Im Stadtgebiet von Mannheim werden mit einem High-Volume-Air-Sampler Luftproben mit einem Glasfaser/PU-Schaumfilter entnommen. Die Proben werden extrahiert und im Ames-Test sowie im HGPRT-Rest (CHO-Zellen) auf ihre mutagene Wirksamkeit hin untersucht. Die Daten werden mit dem Immissions- und dem Emissionskataster fuer die Stadt Mannheim korreliert.
Aktion Glasfaser - Ausbaugebiete Breitband im Kreisgebiet Leer
Im Zuge der Energiewende findet ein Übergang von wenigen Kraftwerken mit gleichmäßiger Energieerzeugung hin zu zahlreichen Kraftwerken mit variabler Energieerzeugung. Dieser Wandel stellt neue Herausforderungen an die Netzregulierung und -überwachung. Im Verbundvorhaben 'TrafoMOF' wird aus diesem Grund ein faseroptischer Gassensor auf Basis von Metal Organic Frameworks (kurz: MOFs) entwickelt. Zielanwendung für diesen Sensor ist die 'Dissolved Gas Analysis' (kurz: DGA) in Isoliermedien von Hochspannungsanlagen. Die Alterung der Isoliermedien ist die Hauptursache für Ausfälle von Hochspannungsanlagen. Durch die Detektion von Zersetzungsprodukten der Isoliermedien kann eine Aussage über den Fortschritt der Alterung getroffen und damit die Betriebsfähigkeit der Hochspannungsanlage beurteilt werden. Im Fokus der Analysen stehen die Zersetzungsprodukte Methan, Ethan, Ethen, Ethin, Wasserstoff, Methanol, Kohlendioxid und die Stoffgruppe der Furane. Durch den Einsatz MOFs ist es möglich sensorische Dünnschichten zu erzeugen, die hochgradig selektiv auf jeweils eines der zu analysierenden Zersetzungsprodukte ansprechen. Bei den MOFs handelt es sich um eine vielfältige Gruppe mikroporöser Stoffe, die andere Moleküle in ihre Mikroporen einlagern. Hierdurch ändern sich die Stoffeigenschaften der MOFs, was genutzt wird, um die Lichtführungseigenschaften von Glasfasern zu modulieren. Diese Sensortechnik erreicht einen neuen Stand der Technik im Feld der Sensorik für Hochspannungsanlagen. Durch die generierten Messergebnisse werden neue Möglichkeiten für Netzregulierung und -überwachung geschaffen.
Im Zuge der Energiewende findet ein Übergang von wenigen Kraftwerken mit gleichmäßiger Energieerzeugung hin zu zahlreichen Kraftwerken mit variabler Energieerzeugung. Dieser Wandel stellt neue Herausforderungen an die Netzregulierung und -überwachung. Im Verbundvorhaben 'TrafoMOF' wird aus diesem Grund ein faseroptischer Gassensor auf Basis von Metal Organic Frameworks (kurz: MOFs) entwickelt. Zielanwendung für diesen Sensor ist die 'Dissolved Gas Analysis' (kurz: DGA) in Isoliermedien von Hochspannungsanlagen. Die Alterung der Isoliermedien ist die Hauptursache für Ausfälle von Hochspannungsanlagen. Durch die Detektion von Zersetzungsprodukten der Isoliermedien kann eine Aussage über den Fortschritt der Alterung getroffen und damit die Betriebsfähigkeit der Hochspannungsanlage beurteilt werden. Im Fokus der Analysen stehen die Zersetzungsprodukte Methan, Ethan, Ethen, Ethin, Wasserstoff, Methanol, Kohlendioxid und die Stoffgruppe der Furane. Durch den Einsatz MOFs ist es möglich sensorische Dünnschichten zu erzeugen, die hochgradig selektiv auf jeweils eines der zu analysierenden Zersetzungsprodukte ansprechen. Bei den MOFs handelt es sich um eine vielfältige Gruppe mikroporöser Stoffe, die andere Moleküle in ihre Mikroporen einlagern. Hierdurch ändern sich die Stoffeigenschaften der MOFs, was genutzt wird, um die Lichtführungseigenschaften von Glasfasern zu modulieren. Diese Sensortechnik erreicht einen neuen Stand der Technik im Feld der Sensorik für Hochspannungsanlagen. Durch die generierten Messergebnisse werden neue Möglichkeiten für Netzregulierung und -überwachung geschaffen.
Im Zuge der Energiewende findet ein Übergang von wenigen Kraftwerken mit gleichmäßiger Energieerzeugung hin zu zahlreichen Kraftwerken mit variabler Energieerzeugung. Dieser Wandel stellt neue Herausforderungen an die Netzregulierung und -überwachung. Im Verbundvorhaben 'TrafoMOF' wird aus diesem Grund ein faseroptischer Gassensor auf Basis von Metal Organic Frameworks (kurz: MOFs) entwickelt. Zielanwendung für diesen Sensor ist die 'Dissolved Gas Analysis' (kurz: DGA) in Isoliermedien von Hochspannungsanlagen. Die Alterung der Isoliermedien ist die Hauptursache für Ausfälle von Hochspannungsanlagen. Durch die Detektion von Zersetzungsprodukten der Isoliermedien kann eine Aussage über den Fortschritt der Alterung getroffen und damit die Betriebsfähigkeit der Hochspannungsanlage beurteilt werden. Im Fokus der Analysen stehen die Zersetzungsprodukte Methan, Ethan, Ethen, Ethin, Wasserstoff, Methanol, Kohlendioxid und die Stoffgruppe der Furane. Durch den Einsatz MOFs ist es möglich sensorische Dünnschichten zu erzeugen, die hochgradig selektiv auf jeweils eines der zu analysierenden Zersetzungsprodukte ansprechen. Bei den MOFs handelt es sich um eine vielfältige Gruppe mikroporöser Stoffe, die andere Moleküle in ihre Mikroporen einlagern. Hierdurch ändern sich die Stoffeigenschaften der MOFs, was genutzt wird, um die Lichtführungseigenschaften von Glasfasern zu modulieren. Diese Sensortechnik erreicht einen neuen Stand der Technik im Feld der Sensorik für Hochspannungsanlagen. Durch die generierten Messergebnisse werden neue Möglichkeiten für Netzregulierung und -überwachung geschaffen.
Im Zuge der Energiewende findet ein Übergang von wenigen Kraftwerken mit gleichmäßiger Energieerzeugung hin zu zahlreichen Kraftwerken mit variabler Energieerzeugung. Dieser Wandel stellt neue Herausforderungen an die Netzregulierung und -überwachung. Im Verbundvorhaben 'TrafoMOF' wird aus diesem Grund ein faseroptischer Gassensor auf Basis von Metal Organic Frameworks (kurz: MOFs) entwickelt. Zielanwendung für diesen Sensor ist die 'Dissolved Gas Analysis' (kurz: DGA) in Isoliermedien von Hochspannungsanlagen. Die Alterung der Isoliermedien ist die Hauptursache für Ausfälle von Hochspannungsanlagen. Durch die Detektion von Zersetzungsprodukten der Isoliermedien kann eine Aussage über den Fortschritt der Alterung getroffen und damit die Betriebsfähigkeit der Hochspannungsanlage beurteilt werden. Im Fokus der Analysen stehen die Zersetzungsprodukte Methan, Ethan, Ethen, Ethin, Wasserstoff, Methanol, Kohlendioxid und die Stoffgruppe der Furane. Durch den Einsatz MOFs ist es möglich sensorische Dünnschichten zu erzeugen, die hochgradig selektiv auf jeweils eines der zu analysierenden Zersetzungsprodukte ansprechen. Bei den MOFs handelt es sich um eine vielfältige Gruppe mikroporöser Stoffe, die andere Moleküle in ihre Mikroporen einlagern. Hierdurch ändern sich die Stoffeigenschaften der MOFs, was genutzt wird, um die Lichtführungseigenschaften von Glasfasern zu modulieren. Diese Sensortechnik erreicht einen neuen Stand der Technik im Feld der Sensorik für Hochspannungsanlagen. Durch die generierten Messergebnisse werden neue Möglichkeiten für Netzregulierung und -überwachung geschaffen.
Origin | Count |
---|---|
Bund | 451 |
Kommune | 2 |
Land | 16 |
Wissenschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 61 |
Daten und Messstellen | 60 |
Förderprogramm | 307 |
Gesetzestext | 1 |
Text | 137 |
Umweltprüfung | 11 |
Wasser | 3 |
unbekannt | 8 |
License | Count |
---|---|
geschlossen | 32 |
offen | 432 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 451 |
Englisch | 150 |
Resource type | Count |
---|---|
Archiv | 3 |
Datei | 4 |
Dokument | 10 |
Keine | 200 |
Webseite | 257 |
Topic | Count |
---|---|
Boden | 345 |
Lebewesen und Lebensräume | 321 |
Luft | 300 |
Mensch und Umwelt | 467 |
Wasser | 243 |
Weitere | 362 |