Der Klimawandel ist eine der Hauptherausforderungen für die Menschheit im 21. Jahrhundert. Seine Auswirkungen sind vielschichtig wobei der anwachsende Massenverlust von Gletschern außerhalb der großen Eisschilde sowie deren bedeutender Beitrag zum Meeresspiegelanstieg zu den am stärksten hervorstechenden zählt. Diesbezüglich sind die Gletscher und Eiskappen der Arktis aufgrund ihres großen Volumens und ihrer großen Oberfläche, die als Kontaktfläche zum Klima- und Ozeanantrieb und damit zum Klimawandel selber fungiert, von besonderer Bedeutung. Da die Arktis darüber hinaus diejenige Region der Erde mit dem höchsten, prognostizierten, zukünftigen Temperaturanstieg ist, wird erwartet, daß sich die Bedeutung der arktischen Eismassen für den Meeresspiegelanstieg auch in Zukunft fortsetzt oder sogar noch steigern wird.Die großen Gletscher der Nordpolarregion umgeben den arktischen Ozean in ähnlichen Breitenlagen, weisen aber in jüngster Zeit ein inhomogenes Verhalten auf. Diese Tatsache legt eine räumliche Variabilität der klimatischen und ozeanischen Antriebsmechanismen der Gletschermassenbilanz innerhalb der zirkumarktischen Regionen nahe und offenbart damit die Diversität der Einflüsse des Klimawandels. Bezüglich der Variabilität der Antriebsmechanismen weist Svalbard in der Arktis eine einzigartige Lage auf. Es liegt an der Grenze zwischen kalten, polaren Luftmassen und Ozeanwassern und den Einflüssen des Westspitzbergenstroms, welcher der hauptsächliche Warmwasserlieferant für das arktische Umweltsystem ist. Darum verspricht das Erforschen der Reaktionen der Gletscher auf Svalbard auf die Veränderlichkeit des Klima- und Ozeanantriebs bedeutende Einblicke in die komplexe Kausalkette zwischen Klimawandel, der Variabilität der Klima- und Ozeanbedingungen in der Arktis und der Reaktion der arktischen Landeismassen. Das Ziel des Projektes ist es eine zuverlässige Abschätzung der räumlichen und zeitlichen Variabilität der klimatischen Massenbilanz aller Gletscher und Eiskappen auf Svalbard zu erreichen und diese mit dem Klima- und Ozeanantrieb in Verbindung zu setzen. Dazu wird ein räumlich verteiltes, von statistisch downgescalten Klimadaten angetriebenes Model zur Berechnung der klimatischen Massenbilanz aufgesetzt. Die Massenbilanz aller Gletscherflächen auf Svalbard wird für den Zeitraum 1948-2013 modelliert und die zeitlich variablen Felder von Ablation, Akkumulation, wiedergefrorenem Schmelzwasser und klimatischer Massenbilanz für anschließende geostatistische Studien genutzt. Diese Studien werden potentielle Einflüsse der raumzeitlichen Variabilität von großräumigen Mustern des Luftdrucks, der Meereisbedeckung und der Meeresoberflächentemperatur auf die Variabilität der Gletschermassenbilanz auf Svalbard identifizieren und analysieren. Auch Telekonnektionen zu fernen Modi der atmosphärischen Zirkulation werden durch Studien bezüglich der potentiellen Einflüsse verschiedener atmosphärischer Zirkulationsindizes in die Betrachtungen einbezogen.
Im Juni 2015 wurde das Projekt 'Umweltbildungsstelle Jamtal' im Rahmen des Leader Programms des Regionalmanagements, Bezirk Landeck, genehmigt. In Kürze werden in Zusammenarbeit mit dem Alpinarium und der Gemeinde Galtür sowie dem Verein Gletscher und Klima Echtzeitdaten und Material zur Änderungen von Gletscher und Klima im Jamtal hier zur Verfügung stehen.
Natürliche geomophologische Objekte sind in der Geologischen Karte von Baden-Württemberg als Kare bzw. Karbildungen dargestellt. Dabei handelt es sich um kesselförmige Eintiefungen glazialer Entstehung mit einem beckenartig flachen Karboden und steilen Rückwänden, talwärts häufig durch einen Karriegel abgeschlossen, der nach dem Abtauen des Gletschers häufig kleine Seen angestaut hat. Hauptverbreitung der Karbildungen ist der nördliche und südliche Schwarzwald. Der Geometrietyp ist Fläche (Polygon).
Natürliche geomophologische Objekte sind in der Geologischen Karte von Baden-Württemberg als Kare bzw. Karbildungen dargestellt. Dabei handelt es sich um kesselförmige Eintiefungen glazialer Entstehung mit einem beckenartig flachen Karboden und steilen Rückwänden, talwärts häufig durch einen Karriegel abgeschlossen, der nach dem Abtauen des Gletschers häufig kleine Seen angestaut hat. Hauptverbreitung der Karbildungen ist der nördliche und südliche Schwarzwald. Der Geometrietyp ist Fläche (Polygon).
The aim of data collection was the reconstruction of the chronology and extent of the Late Pleistocene glaciation around the boundary between the central and northern Black Forest. This research has been undertaken as part of the 'Chronology of the last glaciation of low mountainous areas in Central Europe' project (funded by the German Research Foundation (DFG)). This project is granted to Felix Martin Hofmann (see https://gepris.dfg.de/gepris/projekt/534739108?language=en, last access: 13 June 2025). As a first step towards comprehensive glacier reconstruction, glacial geomorphological mapping according to present-day standard in the field of glacial geomorphology must be undertaken, allowing for the selection of suitable targets for dating campaigns. Previous cirque and moraine mapping led to valuable datasets but the adopted approach for the acquisition of data does not comply with up-to-date approaches in geomorphological mapping. Hence, a mapping campaign was undertaken to critically evaluate previous work on the region of interest to achieve the greatest possible accuracy during mapping. The acquired data represent the base of a manuscript which has been submitted to the Journal of Geomorphology for consideration for publication.
For this update of the glacier inventory of the Salzburg region (Austria), 172 glaciers across 7 mountain groups in the state of Salzburg were mapped. Two datasets are presented here: one derived from orthophotos and one from hillshaded digital elevation models (DEMs). The most recent glacier boundaries were primarily derived from orthophotos taken in 2018. Exceptions include glaciers No. 5016 and 5017, for which mapping is based on data from 2013, and several glaciers in the Zillertal Alps (Nos. 5148, 5150, 5152, 5153, 5154, 9002, 9003, 9004, 9005), which were mapped using data from 2016 (see Fig. 4, and table "GI5_Salzburg_Gletscherliste_Orthofotos" in Bertolotti and Fischer, 2020 and 2021, attached). These boundaries were used to calculate area changes. For volume change calculations, glacier boundaries correspond to the most recent available LiDAR flight years: 2008, 2009, 2012, 2013, or 2018, depending on the glacier (see Figs. 1–3 and table "GI5_Salzburg_Gletscherliste_DGM" in Bertolotti and Fischer, 2020 and 2021). The updated glacier outlines were mapped based on the 2009 inventory (GI3, Fischer et al., 2015), digital elevation models from the latest survey years (Figs. 1–3), and orthophotos from 2018 (or 2013/2016 in the exceptions noted above). Volume changes were calculated using elevation models from 1998 (GI2). Area changes were also compared with earlier inventories: GI1 (Groß, 1987) and GI2 (Lambrecht and Kuhn, 2007). Almost all glaciers are located along the main Alpine ridge and are distributed across seven mountain groups: Ankogel-Hochalmspitz Group, Glockner Group, Granatspitz Group, Hochkönig Group (also known as the Salzburg Limestone Alps), Sonnblick Group (also known as the Goldberg Group), Venediger Group, and Zillertal Alps. Only the three glaciers in the Hochkönig Group are located outside the main Alpine ridge.
This dataset contains ESRI shapefiles of mapped glacial landforms, i.e., initial cirques, cirques, moraines, and moraine crests in the region formerly occupied by the former Haslach glacier in the southern Black Forest (48° N, 8° E WGS 1984), south-west Germany. The last glaciation maximum ice extent of the former Haslach glacier, inferred from ice-marginal moraines, is also provided. Geomorphological mapping was undertaken for the selection of suitable sites for beryllium-10 surface exposure dating of moraine-boulder surfaces for the establishment of a regional glacier chronology. The mapping of glacial landforms in the region formerly occupied by the former Haslach glacier in the southern Black Forest involved the interpretation of derivatives of the high-resolution DGM1 digital elevation model (xy-resolution: 1 m) of the State Agency for Geoinformation and Land Development (LGL) of the state of Baden-Württemberg, freely available at: https://opengeodata.lgl-bw.de/#/(sidenav:product/3) (last access: 6 February 2025), coupled with extensive field campaigns in 2020-2022 CE. To achieve the greatest possible accuracy during the mapping of glacial landforms, exposures were inspected, if available. The shapefiles can be opened with open-source geographic information system software. The coordinate reference system of the shapefiles is EPSG 25832: ETRS89 / UTM Zone 32N (https://epsg.io/25832, last access: 6 February 2025).
| Origin | Count |
|---|---|
| Bund | 553 |
| Global | 3 |
| Kommune | 1 |
| Land | 57 |
| Wissenschaft | 101 |
| Type | Count |
|---|---|
| Daten und Messstellen | 71 |
| Ereignis | 22 |
| Förderprogramm | 437 |
| Taxon | 2 |
| Text | 78 |
| unbekannt | 73 |
| License | Count |
|---|---|
| geschlossen | 101 |
| offen | 577 |
| unbekannt | 3 |
| Language | Count |
|---|---|
| Deutsch | 433 |
| Englisch | 318 |
| Resource type | Count |
|---|---|
| Archiv | 39 |
| Bild | 8 |
| Datei | 65 |
| Dokument | 62 |
| Keine | 382 |
| Unbekannt | 4 |
| Webdienst | 10 |
| Webseite | 174 |
| Topic | Count |
|---|---|
| Boden | 613 |
| Lebewesen und Lebensräume | 512 |
| Luft | 481 |
| Mensch und Umwelt | 681 |
| Wasser | 681 |
| Weitere | 681 |