Das Qualitätskriterium für die Müllverbrennung, bzw. für die Ablagerung der Schlacke aus der Thermischen Abfallbehandlung ist der Glühverlust. Im FG Abfalltechnik besteht die begründete Vermutung, dass die Müllverbrennung verändert werden kann, wenn als Qualitätskriterium für eine Ablagerung der Schlacke nicht mehr der Glühverlust verwendet wird, sondern die für die mechanisch-biologisch behandelten Abfälle zu Grunde gelegten Größen Atmungsaktivität und Gasbildungsrate herangezogen werden und dabei in jedem Fall immer noch eine ausreichende Inertisierung erreicht wird. Um dies zu untersuchen soll die in die Müllverbrennung eingesetzte Abfallmenge durch Kurzverbrennungen vergrößert werden. Eine Kurzverbrennung kann durch die Verstärkung der Feuerraumbelastung, sowie die Verkürzung die Verweilzeit des Abfalls im Feuerraum erreicht werden. Den Zuordnungskriterien für Deponien für mechanisch-biologisch vorbehandelten Abfälle liegt der Ansatz zugrunde, dass beim biologischen Teilprozess der MBA der biologisch abbaubare Kohlenstoff weitestgehend abgebaut wird, so dass sich der verbleibende Abfall bei der Ablagerung auf einer Deponie trotz des Vorhandenseins von kohlenstoffhaltigen Bestandteilen inert verhält. Wenn bei der Verbrennung in Müllverbrennungsanlagen der biologisch abbaubare Kohlenstoffanteil als leicht flüchtiger Anteil zuerst und schnell abgebaut wird, sollte trotz des oben beschriebenen erhöhten Mülldurchsatzes (Kurzverbrennung), die Atmungsaktivität und die Gasbildungsrate für die Schlacke, eingehalten werden können. Es muss überprüft werden, ob der bei der Kurzverbrennung verbleibende fixe Kohlenstoff biologisch nicht abbaubar ist und dadurch die Atmungsaktivität und die Gasbildungsrate nicht erhöht. Die Auswirkungen der Kurzverbrennung auf den Ausbrand sollen in Versuchen in der Technikumsverbrennungsanlage des FG Abfalltechnik durchgeführt werden. Die Kurzverbrennungen sollen durch zum einen die Erhöhung der Rostbelastung und zum anderen die Reduzierung der Verweilzeit umgesetzt werden. Zur Beurteilung des Ausbrandes wird von den Schlacken die Atmungsaktivität und die Gasbildungsrate und zum Vergleich der Glühverlust bestimmt. Die bei den Versuchen gewonnenen Ergebnisse sollen zeigen, dass eine Erhöhung der Mülldurchsatzleistung erreicht und dennoch ein ausreichender Ausbrand unter den Gesichtspunkten der Atmungsaktivität und der Gasbildungsrate gewährleistet werden kann. Unter diesen Bedingungen könnten die Durchsätze in den Müllverbrennungsanlagen vergrößert werden und dadurch eine Möglichkeit, das ab dem 01.06.2005 erwartete Kapazitätsdefizit an Abfallbehandlungsanlagen zu vermindern oder gar auszugleichen, gegeben werden.
Fuer den Deponie-Eingangsbereich soll ein Probenahmesystem entwickelt werden, das aus heterogenen Abfallfrachten eine Mischprobe im Sinne einer gezielten Stichprobe nehmen soll. Aus dieser Mischprobe soll nach Probenaufbereitung der Gluehverlust, die Fluegelscherfestigkeit, elektrische Leitfaehigkeit und der pH-Wert bestimmt werden,um die Deponie-Zuordnungskriterien zu ueberpruefen. Der Zeitraum fuer Probenahme, -aufbereitung und -analytik soll im Sinne einer Schnellanalyse 15 Minuten nicht ueberschreiten.
In structured soils, the interaction of percolating water and reactive solutes with the soil matrix is mostly restricted to the surfaces of preferential flow paths. Flow paths, i.e., macropores, are formed by worm burrows, decayed root channels, cracks, and inter-aggregate spaces. While biopores are covered by earthworm casts and mucilage or by root residues, aggregates and cracks are often coated by soil organic matter (SOM), oxides, and clay minerals especially in the clay illuviation horizons of Luvisols. The SOM as well as the clay mineral composition and concentration strongly determine the wettability and sorption capacity of the coatings and thus control water and solute movement as well as the mass exchange between the preferential flow paths and the soil matrix. The objective of this proposal is the quantitative description of the small-scale distribution of physicochemical properties of intact structural surfaces and flow path surfaces and of their distribution in the soil volume. Samples of Bt horizons of Luvisols from Loess will be compared with those from glacial till. At intact structural surfaces prepared from soil clods, the spatial distribution (mm-scale) of SOM and clay mineral composition will be characterized with DRIFT (Diffuse reflectance infrared Fourier transform) spectroscopy using a self-developed mapping technique. For samples manually separated from coated surfaces and biopore walls, the contents of organic carbon (Corg) and the cation exchange capacity (CEC) will be analyzed and related to the intensities of specific signals in DRIFT spectra using Partial Least Square Regression (PLSR) analysis. The signal intensities of the DRIFT mapping spectra will be used to quantify the spatial distribution of Corg and CEC at these structural surfaces. The DRIFT mapping data will also be used for qualitatively characterizing the small scale distribution of the recalcitrance, humification, and microbial activity of the SOM from structural surfaces. The clay mineral composition of defined surface regions will be characterized by combining DRIFT spectroscopic with X-ray diffractometric analysis of manually separated samples. Subsequently, the spatial distribution of the clay mineral composition at structural surfaces will be determined from the intensities of clay mineral-specific signals in the DRIFT mapping spectra and exemplarily compared to scanning electron microscopic and infrared microscopic analysis of thin sections and thin polished micro-sections. The three-dimensional spatial distribution of the total structural surfaces in the volume of the Bt horizons will be quantified using X-ray computed tomography (CT) analysis of soil cores. The active preferential flow paths will be visualized and quantified by field tracer experiments. These CT and tracer data will be used to transfer the properties of the structural surfaces characterized by DRIFT mapping onto the active preferential flow paths in the Bt horizons.
The sampling area is located east (E-domain) and west (W-domain) of the Münchberg gneiss massif, NE Bavaria. Germany. Major and trace element compositions and Sr, Nd, and Pb isotope composition of a selected subset of Ordovician samples and post- Devonian samples of mafic igneous rocks are documented in the Table 1 'E-domain'. Sr, Nd, and Pb isotope composition of selected mafic igneous rocks from the W-domain of Ordovicician, Silurian, and Devonian age are documented together with the previously analysed Rb-Sr, Sm-Nd, U-Th-Pb concentrations (Höhn et. al., 2018, doi:10.1007/s00531-017-1497-2) in the Table 2 'W-domain'.
This dataset contains measurements of the top 50cm of sediment collected between 2021 and 2023 as part of the project sea4soCiety. Sampling took place in three locations each on the North Sea and Baltic Sea coast of Germany, the coasts of peninsular Malaysia and the Caribbean coast of Colombia. To quantify the storage capacity of blue carbon in coastal vegetated ecosystems (mangrove forests, saltmarsh, and seagrass meadows) and unvegetated marine sediments in each location and ecosystem five to nine 50 cm deep sediment cores were collected using a peat sampler (5.2 cm diameter, 50 cm length, Royal Eijkelkamp). Sediment cores were split visually according to visible physicochemical layers and each layer was thoroughly homogenized. Sub-samples for organic matter analyses were frozen at -20°C prior to freeze-drying. Freeze-dried material was pulverized with a ball mill (LLC Planetary Micro Mill PULVERISETTE 7 premium line, FRITSCH) at 500 rpm for 3 min. To determine the organic matter content (containing organic carbon) 3 g freeze-dried and pulverized sediment was stepwise combusted for 4h at 180°C, 300°C, 400°C and 500°C in a muffle oven (M110, Heraeus).
In the project "Geochemistry and geochronology of the Heldburg dyke swarm, Central European Volcanic Province" we conducted geochemical and geochronological investigations on mafic dykes and former magma chambers of the Heldburg dyke swarm. The latter is part of the Central European Volcanic Province and positioned in the South of Thuringia and the North of Bavaria (Germany). It consists of several hundred mafic NNE-SSW striking dykes with an usual thickness of < 1m and few former magma chambers. All of these have an atypical position within the Central European Volcanic Province located away from Hercynian massifs and major rift axes and were hitherto poorly investigated. In general, 10 different locations of the Heldburg dyke swarm were sampled for whole-rock analyses and 4 different locations were chosen for determining their apatite and zircon ages. The fieldwork was conducted between March 2022 and December 2023. The analytical work was done between June 2022 and April 2024 at the Department of Geodynamics and Geomaterials Research, University of Würzburg (samples preparation, X-ray fluorescence), at the GeoZentrum Nordbayern, University of Erlangen (trace element contents, LA-ICP-MS) and at FIERCE (Frankfurt Isotope & Element Research Center), Goethe University Frankfurt (apatite and zircon ages, LA-ICP-MS). Here, we present the full dataset of 55 whole-rock chemical analyses (X-ray fluorescence, LA-ICP-MS) from ten locations of the Heldburg dyke swarm.
Data presented here were collected between January 2022 to November 2022 within the research unit DynaCom (Spatial community ecology in highly dynamic landscapes: From island biogeography to metaecosystems) of the Universities of Oldenburg, Göttingen, and Münster, the iDiv Leipzig and the Nationalpark Niedersächsisches Wattenmeer. Experimental islands and saltmarsh enclosed plots were created in the back barrier tidal flat and in the saltmarsh zone of the island of Spiekeroog. Sediment samples for the determination of pH, water content and loss on ignition were taken bi-/monthly in surface sediments (0-3 cm depth) from the experimental plots. Samples were stored dark and cool (8°C) until measurement. Samples were measured in the laboratory within two months after sampling. Water content (w, [-]) was determined by first weighing the fresh sample (mf; ~ 3-7 g) in pre-weighed aluminium trays and than placed in the drying chamber at 105 °C for 12 hours. After placing samples in the exsiccator for 60 min., samples were re-weight to determine dry weight (md). Water content was calculated using w = (mf - md) / md . Afterwards, samples were placed in the muffle furnace for 2 hours at 430 °C within their aluminium trays, and placed again in the exsiccator for 60 min. Samples were re-weighed to determine the new dry weight (mgl) to calculate loss on ignition (LOI, [%]) using LOI = ((md – mgl) / md ) * 100 . Values of pH were measured according to DIN ISO 10390. Therefore, soil samples were weighed in pre-weighed Falcon™ 50 mL conical centrifuge tubes. Sediment samples were homogenized using a pestle. Ultrapure water was used to measure pH directly within the tubes using a HQ40D digital two channel multi meter and an Intellical PHC101 field low maintenance gel filled pH electrode (Hach Lange GmbH, Germany). The pH electrode was calibrated before measurement using singlet pH buffer sets (pH 4.01, 7.00, 10.01) for single use (Hach Lange GmbH, Germany). Post-processing of measured values were done using MATLAB (R2018a). Quality control was performed by (a) visually checks, and hence (b) the classification into quality control flags using quality check algorithms.
Origin | Count |
---|---|
Bund | 58 |
Land | 36 |
Wissenschaft | 30 |
Type | Count |
---|---|
Chemische Verbindung | 2 |
Förderprogramm | 52 |
Gesetzestext | 1 |
Messwerte | 33 |
Strukturierter Datensatz | 29 |
Text | 4 |
unbekannt | 27 |
License | Count |
---|---|
geschlossen | 35 |
offen | 87 |
Language | Count |
---|---|
Deutsch | 89 |
Englisch | 35 |
Resource type | Count |
---|---|
Archiv | 7 |
Datei | 26 |
Dokument | 2 |
Keine | 73 |
Webseite | 19 |
Topic | Count |
---|---|
Boden | 94 |
Lebewesen & Lebensräume | 98 |
Luft | 63 |
Mensch & Umwelt | 122 |
Wasser | 83 |
Weitere | 122 |