abschätzung von Phasen maximaler (Mehrfach-) Belastungen, was für eine ökotoxikologische Bewertung von großer Bedeutung ist. Auch hier ist das Wissen über die Sensitivität der beeinflussenden Variablen essentiell. Auf Basis dieser Daten können anschließend effektive Maßnahmen implementiert werden, den für den PSM-Eintrag individuell relevanten Pfad(e) zu reduzieren.

Digital GreenTech 2 - DIWA: Digitale, vernetzte und interaktive Wasserqualitätsüberwachung, ein Konzept für autonome Frühwarnsysteme zum Gewässerschutz, Teilprojekt 6

1 2 3 4 533 34 35