<p>Seit 1881 hat die mittlere jährliche Niederschlagsmenge in Deutschland um rund 9 Prozent zugenommen. Dabei verteilt sich dieser Anstieg nicht gleichmäßig auf die Jahreszeiten. Vielmehr sind insbesondere die Winter deutlich nasser geworden, während die Niederschläge im Sommer geringfügig zurückgegangen sind.</p><p>Teilweise sehr regenreiche Jahre seit 1965</p><p>Die Zeitreihe der jährlichen Niederschläge in Deutschland (Gebietsmittel) zeigt einen leichten Anstieg, der mit einer Irrtumswahrscheinlichkeit von 5 % statistisch signifikant ist. Dieser Anstieg ist im Wesentlichen darauf zurückzuführen, dass bis etwa 1920 nur selten überdurchschnittlich niederschlagsreiche Jahre aufgetreten sind. Im Anschluss an eine Übergangsphase mit mehreren leicht überdurchschnittlich feuchten Jahren traten ab Mitte der 1960er Jahre dann auch einige sehr regenreiche Jahre auf (siehe Abb. „Mittlere jährliche Niederschlagshöhe in Deutschland 1881 bis 2024). Dies entspricht genau der Zeit, seit der die Auswirkungen des Klimawandels global deutlich zu beobachten sind. Im globalen Durchschnitt steigt mit den Temperaturen auch die <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a> von Wasser an, was in der globalen Summe zu größeren Niederschlagsmengen führt, jedoch mit regional und saisonal sehr großen Unterschieden - von Dürren bis Überschwemmungen.</p><p>Seit 2011 wurden in Deutschland einige ausgesprochen trockene Jahre beobachtet. In den Jahren 2023 und 2024 wurde jedoch überdurchschnittlich viel Niederschlag registriert. Der Niederschlagsüberschuss im Jahr 2024 resultierte vor allem aus den Monaten Februar, Mai und September. Im Mai kam es in Rheinland-Pfalz und im Saarland in Folge von Schauern und Gewittern zu Überschwemmungen. Ende Mai und Anfang Juni führten viele Flüsse in Baden-Württemberg und Bayern nach langanhaltenden Niederschlägen Hochwasser.</p><p>Noch stärker als bei den mittleren Temperaturen ist dieser Trend also nicht gleichmäßig in allen Jahreszeiten ausgeprägt. Er beruht im Wesentlichen darauf, dass die mittleren Winterniederschläge zugenommen haben. Im Winter 2023/2024 lag mit 279,7 mm Niederschlag die Abweichung zum historischen Referenzzeitraum 1881-1910 bei +131,5 mm. Frühling und Herbst zeigen ebenfalls eine leichte, aber im Gegensatz zum Winter nicht signifikante Zunahme, während die Niederschläge im Sommer geringfügig zurückgegangen sind (siehe nachfolgende Tabellen und Abbildungen).</p><p>Bemerkenswert ist aus klimatologischer Sicht, dass mit den Jahren 2023 und 2024 die Serie von sehr trockenen Jahren unterbrochen wurde. Mit dem Juni bzw. September wurden jeweils die niederschlagsreichsten 12-Monatsperioden beobachtet. Am Ende des Jahres lagen die Niederschlagsmengen wieder unter dem Durchschnitt</p><p>Mit 902 mm belegt 2024 auf der Rangliste der nassesten Jahre seit 1881 den 12. Platz (siehe Karte „Jährliche Niederschläge in Deutschland im Jahr 2024").</p><p>Bei der Betrachtung der Einzelmonate sind erhebliche Unterschiede erkennbar: Im Jahresverlauf wiesen 8 Monate überdurchschnittliche Niederschlagsmengen auf (Januar, Februar, April, Mai, Juni, Juli, September, Oktober) und 4 Monate unterdurchschnittliche Niederschläge (März, August, November, Dezember). Über das Jahr ergibt sich ein Niederschlagsüberschuss von 14 %.</p><p>Und auch regional unterscheidet sich die Niederschlagsverteilung im Jahr 2024 sehr stark: Besonders die Bundesländer im Nordwesten (Schleswig-Holstein, Niedersachsen, Rheinland-Pfalz) erreichten Platzierungen unter den zehn nassesten Jahren, während Sachsen nur auf Platz 88 von 144 Jahren landete (siehe Karte „Veränderung der jährlichen Niederschläge in Deutschland im Jahr 2024).</p><p><em>Wir danken dem </em><a href="https://www.dwd.de/DE/Home/home_node.html"><em>Deutschen Wetterdienst</em></a><em> für die Bereitstellung der Daten.</em></p>
Der Herbst 2024 war in Sachsen-Anhalt zu warm und startete im September hochsommerlich mit Temperaturen über 30 °C. Er war sonnenscheinreicher und feuchter als im Durchschnitt. Insbesondere der sonnenscheinarme November sorgte für einen schlechten Ertrag bei der Solarenergie. Die Windenergie brachten hingegen gute Erträge, ausgenommen während der ersten Novemberhälfte. Dort waren die Erträge aus Solar- und Windenergie nur gering. Die sehr warme Phase mit wiederholten Heißen Tagen von Ende August setzte sich auch im September fort. Dies führte dazu, dass der September mit einer Monatsmitteltemperatur in Sachsen-Anhalt von 16,5 °C um 2,8 K wärmer war als im Mittel der Referenzperiode von 1961 bis 1990. Auch im Vergleich zum 30-jährigen Mittel von 1991 bis 2020 war der Monat um 2,2 K zu warm. Den Höhepunkt erreichte die Hitzewelle am 04. September als verbreitet neue Monatsrekorde für den September gemessen werden konnten. Die wärmsten sachsen-anhaltischen Orte im DWD-Messnetz waren dabei Demker mit 34,5 °C und Genthin mit 34,4 °C. An den LÜSA-Messstationen in Magdeburg, Halle und Leuna konnten sogar etwas mehr als 36 °C registriert werden. Die höheren Temperaturen an diesen Stationen sind ihrer innerstädtischen Lage geschuldet und erfüllen mitunter nicht die Standards der offiziellen Wetterstationen des Deutschen Wetterdienstes (DWD). Insgesamt zeichnete sich das erste Monatsdrittel durch eine hochsommerliche Witterung aus. Verbreitet wurden sechs Tage mit mindestens 30 °C registriert, in Zeitz konnten sogar sieben solcher Tage gemessen werden. Eine weitere sommerliche Phase mit Temperaturen um 25 °C gab es zwischen dem 17. und 23. September. So konnten über den gesamten Monat verbreitet mehr als 10, in Köthen sogar 12 Sommertage (Tage mit mindestens 25 °C) gemessen werden. Darüber hinaus gab es in Wittenberg eine sogenannte Tropennacht. Dabei handelt es sich um eine Nacht, in der es nicht unter 20 °C abkühlt. Diese treten im September nur sehr selten auf. Der September brachte im Flächenmittel Sachsen-Anhalts 68,6 mm Niederschlag. Dabei setzte sich zu Beginn die trockene Phase, zusammen mit der hochsommerlichen Witterung, fort, bevor mit kühleren Temperaturen vermehrt Niederschläge fielen. Somit konnten 165,0 % im Vergleich zur Referenzperiode von 1961 bis 1990 erreicht werden, im Bezug zum 30-jährigen Klimamittel von 1991 bis 2020 wurden 138,8 % gemessen. Dabei gab es wieder große räumliche Unterschiede, so war es im Harz und im südlichen Sachsen-Anhalt sehr feucht mit beispielsweise 128,4 mm bzw. 321,0 % des Mittels von 1961 bis 1990 in Naumburg oder 89,7 mm bzw. 268,6 % in Quedlinburg. Hintergrund waren kräftige Regenfälle und Gewitter am 8. und 23. September, die binnen kurzer Zeit in diesen Bereichen über 50 mm Niederschlag brachten. Hingegen war es im äußersten Norden und Osten trockener mit 44,8 mm bzw. 101,1 % der üblichen Niederschlagsmenge in Gardelegen-Letzlingen oder 44,5 mm bzw. 104,7 % in Jessen-Naundorf. Mit 200,7 Sonnenstunden erreichte der September 2024 in Sachsen-Anhalt 139,6 % der Klimareferenzperiode 1961 bis 1990 und 127,1 % zum 30-jährigen Mittel von 1991 bis 2020. Vor allem das sehr sonnige erste Monatsdrittel war entscheidend für den sonnigen Gesamtmonat, ebenso wie die warme und sonnige Phase vom 17. bis 23. September. Das erste Oktoberdrittel startete wechselhaft und häufig wolkenverhangen. Den Rest des Monats dominierten Hochdruckwetterlagen mit viel Sonne, aber auch herbstlicher Nebel. Insgesamt blieb es dabei sehr mild, und es gab einige Tage mit mehr als 20 °C. Am wärmsten war es dabei am 25.10. mit 22,3 °C in Huy-Pabstorf gefolgt von Wittenberg mit 22,0 °C am 08.10. An der Messstation des LÜSA in Halberstadt konnten am 25.10. sogar 23,6 °C gemessen werden. Dies mündete in einen Monat mit einer Mitteltemperatur im Flächenmittel Sachsen-Anhalts von 11,3 °C. Damit war der Oktober um 1,9 K wärmer als nach der Referenzperiode von 1961 bis 1990 üblich. Im Vergleich zum 30-Jahreszeitraum von 1991 bis 2020 betrug die Abweichung 1,7 K. Abseits des sehr wechselhaften ersten Monatsdrittels präsentierte sich der Monat sehr trocken. In der Konsequenz blieb der Monat mit 37,3 mm Niederschlag zwar mit 104,8 % des Solls oberhalb des Referenz-Mittelwertes von 1961 bis 1990, aber unterhalb (86,3 %) des 30-Jahresmittels von 1991 bis 2020. Außerdem war der Niederschlag im Land sehr ungleich verteilt. So war es in der Altmark, Börde und im Harz besonders feucht mit beispielweise 66,9 mm (175,6 %) in Harzgerode oder 55,9 mm (162,0 %) in Calvörde. Im Süden und Osten des Landes blieben Niederschläge häufig deutlich hinter den langjährigen Mittelwerten zurück. So fielen in Halle-Döllnitz mit 18,8 mm Niederschlag nur 59,3 % des langjährigen Mittelwertes und in Jessen-Naundorf mit 22,5 mm nur 61,5 % der üblichen Niederschlagsmenge. Der Oktober war durch Hochdruck geprägt und entsprechend neben einigen Nebelfeldern, recht sonnenscheinreich. Dies zeigte sich mit 111,3 Sonnenstunden bzw. 106,7 % im Vergleich zur Referenzperiode von 1961 bis 1990 auch in der Statistik. In Bezug auf die Klimaperiode von 1991 bis 2020 wurden 99,5 % der üblichen Sonnenscheindauer erreicht. Die erste Hälfte des Monats November war überwiegend von Hochdruckwetter geprägt. Das bedeutet zu dieser Jahreszeit häufig trübes und relativ kühles Wetter. Die zweite Monatshälfte gestaltete sich unter Tiefdruckeinfluss dann deutlich wechselhafter aber auch milder. Der mildeste Tag war dabei der 25.11. mit beispielsweise bis zu 18,5 °C in Quedlinburg. Dies führte im Endeffekt zu einer Monatsmitteltemperatur von 5,5 °C für den November in Sachsen-Anhalt, welche um 1,0 K über dem Mittel der Referenzperiode von 1961 bis 1990 und um 0,4 K über dem Klimamittel von 1991 bis 2020 lag. Die Niederschlagsmenge im Flächenmittel Sachsen-Anhalts blieb im November mit 40,4 mm etwas hinter dem langjährigen Mittel zurück. Damit wurden im Vergleich zur Referenzperiode von 1961 bis 1990 94,2 % und im Vergleich zum Klimamittel von 1991 bis 2020 91,5 % erreicht. Dabei gab es regional größere Unterschiede. Während es im Norden und Osten des Landes häufig feuchter war als im langjährigen Mittel, war es im Süden und Westen des Landes teils deutlich zu trocken. So fielen beispielsweise in Ummendorf mit 42,0 mm Niederschlag 147,9% des Niederschlags der Referenzperiode von 1961 bis 1990, während in Zeitz mit 20,1 mm Niederschlag nur 51,1 % der üblichen Menge gefallen sind. Mit 43,5 Sonnenstunden war der November ein sehr trüber Monat und entsprechend wurden gegenüber der Klimareferenzperiode von 1961 bis 1990 lediglich 86,1 % der üblichen Sonnenscheindauer erreicht. Im Vergleich zum 30-Jahreszeitraum von 1991 bis 2020 sogar nur 77,9 %. Deutlich mehr Sonne gab es auf den Bergen, die häufig aus dem Nebel herausschauten. Entsprechend erreichte der Brocken mit 89,7 Sonnenstunden 179,3 % der Sonnenscheindauer im Vergleich zu 1961 bis 1990. Im Rückblick auf den gesamten Herbst vom 01. September bis 30. November zeigt sich ein mit 11,1 °C um 1,9 K zu warmer Zeitraum im Vergleich zur Referenzperiode von 1961 bis 1990. Auch im Vergleich zum neueren 30-Jahreszeitraum von 1991 bis 2020 war es noch um 1,4 K wärmer. Besonders der warme September und Oktober haben zu diesem milden Herbst beigetragen. So waren die ersten Septembertage noch hochsommerlich und auch im Oktober gab es noch spätsommerliche Phasen. Ein erster Wintereinbruch im November blieb hingegen aus. In den letzten drei Monaten fielen insgesamt 146,3 mm Niederschlag im Flächenmittel über Sachsen-Anhalt. Damit war der Herbst im Vergleich zur Referenzperiode von 1961 bis 1990 mit 121,8 % feuchter als gewöhnlich. Auch im Vergleich zum Klimazeitraum von 1991 bis 2020 wurden noch 107,0 % erreicht. Besonders feucht war es dabei in einem Streifen vom Harz über die Börde bis ins nordöstliche Sachsen-Anhalt. Ausschlaggebend war dabei vor allem der feuchte September. Während des Herbstes schien die Sonne in Sachsen-Anhalt 355,4 Stunden. Damit war der Herbst mit 119,0 % im Vergleich zur Referenzperiode von 1961 bis 1990 sehr sonnig, auch im Vergleich zum Klimazeitraum von 1991 bis 2020 wurden noch 109,2 % erreicht. Maßgeblich dazu beigetragen hat der sehr sonnige September, der den trüben November mehr als ausgleichen konnte. Im Sommer haben Solarenergieanlagen aufgrund des Sonnenstandes und der Tageslänge in der Regel eine größere Auslastung als Windenergieanalgen. Im Winter tritt der gegenteilige Effekt auf, sodass Windenergieanlagen eine größere Auslastung haben. Somit ergänzen sich Windenergie und Photovoltaik im Jahresgang. Der Herbst markiert dabei den Übergang zwischen den vorherrschenden Erzeugungsarten. Gerade in den Herbst- und Wintermonaten gibt es aber manchmal Phasen mit wenig Wind und Sonnenschein. Der diesjährige September startete unter Hochdruck sehr sommerlich, entsprechend hoch war an den ersten Tagen der Ertrag von Solarenergieanlagen. Eine weitere sonnenscheinreiche Phase gab es vom 18. bis 23.09., in der ebenfalls ein hoher Ertrag erreicht wurde. In den tiefdruckgeprägten Phasen um die Monatsmitte und zum Monatsende dominierte die Windkraft die Stromerzeugung der volatilen Energieträger, sodass sich die beiden Erzeugungsarten im September gut ergänzten. Im Oktober war die erste Monatshälfte überwiegend von Wolken und Tiefdruck geprägt. Entsprechend wenig Sonnenschein gab es, dafür aber wiederholt kräftigen Wind. Besonders am 10., 13. und 16.10. war dies am Ertrag zu beobachten. Der Ertrag der beiden Erneuerbaren Energien ging in den letzten Tagen des Monats deutlich zurück. Die Entwicklung von Ende Oktober setzte sich auch im November fort und verstärkte sich noch. Die trübe und windschwache Witterung erreichte ihren Höhepunkt im Zeitraum vom 04.11. bis 13.11., sodass der Ertrag aus Windkraft- und Solarenergieanlagen nur gering war. Die Solarenergie hatte auch im restlichen November nur wenig Anteil an der Stromerzeugung im Vergleich zum Mittel der Jahre 2010 bis 2019. Schließlich schien über den gesamten Monat hinweg die Sonne nur unterdurchschnittlich oft. Jedoch sorgte deutlich auflebende Tiefdrucktätigkeit ab dem 14.11. für einen sehr hohen Ertrag bei der Windkraft, sodass an mehreren Tagen Erträge von mehr als 200 % im Vergleich der Jahre von 2010 bis 2019 erzielt werden konnten. Somit wurde der sehr geringe Solarenergieertrag in der zweiten Monatshälfte ausgeglichen. Über den ganzen Herbst gesehen, lag der Ertrag bei der Windkraft mit 112,9 % deutlich über dem Mittel der Jahre von 2010 bis 2019. Der Ertrag aus der Photovoltaik blieb, vor allem wegen des trüben Novembers, mit 75,5 % deutlich unterhalb des Mittels der Jahre 2010 bis 2019. In dieser Analyse erfolgt eine ausschließliche Betrachtung der Erneuerbaren Energiequellen zur Stromerzeugung die durch meteorologische Bedingungen beeinflusst sind (volatil), also Windenergie und Photovoltaik. Als Berechnungsgrundlage der folgenden Auswertung dient die produzierte elektrische Arbeit im Tagesmittel im Gebiet Ostdeutschlands und Hamburgs (Gebiet des Übertragungsnetzbetreibers 50Hertz). Die produzierte Arbeit wurde ins Verhältnis zur installierten Leistung gesetzt und so die Auslastung berechnet. Diese Auslastung wurde für die Jahreszeit gemittelt. Darüber hinaus wurde ein 10-jähriges Mittel gebildet. Die Auslastung der betrachteten Jahreszeit des aktuellen Jahres wird ins Verhältnis zur Auslastung im 10-jährigen Mittel für diese Jahreszeit gesetzt.“ Dies Verhältnis wird im Folgenden als Ertrag bezeichnet.
The ISCD10 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISC): Climatic observations from land stations A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 26346;ALUKSNE;26406;LIEPAJA;26544;DAUGAVPILS;) (Remarks from Volume-C: XXX)
The CSDL04 TTAAii Data Designators decode as: T1 (C): Climatic data T1T2 (CS): Monthly means (surface) A1A2 (DL): Germany (The bulletin collects reports from stations: 10022;Leck;10028;Sankt Peter-Ording;10042;Schönhagen (Ostseebad);10093;Putbus;10097;Greifswalder Oie;10129;Bremerhaven;10130;Elpersbüttel;10139;Bremervörde;10142;Itzehoe;10146;Quickborn;10150;Dörnick;10152;Pelzerhaken;10156;Lübeck-Blankensee;)
The CSDL05 TTAAii Data Designators decode as: T1 (C): Climatic data T1T2 (CS): Monthly means (surface) A1A2 (DL): Germany (The bulletin collects reports from stations: 10161;Boltenhagen;10168;Goldberg;10180;Barth;10193;Ueckermünde;10210;Friesoythe-Altenoythe;10235;Soltau;10249;Boizenburg;10253;Lüchow;10261;Seehausen;10267;Kyritz;10268;Waren;10282;Feldberg/Mecklenburg;10289;Grünow;10305;Lingen;10309;Ahaus;10312;Belm;)
The CSDL01 TTAAii Data Designators decode as: T1 (C): Climatic data T1T2 (CS): Monthly means (surface) A1A2 (DL): Germany (The bulletin collects reports from stations: 10015;Helgoland;10020;List auf Sylt;10035;Schleswig;10055;Fehmarn;10147;Hamburg-Fuhlsbüttel;10162;Schwerin;10184;Greifswald;10200;Emden;10224;Bremen;10270;Neuruppin;10338;Hannover;10361;Magdeburg;10393;Lindenberg;10400;Düsseldorf;10469;Leipzig/Halle;10488;Dresden-Klotzsche;10506;Nürburg-Barweiler;10548;Meiningen;10637;Frankfurt/Main;10685;Hof;10738;Stuttgart-Echterdingen;10763;Nürnberg;10788;Straubing;10852;Augsburg;10946;Kempten;)
The CSDL09 TTAAii Data Designators decode as: T1 (C): Climatic data T1T2 (CS): Monthly means (surface) A1A2 (DL): Germany (The bulletin collects reports from stations: 10756;Feuchtwangen-Heilbronn;10761;Weißenburg;10765;Roth;10777;Gelbelsee;10782;Waldmünchen;10796;Zwiesel;10803;Freiburg;10818;Klippeneck;10827;Meßstetten;10840;Ulm-Mähringen;10850;Harburg;10863;Weihenstephan-Dürnast;10865;München-Stadt;10872;Gottfrieding;10875;Mühldorf;10945;Leutkirch-Herlazhofen;10963;Garmisch-Partenkirchen;10982;Chieming;)
The ISCD04 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISC): Climatic observations from land stations A2 (D): 90°E - 0° northern hemisphere (The bulletin collects reports from stations: 10022;Leck;10028;Sankt Peter-Ording;10033;Glücksburg-Meierwik;10037;Schleswig-Jagel;10038;Hohn;10042;Schönhagen (Ostseebad);10067;Marienleuchte;10093;Putbus;10097;Greifswalder Oie;10126;Wittmundhafen;10129;Bremerhaven;10130;Elpersbüttel;10136;Nordholz (Flugplatz);10139;Bremervörde;10142;Itzehoe;10146;Quickborn;10150;Dörnick;10152;Pelzerhaken;10156;Lübeck-Blankensee;)
The CSDL07 TTAAii Data Designators decode as: T1 (C): Climatic data T1T2 (CS): Monthly means (surface) A1A2 (DL): Germany (The bulletin collects reports from stations: 10454;Wernigerode;10458;Harzgerode;10460;Artern;10466;Halle-Kröllwitz;10471;Leipzig-Holzhausen;10474;Wittenberg;10480;Oschatz;10490;Doberlug-Kirchhain;10495;Hoyerswerda;10519;Bonn-Roleber;10520;Andernach;10526;Marienberg, Bad;10534;Hoherodskopf/Vogelsberg;10537;Neu-Ulrichstein;10540;Eisenach;10542;Hersfeld, Bad;10552;Schmücke;10557;Neuhaus am Rennweg;)
Die genaue Vorhersage von Gewittern ist sowohl für die Wissenschaft als auch für die Öffentlichkeit ein wichtiges Anliegen, da konvektive Ereignisse im Sommer zu den größten Naturgefahren in unseren Breiten gehören. Um die Entstehungsprozesse von Gewittern genauer zu verstehen, ist eine Untersuchung von Konvektion auf einer hoch auflösenden Skala nötig. Nur damit kann man den heutigen Anforderungen an die Vorhersage (in Bezug auf Zeit, Raum und Intensität) gerecht werden. Zu diesem Zweck wird im nächsten Jahr im Rahmen von zwei internationalen Projekten (COPS und MAP D-PHASE) im Süden von Deutschland eine groß angelegte Messkampagne durchgeführt. Das Hauptziel dieser Kampagne ist die Erstellung eines hochwertigen Datensatzes für die Untersuchung konvektiver Prozesse, von der Auslösung von Konvektion über die Wolken- und Niederschlagsbildung bis hin zur Untersuchung von Wolkenchemie und Hydrometeoren. Damit sollen meteorologische (und hydrologische) Vorhersagen für konvektive Ereignisse verbessert werden. Sowohl bei COPS (Convective and Orographically-induced Precipitation Study; Teil des Priority Program SSP 1167 der Deutschen Forschungsgemeinschaft) als auch bei MAP D-PHASE (Mesoscale Alpine Program Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region, ein von der Welt-Meteorologischen Organisation gefördertes Projekt) ist das Institut für Meteorologie und Geophysik in der Planungsphase vertreten. Im Rahmen des vorgeschlagenen Projektes soll die Messkampagne durch den Einsatz eines eigenen Meso-Messnetzes und Personal unterstützt werden, womit ein wichtiger Beitrag zu dem einmaligen Datensatz, der durch den Einsatz verschiedenster Messsysteme (Bodenstationen, Dopplerradar, Lidar, Satelliten, Flugzeuge, Radiosonden, ...) zu Stande kommt, geleistet wird. Mit Hilfe der Daten aus der Feldkampagne soll im Zuge des Projektes das Analyseverfahren VERA, das im Rahmen von FWF-Projekten am Institut entwickelt worden ist, einerseits für das Nowcasting von Gewittern, andererseits zur genaueren Niederschlagsanalyse, weiterentwickelt werden. Für beide Entwicklungsschritte wird dem Fingerprint-Ansatz, mit dem Zusatzinformation für das Downscaling meteorologischer Felder in die VERA-Analyse implementiert werden kann, eine wichtige Rolle zukommen. Dieser Ansatz wird für 3 Dimensionen, mehrere Fingerprints und höhere Auflösungen (bis 1km Gitterdistanz) erweitert. Mittels des Datensatzes werden neue Fingerprints entwickelt, die dazu beitragen werden, die Analysegenauigkeit für den Niederschlag und die Vorhersagbarkeit von Gewittern in Echtzeit mit Routinedaten zu verbessern. Das fertig entwickelte Analyseverfahren soll dann in einem weiteren Schritt zur Echtzeit-Validierung von hoch auflösenden Wettermodellen verwendet werden, wobei ein neuer Ansatz des Vergleiches zum Tragen kommt. Auch dadurch wird ein Beitrag zur besseren Vorhersagbarkeit von Gewittern geleistet.
| Origin | Count |
|---|---|
| Bund | 93 |
| Land | 52 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 2 |
| Förderprogramm | 49 |
| Text | 40 |
| unbekannt | 34 |
| License | Count |
|---|---|
| geschlossen | 44 |
| offen | 63 |
| unbekannt | 19 |
| Language | Count |
|---|---|
| Deutsch | 99 |
| Englisch | 41 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 3 |
| Dokument | 18 |
| Keine | 63 |
| Webseite | 50 |
| Topic | Count |
|---|---|
| Boden | 89 |
| Lebewesen und Lebensräume | 109 |
| Luft | 126 |
| Mensch und Umwelt | 125 |
| Wasser | 89 |
| Weitere | 122 |