API src

Found 308 results.

Related terms

Topoklimatische Steuerung und nicht-lineare Dynamik der Klimawandelresonanz von Gletschern in Hochasien (TopoCliF)

Die Gletscher Hochasiens, existentielle Ressource der Wasserversorgung von über einer Milliarde Menschen, reagieren ausgesprochen heterogen auf den Klimawandel. Die zugrunde liegenden Wirkmuster, Steuerungsfaktoren und Sensitivitäten sind jedoch bisher nur lückenhaft verstanden. Jüngste Studien zeigen die besondere Bedeutung topoklimatischer Effekte auf der Skale einzelner Täler und Höhenzüge, die auch ein großes Potential zu nicht-linearer Abschmelzdynamik implizieren. Zur Analyse dieser mesoskaligen Phänomene fehlen aber bislang adäquate Werkzeuge, die die big-data-kritische Datenlücke zwischen großräumigen Fernerkundungs- und feldbasierten Detailstudien schließen können. Die Höhe der Gletschergleichgewichtslinie (ELA) integriert alle am Gletscher wirkenden topographischen und klimatischen Faktoren und ist daher als Indikator eben dieser topoklimatischen Phänomene bestens geeignet. Im beantragten Projekt soll ein neuartiges Fernerkundungsverfahren für ganz Hochasien angewendet werden, das eigens entwickelt wurde, um für ganze Orogene Datensätze der ELA und multitemporaler ELA-Änderungen in präzedenzlos hoher Auflösung zu generieren. Durch ein künstliches neurales Netz werden dann die räumlichen Muster und ihnen zugrunde liegende Beziehungen im regional heterogenen Zusammenwirken klimatischer (Globalstrahlung, Temperatur, Niederschlag, Wind, etc.; aus Daten der High Asia Refined analysis, HAR) und topographischer (Exposition, Hangneigung, Gipfelhöhe, etc.; aus digitalen Geländemodellen, DGM) Faktoren zur Steuerung der ELAs in Hochasien aufgeschlüsselt. An für Teilräume repräsentativen Benchmark-Settings mit besonders guter Datensituation werden die steuernden Prozesse am Gletscher durch numerische Modellierung der Energie- und Massenbilanzen (MB) im Detail untersucht. Auf Basis der resultierenden MB-Daten wird zusätzlich die Sensitivität der MBs zu monatlichen Anomalien in Temperatur und Niederschlag (aus HAR) modelliert. Vorstudien zeigen, dass Verebnungsflächen in den Akkumulationsgebieten der Gletscher großes Potential zu nicht-linearer Abschmelzdynamik bei weiterem ELA-Anstieg bergen. Größe und Topographie dieser Verebnungen werden durch DGM-basierte GIS-Analysen für Gletscher ganz Hochasiens quantifiziert. Zur Identifizierung der zugehörigen Kipppunkte (ELA, ab der eine spezifische Verebnungsfläche zu Ablationsgebiet wird) werden jeweils aus Hochflächentopographie und ELA-Daten die verbleibenden Pufferhöhen berechnet. Die diesen Pufferhöhen entsprechenden Temperaturzu- oder Niederschlagsabnahmen werden auf Basis der zuvor erhobenen Sensitivitätsdaten abgeschätzt und die verbleibende Zeit zur Überschreitung der Kipppunkte für verschiedene Szenarien anthropogenen Klimawandels ermittelt. Die Resultate dieses interdisziplinär-polymethodischen Ansatzes werden erstmals eine Entschlüsselung der topoklimatischen Steuerung der Klimawandelresonanz von Gletschern in Hochasien und ihrer Potentiale zu nicht-linearer Abschmelzdynamik ermöglichen.

Vergangene und zukünftige Entwicklung der Eismassen auf Svalbard - Klimaantrieb und Telekonnektionen

Der Klimawandel ist eine der Hauptherausforderungen für die Menschheit im 21. Jahrhundert. Seine Auswirkungen sind vielschichtig wobei der anwachsende Massenverlust von Gletschern außerhalb der großen Eisschilde sowie deren bedeutender Beitrag zum Meeresspiegelanstieg zu den am stärksten hervorstechenden zählt. Diesbezüglich sind die Gletscher und Eiskappen der Arktis aufgrund ihres großen Volumens und ihrer großen Oberfläche, die als Kontaktfläche zum Klima- und Ozeanantrieb und damit zum Klimawandel selber fungiert, von besonderer Bedeutung. Da die Arktis darüber hinaus diejenige Region der Erde mit dem höchsten, prognostizierten, zukünftigen Temperaturanstieg ist, wird erwartet, daß sich die Bedeutung der arktischen Eismassen für den Meeresspiegelanstieg auch in Zukunft fortsetzt oder sogar noch steigern wird.Die großen Gletscher der Nordpolarregion umgeben den arktischen Ozean in ähnlichen Breitenlagen, weisen aber in jüngster Zeit ein inhomogenes Verhalten auf. Diese Tatsache legt eine räumliche Variabilität der klimatischen und ozeanischen Antriebsmechanismen der Gletschermassenbilanz innerhalb der zirkumarktischen Regionen nahe und offenbart damit die Diversität der Einflüsse des Klimawandels. Bezüglich der Variabilität der Antriebsmechanismen weist Svalbard in der Arktis eine einzigartige Lage auf. Es liegt an der Grenze zwischen kalten, polaren Luftmassen und Ozeanwassern und den Einflüssen des Westspitzbergenstroms, welcher der hauptsächliche Warmwasserlieferant für das arktische Umweltsystem ist. Darum verspricht das Erforschen der Reaktionen der Gletscher auf Svalbard auf die Veränderlichkeit des Klima- und Ozeanantriebs bedeutende Einblicke in die komplexe Kausalkette zwischen Klimawandel, der Variabilität der Klima- und Ozeanbedingungen in der Arktis und der Reaktion der arktischen Landeismassen. Das Ziel des Projektes ist es eine zuverlässige Abschätzung der räumlichen und zeitlichen Variabilität der klimatischen Massenbilanz aller Gletscher und Eiskappen auf Svalbard zu erreichen und diese mit dem Klima- und Ozeanantrieb in Verbindung zu setzen. Dazu wird ein räumlich verteiltes, von statistisch downgescalten Klimadaten angetriebenes Model zur Berechnung der klimatischen Massenbilanz aufgesetzt. Die Massenbilanz aller Gletscherflächen auf Svalbard wird für den Zeitraum 1948-2013 modelliert und die zeitlich variablen Felder von Ablation, Akkumulation, wiedergefrorenem Schmelzwasser und klimatischer Massenbilanz für anschließende geostatistische Studien genutzt. Diese Studien werden potentielle Einflüsse der raumzeitlichen Variabilität von großräumigen Mustern des Luftdrucks, der Meereisbedeckung und der Meeresoberflächentemperatur auf die Variabilität der Gletschermassenbilanz auf Svalbard identifizieren und analysieren. Auch Telekonnektionen zu fernen Modi der atmosphärischen Zirkulation werden durch Studien bezüglich der potentiellen Einflüsse verschiedener atmosphärischer Zirkulationsindizes in die Betrachtungen einbezogen.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Ozeanischer Einfluss auf den grönländischen 79°N Gletscher

Die Wechselwirkung zwischen der Kryosphäre und dem Ozean bildet eine der Hauptursachen für lokale und globale Veränderungen des Meeresspiegels. Das Schmelzen des grönländischen Eisschildes trägt derzeit zu rund einem Drittel zum globalen Meeresspiegelanstieg bei, und der Massenverlust des Eisschildes und damit der Transport von Eis aus dem Eisschild in den Ozean beschleunigen sich weiter. Bis vor kurzem schien es, als sei die Beschleunigung der abfließenden Eisströme auf Grönlands Westküste und die Fjorde im Südosten beschränkt, während die Gletscher im Nordosten als weitgehend stabil galten. Einer dieser scheinbar stabilen Gletscher ist der Nioghalvfjerdsbrae oder 79°Nord Gletscher, der größere zweier Gletscher, die aus dem nordostgrönländischen Eisstrom gespeist werden und direkt ins Meer münden. Wegen der Existenz einer Kaverne unter der schwimmenden Eiszunge analog zu den Schelfeisen der Antarktis ist der 79°Nord Gletscher für Studien der Eis Ozean Wechselwirkung sehr interessant, besonders da das Einzugsgebiet des nordostgrönländischen Eisstroms mehr als 15% der Fläche des grönländischen Eisschildes erfasst. Aktuelle Studien weist nun auf eine Beschleunigung des Eisstromes und eine Abnahme der Eisdicke entlang der Küste von Nordostgrönland hin. Gleichzeitig wurde eine Erwärmung und eine Zunahme des Volumens des Atlantikwassers in der Ostgrönlandsee und der Framstraße beobachtet. Unser Projekt hat zum Ziel, (1) die Mechanismen zu verstehen, mit denen der Ozean Wärme aus der Framstraße und vom Kontinentalhang Nordostgrönlands in die Kaverne unter dem schwimmenden 79°N Gletscher transportiert, (2) die Rolle externer Variabilität relativ zu Prozessen innerhalb der Kaverne hinsichtlich ihres Einflusses auf das Schmelzen an der Eisunterseite zu untersuchen und (3) die wichtigsten Sensitivitäten innerhalb dieses gekoppelten Systems aus Eis und Ozean zu identifizieren. Wir verfolgen dieses Ziel durch eine Kombination von gezielter Beobachtung und innovativer hochauflösender Modellierung. Im Rahmen zweier Forschungsreisen mit dem Eisbrecher FS Polarstern werden Strömungsgeschwindigkeiten, Hydrographie und Mikrostruktur sowohl mit gefierten als auch mit verankerten Instrumenten gemessen. Diese Beobachtungen werden durch den Einsatz eines autonomen Unterwasserfahrzeugs ergänzt. Zur Modellierung nutzen wir das Finite Element Sea ice Ocean Model (FESOM), das um eine Schelfeiskomponente erweitert wurde und in einer Konfiguration betrieben wird, die mit hoher Auflösung die kleinskaligen Prozesse auf dem Kontinentalschelf vor Nordostgrönland und in der Kaverne unter dem 79°N Gletscher in einem globalen Kontext wiedergibt. Zusammen mit den Beiträgen unserer Kooperationspartner aus der Glaziologie und der Tracerozeanographie entwickelt sich aus der Synthese dieser beiden Komponenten ein detailliertes Bild der Prozesse auf dem Kontinentalschelf Nordostgrönlands, einer Schlüsselregion für zukünftige Veränderungen des globalen Meeresspiegels.

Die Auswirkung extremer Schmelzereignisse auf die zukünftige Massenbilanz des grönländischen Eisschildes

Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Austauschflüsse klimarelevanter Spurengase vor der Westlichen Antarktischen Halbinsel (EWARP)

Die Westliche Antarktische Halbinsel (engl. Western Antarctic Peninsula, WAP) umfasst ein hochproduktives Ökosystem und ist wohl eine der Regionen, die sich unter den Auswirkungen der globalen Erwärmung am schnellsten verändern. Natürliche zeitlich-räumliche Variabilitäten in Form von Meereis-Saisonalität, schelfübergreifendem Transport von warmem zirkumpolarem Wasser und submesoskaligen Wirbeln haben einen ausgeprägten Einfluss auf das chemische und biologische Umfeld des WAP. Daher könnten Umweltveränderungen wie das beschleunigte Abschmelzen der Gletscher, die verringerte Meereisbedeckung und die erhöhte Verfügbarkeit von UV-Licht enorme Auswirkungen auf die biogeochemischen Zyklen der Region haben. Die genaue Richtung der Veränderungen ist jedoch noch unklar, was vor allem auf den Mangel an Daten aufgrund des schwierigen Zugangs zurückzuführen ist. Klimarelevante Spurengase gehören zu hochrelevanten, noch nicht ausreichend untersuchten Verbindungen in den Polarregionen, insbesondere im WAP. Nicht nur mangelnde Datenerfassung, sondern auch ein detailliertes Verständnis der Kontrollmechanismen für den Transfer von Gasen aus der ozeanischen Mischschicht in die Atmosphäre macht es schwierig, ihre Gesamtemissionen in die Atmosphäre abzuschätzen. Die gemischte Wassermasse an der Oberfläche und die Atmosphäre sind durch natürlich vorkommende Oberflächenfilme getrennt, die die Austauschprozesse steuern. Daher ist bis heute nicht klar, ob der WAP eine Quelle oder Senke für Spurengase ist. Wir schlagen vor, eine ehrgeizige multidisziplinäre Studie durchzuführen, die darauf abzielt, die Produktion und die Austauschflüsse von Spurengasen in den Küstengewässern und im offenen Ozean des WAP zu quantifizieren. Insbesondere wollen wir: i) die Hauptproduktionswege von CH4, N2O, DMS und CO in der Region der Bransfield-Straße bewerten, ii) die Kontrollmechanismen für ihren Transfer über marine Oberflächenfilme in die Atmosphäre und ihre Variabilität während des Frühling-Sommer-Übergangs aufklären und iii) entschlüsseln, inwieweit submesoskalige Prozesse die Spurengaszyklen und Eigenschaften von Oberflächenfilmen beeinflussen. Zu diesem Zweck schlagen wir vor, verankerte Beobachtungen, saisonale Probenahmen an einer ortsfesten Station und eine Prozessstudie mit hochauflösenden physikalischen, chemischen und biologischen Messungen mit autonomen Plattformen (z.B. ferngesteuerte Katamaran und Drifter) zu verwenden. Das vorgeschlagene Projekt wird Einblicke in die Hauptkontrollen der Emissionen von Spurengasen in die Atmosphäre im WAP geben und zukünftigen Modellstudien helfen, die Darstellung der Auswirkungen der beschleunigten Gletscherschmelze in Ozean-Atmosphären-Modellen zu verbessern.

Forschungsgruppe FOR 2793: Sensitivity of High Alpine Geosystems to Climate Change Since 1850 (SEHAG), Auswirkungen des Klimawandels auf hydrologische Prozesse in hochalpinen Einzugsgebieten

Die Häufigkeit und das Ausmaß extremer hydrologischer Ereignisse werden höchstwahrscheinlich durch den Klimawandel verstärkt. Hochalpine Einzugsgebiete sind besonders sensible Räume, da diese Regionen der Hydrosphäre stark durch Veränderungen im Temperatur- und Niederschlagsregime beeinflusst werden. Die starke Kopplung zwischen der Hydrologie und weiteren Komponenten der Geosystem in hoch gelegenen Einzugsgebieten erfordert eine detaillierte Beschreibung der ablaufenden hydrologischen Prozesse. Dieser Umstand rechtfertigt die Einrichtung dieses Teilprojekts der im Rahmen des SEHAG Projektes (Sensitivity of high Alpine geosystems to climate change since 1850) beantragten Forschergruppe. Die Innovation der vorgeschlagenen Forschungsrichtung liegt in der Untersuchung der Veränderungen in der Hydrosphäre zwischen 1850 und 2050 und wie diese mit den übrigen Komponenten der Geosystem in hochalpinen Lagen interagieren. Insbesondere werden wir gründliche Zeitreihenanalysen zur Untersuchung der Korrelation zwischen Klimawandel und den Jährlichkeiten extremer hydrologischer Ereignisse (z.B.: zeitliche Verteilung von Niederschlagsereignissen innerhalb eines Jahres und Einsetzen der Schnee- und Gletscherschmelze) durchführen. Daneben wollen wir verifizieren ob es möglich ist die Qualität der hydrologischen Modelle für hochalpine Einzugsgebiete durch 'multi-objective' Kalibrierungsansätze zu verbessern. Archive spielen dabei eine wichtige Rolle als Datenquelle zur Rekonstruktion der meteorologischen Bedingungen der Vergangenheit. Außerdem ermöglicht die Zusammenarbeit mit anderen Teilprojekten die Kalibrierung des hydrologischen Modells, sowohl gegen den Abfluss, als auch gegen Permafrost- sowie Schnee- und Gletschermessungen. Darüber hinaus werden uns die geplanten experimentellen Messungen erlauben die 'multi-objective' Kalibrierung auf weitere Parameter, wie die elektrische Leitfähigkeit des Abflusses oder die Wassertemperatur der Wildbäche auszuweiten. Das resultierende, kalibrierte Modellergebnis, für das eine intensive Unsicherheitsanalyse durchgeführt werden wird, wird dann von den weitern Teilprojekten genutzt, um die Veränderungen in der Geosystem zu interpretieren.

Kilimanjaro Glaciers (East Africa)

The Tropical Glaciology Group's research on Kilimanjaro started in 2002 and is in progress. Central aspects of our research plan are: 1) Development of the working hypothesis: From a synopsis of (i) proxy data indicating changes in East African climate since ca. 1850, (ii) 20th century instrumental data (temperature and precipitation), and (iii) the observations and interpretations made during two periods of fieldwork (June 2001 and July 2002) a scenario of modern glacier retreat on Kibo is reconstructed. This scenario offers the working hypothesis for our project. 2) Impact of local climate on the glaciers: This goal involves micrometeorological measurements on the glaciers, and the application of collected data to full glacier energy and mass balance models. These models quantify the impact of local climate on a glacier, based on pure physical system knowledge. Our models are validated by measured mass loss and surface temperature. 3) Latest Extent of the Kilimanjaro glaciers: Here, a satellite image was analyzed to derive the surface area and spatial distribution of glaciers on Kilimanjaro in February 2003. To validate this approach, an aerial flight was conducted in July 2005. 4) Linking local climate to large-scale circulation: As glacier behavior on Kilimanjaro, a totally free-standing mountain, is likely to reflect changes in larger-scale climate, this goal explores the large-scale climate mechanisms driving local Kilimanjaro climate. Well known large-scale forcings of east African climate are sea surface temperature variations in the Pacific and, more important, in the Indian Ocean. 5) Regional modification of large-scale circulation: The regional precipitation response in East Africa due to large-scale forcing is not adequately resolved in a global climate model as used in 4). Thus, mesoscale model experiments with the numerical atmospheric model RAMS will be conducted within this goal. They are thought to reveal the modification of atmospheric flow by the Kilimanjaro massif on a regional scale. 6) Practical aspects: Based on micro- and mesoscale results, (i) how much water is provided by glaciers, (ii) providing future projections of glacier behavior as basis for economic and societal studies (practical part), e.g., for studies on the impact of vanishing glaciers on Kibo's touristic appeal, and (iii) which impact does deforestation on the Kilimanjaro slopes have on summit climate? Referring to item 2), two new automatic weather stations have been installed in February 2005. They complete a station operated by Massachusetts University on the surface of the Northern Icefield since 2000.

Vulnerability to Water Scarcity and Glacier Fed Water Availability, Peru

Regionale und lokale Klimafolgenanpassung

Unter Klimaanpassung versteht man alle Handlungen, die die Auswirkungen des Klimawandels auf ein System reduzieren und damit die Widerstandsfähigkeit gegenüber klimatischen Veränderungen oder Extremereignissen erhöhen. Der Begriff System ist sehr weit gefasst. Darunter kann beispielsweise eine einzelne Person, eine Stadt, ein Landkreis, ein Unternehmen oder aber ein ganzes Land verstanden werden. Auch die Betrachtung von Teilsystemen ist üblich. Die Landwirtschaft oder ein bestimmter Fluss wären so ein Teilsystem. Abgesehen von Anpassungsstrategien und Anpassungskonzepten – welche in der Regel ganzheitlichen Charakter besitzen – beziehen sich konkrete Anpassungsmaßnahmen meistens auf eine oder mehrere ausgewählte Klimafolgen, wie beispielsweise Hitze oder Hochwasser. Woran genau sollte ich mich anpassen? Diese Frage lässt sich leider wie so oft nicht einfach beantworten. Grob gesagt, stellt der Klimawandel uns vor zwei verschiedene Herausforderungen. Zum einen sind das relativ langfristige und kontinuierlich ablaufende Veränderungen. Durch die globale Erwärmung wird es auch bei uns im Mittel immer wärmer. Diese Temperaturänderungen sowie die damit verbundenen Klimafolgen – temperaturbedingte Veränderungen von Flora und Fauna, Abschmelzen der meisten Gletscher, Erhöhung der Wassertemperaturen und vieles mehr – lassen sich gut beobachten und in die Zukunft projizieren . Diese kontinuierliche Klimaveränderung bewirkt jedoch diskontinuierliche Folgephänomene: Die Zunahme von Extremwetterereignissen . Beispiele hierfür sind Hitzewellen, Hoch- und Niedrigwasserereignisse, Trockenheit und Dürre oder Starkregenereignisse. Aufgrund der Seltenheit dieser Ereignisse lassen sich hierzu viel schwerer verlässliche Aussagen hinsichtlich der Veränderung von Häufigkeit, Intensität oder Dauer treffen. Fest steht jedoch: Das Wetter wird in Zukunft extremer! Grundlegendes Vorgehen Das Problem ist also komplex. Um hier Klarheit zu schaffen, hilft es schrittweise und systematisch vorzugehen. Der Weg zur erfolgreichen Klimaanpassung folgt in der Regel immer nachfolgendem Schema – egal für welches System und egal für welche Klimaänderung: Problem erkennen und Verständnis vermitteln Bewertung von Klimarisiken (Betroffenheitsanalyse), Identifikation von Handlungsoptionen (Anpassungsmaßnahmen entwickeln), Umsetzung von Maßnahmen zur Anpassung an den Klimawandel Monitoring und Evaluation (Erfolgskontrolle) Durch dieses sich wiederholende und systematische Vorgehen existieren mittlerweile eine Vielzahl an Onlineangeboten, Broschüren, best-practice-Beispielen und Handlungsempfehlungen, auf die zurückgegriffen werden kann. Für Kommunen gibt es einen speziellen Leitfaden für die Anpassungsplanung ( Klimalotse ). Das Zentrum Klimaanpassung bietet darüber hinaus eine Vielzahl von Unterstützungsangeboten. Wo bekomme ich die ganzen Informationen her? Je nach Umfang und Komplexität der geplanten Anpassungsmaßnahmen sind in der Regel standort- und problemspezifische eigene Untersuchungen notwendig. Das heißt jedoch nicht, dass im Einzelfall mit den bereits existierenden Informationen keine erfolgreiche Anpassung erfolgen kann. Die Aufzählung orientiert sich an o. g. Schema: Welche Klimaveränderungen bisher stattgefunden haben, kann auf dem Regionalen Klimainformationssystem der Länder Sachsen, Sachsen-Anhalt und Thüringen ( ReKIS ) nachgeschaut werden. Wie sich das Klima in Zukunft ändern wird, kann in der Studie „Klimamodellauswertung Sachsen-Anhalt 1961-2100“ nachgelesen werden ( Endbericht , Synthesebericht ). Für die Betroffenheitsanalyse kann auf die Klimawirkungs- und Risikoanalyse des Bundes , die Seite „ Klimafolgen Deutschland “ des Umweltbundesamtes oder die Klimafolgenindikatoren des LAU verwiesen werden. Die Strategie des Landes zur Anpassung an die Folgen des Klimawandels zeigt Handlungsoptionen auf Bundeslandebene auf. Wie die Entwicklung von kommunalen Anpassungsmaßnahmen aussehen kann, zeigt diese Seite des ReKIS, basierend auf den Ergebnissen des KlimaKonform -Projektes. Eine Seite mit vielen gelungenen Anpassungsmaßnahmen ist die Tatenbank des Umweltbundesamtes. Wie die Erfolgskontrolle von Anpassungsmaßnahmen aussehen kann, zeigt der Monitoringbericht zur Deutschen Anpassungsstrategie . Der Monitoringbericht zur Anpassungsstrategie des Landes Sachsen-Anhalt findet sich hier . Sie fühlen sich erschlagen? Ohne viel Zeit zu investieren, sind all diese Informationen und vor allem Zusammenhänge kaum zu fassen. Die Kolleginnen und Kollegen des Dezernates befassen sich tagtäglich mit dem Klimawandel, seinen Auswirkungen und auch mit den Fragen der Anpassung. Wenn Sie eine Anpassungsplanung vornehmen möchten oder eine Frage zu einer konkreten Anpassungsmaßnahme haben, können Sie gerne auf uns zukommen. Wir können Sie sicher unterstützen! Das Bundes-Klimaanpassungsgesetz Mit dem zum 01.07.2024 in Kraft getretenen Bundes-Klimaanpassungsgesetz ( KAnG ) liegt erstmalig eine verbindliche Regelung zur Klimaanpassung auf Bundesebene vor. Ziel des Gesetzes ist es, eine flächendeckende und systematische Analyse von Betroffenheiten und Anpassungserfordernissen auf regionaler und lokaler Ebene im gesamten Bundesgebiet sicherzustellen. Das KAnG verpflichtet die Länder, diejenigen öffentlichen Stellen zu bestimmen, die für die Gemeinden und/ oder Landkreise Klimaanpassungskonzepte erstellen sollen. Die Länder sollen weiterhin die öffentliche Stellen in die Lage versetzen, Betroffenheitsanalysen zu erstellen und ein planmäßiges Vorgehen im Bereich Klimaanpassung unterstützen. Nähere Informationen dazu werden zu gegebener Zeit auf der Seite des Ministeriums für Wissenschaft, Energie, Klimaschutz und Umwelt veröffentlicht. Letzte Aktualisierung: 05.08.2025

Natural ocean alkalinization through erosion and weathering of glacial till at the seafloor: coastal cliff

Climate change-driven deglaciation and erosion in high-latitude regions enhance the flux of terrigenous material to the coastal ocean. Newly exposed land surfaces left behind by retreating glaciers are covered by glacial till, which is rich in fine-grained minerals. Many of these minerals are undersaturated in seawater and thus prone to dissolution (i.e., seafloor weathering). Consequently, intensified erosion and mineral weathering may act as an additional CO₂ sink while supplying alkalinity to coastal waters. To evaluate this hypothesis, we carried out a sediment geochemical study in the southwestern Baltic Sea, where coastal erosion of glacial till is the dominant source of terrigenous material to offshore depocenters. We analyzed glacial till from coastal cliffs, sediments, and pore waters for major element composition using inductively coupled plasma optical emission spectroscopy and an elemental analyzer. Water samples were further analyzed for dissolved redox species and dissolved silica by photometry and ion chromatography. These data were then used to quantify mineral dissolution and precipitation processes and to assess their net effect on inorganic carbon cycling.

1 2 3 4 529 30 31