Existing models of soil organic matter (SOM) formation consider plant material as the main source of SOM. Recent results from nuclear magnetic resonance analyses of SOM and from own incubation studies, however, show that microbial residues also contribute to a large extent to SOM formation. Scanning electron microscopy showed that the soil mineral sur-faces are covered by numerous small patchy fragments (100 - 500 nm) deriving from microbial cell wall residues. We will study the formation and fate of these patchy fragments as continuously produced interfaces in artificial soil systems (quartz, montmorillonite, iron oxides, bacteria and carbon sources). We will quantify the relative contributions of different types of soil organisms to patchy fragment formation and elucidate the effect of redox con-ditions and iron mineralogy on the formation and turnover of patchy fragments. The develop-ment of patchy fragments during pedogenesis will be followed by studying soil samples from a chronosequence in the forefield of the retreating Damma glacier. We will characterize chemical and physical properties of the patchy fragments by nanothermal analysis and microscale condensation experiments in an environmental scanning electron microscope. The results will help understanding the processes at and characteristics of biogeochemical interfaces.
Der Anteil des atmosphärischen Wasserdampfs beträgt lediglich bis zu vier Volumenprozent der Erdatmosphäre. Aufgrund seiner besonderen Bedeutung für atmosphärische Prozesse - insbesondere für Klimawandel und Naturgefahren (z.B. Hochwasser, Dürreperioden, Flutkatastrophen, Gletscherschmelze) - ist die zuverlässige und genaue Kenntnis über die räumliche und zeitliche Verteilung des Treibhausgases Wasserdampf von eminenter Bedeutung. Wasserdampf ist zudem wichtiger Bestandteil des Wasserkreislaufs; er bestimmt Wolkenbildung und -verteilung sowie Niederschlag maßgeblich. Trotz seiner großen Bedeutung ist die Modellierung seines räumlichen und zeitlichen Verhaltens nicht zufriedenstellend gelöst. Obgleich regionale Atmosphärenmodelle prinzipiell hydro-meteorologische Zustandsgrößen mit hoher räumlicher und zeitlicher Auflösung simulieren können, ist die Reproduzierbarkeit von hochvariablen Prozessen beschränkt. Zudem existieren wenige hochauflösende Validierungsdatensätze. Während Wasserdampf für Meteorologie und Klimaforschung eine zentrale Zustandsgröße darstellt, liegt im Rahmen von geodätischen Anwendungen der Fokus auf der Reduktion seines Einflusses. Im Gegensatz zu den Effekten anderer Atmosphärenbereiche kann sein Einfluss auf Mikrowellenmessungen nicht durch Mehrfrequenzbeobachtungen eliminiert werden. Somit ist das Signal des atmosphärischen Wasserdampfs im Rahmen der Verarbeitung der Daten dieser Sensoren geeignet zu modellieren. Hierbei können GNSS und InSAR wertvolle Beiträge (GNSS: hohe zeitliche Auflösung; InSAR: hohe räumliche Auflösung) zur Rekonstruktion des Einflusses der Erdatmosphäre - und im Speziellen des atmosphärischen Wasserdampfs - längs des Signalwegs leisten. Unter Verwendung von komplexen tomographischen Ansätzen sind aus den GNSS- bzw. InSAR-basierten, integrierten Wasserdampfkenngrößen zeitabhängige 3D-Felder des Wasserdampfs ableitbar. Unter Verwendung von innovativen GNSS- und InSAR-Datenanalysetechniken zielt das beantragte Projekt darauf ab, für regionale Anwendungen neue Kombinationsansätze für die verbesserte Bestimmung der raum-zeitlichen Verteilung des atmosphärischen Wasserdampfs zu entwickeln und zu validieren. Die zentrale Fragestellung beschäftigt sich mit der wissenschaftlich fundierten, Geostatistik-basierten Zusammenführung von geodätischen Ergebnissen und meteorologischen Wettermodellen. Hierbei kommt tomographischen Fusionsansätzen - sowohl im Kontext der Zusammenführung der beiden geodätischen Sensoren als auch bei der Kombination von geodätischen und meteorologischen Produkten - eine wichtige Rolle zu; diese sind z.B. hinsichtlich horizontaler und vertikaler Auflösung weiterzuentwickeln. Darüber hinaus ist die Tomographie-basierte Fusion gegenüber meteorologischen Assimilationsansätzen zu vergleichen, um eine optimale regionale Strategie für die Zusammenführung aller beitragenden Sensoren und Modelle zur Ableitung von räumlich und zeitlich hochaufgelösten Wasserdampfverteilungen herauszuarbeiten.
Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.
Der menschliche Einfluss auf großräumige Änderungen des Klimas hat in den letzten Jahrzehnten stark zugenommen, sowohl in Atmosphäre, Ozean und Kryosphäre. Die genauen Eigenschaften physikalischer Prozesse und Mechanismen, die den menschlichen Einfluss von großräumigen auf lokale Skalen übertragen, sind allerdings kaum bekannt. Dies bedeutet eine erhebliche Unsicherheit für die Folgen des Klimawandels in der Zukunft. Das Problem der Übertragung betrifft auch den Gletscherrückgang im Hochgebirge, der überdies ein seltener Indikator für den Klimawandel in der mittleren Troposphäre ist. --- Das vorliegende Projekt hat das Ziel, unser Verständnis des Klimawandels in großer Höhe entscheidend zu verbessern. Das Fundament dafür legt eine neuartige und interdisziplinäre Methodik, mit der wir den menschlichen Anteil am Klimawandel in der großräumigen Klimadynamik, der regionalen Zirkulation über den ausgewählten Gebirgen sowie in der atmosphärischen Grenzschicht der dortigen Gletscher quantifizieren können. Die Verknüpfung prozessauflösender, physikalischer Modelle von globaler bis lokaler Skala sowie außergewöhnliche Messungen auf Gletschern in großer Höhe spannen diese Methodik auf. Sie wird letztlich ermöglichen, den menschlichen Anteil präzise zu erklären und die dafür verantwortlichen Mechanismen ausweisen zu können, inklusive der empfindlichsten Zusammenhänge im multiskaligen System ('Achillesfersen'). --- Der Einfluss des Projekts wird sich deutlich über die Glaziologie hinaus erstrecken. Unser Wissen über das globale Klimasystem wird durch den besser verstandenen Aspekt der Verknüpfung zwischen bodennahen Luftschichten und der mittleren Troposphäre profitieren. Auf regionalen und lokalen Skalen helfen die Ergebnisse für die Abschätzung von Klimafolgen, da Gletscheränderungen Wasserreserven und Naturgefahren beeinflussen. Und schließlich werden die Ergebnisse neue Wege für die Klimafolgenforschung allgemein aufzeigen, indem sie eine prozessauflösende und skalenübergreifende Methodik demonstrieren.
Gletscher sind bedeutende Speicher organischen Kohlenstoffs (OC) und tragen zum Kohlenstofffluss vom Festland zum Meer bei. Aufgrund des Klimawandels wird eine Intensivierung dieser Flüsse erwartet. Der Export von OC aus Gletschern wurde weltweit in verschiedenen Regionen quantifiziert, trotzdem liegen keine vergleichbaren Daten für Island vor, obwohl sich dort die größte europäische außerpolare Eiskappe befindet. Um die globalen Prognosen der glazialen Kohlenstofffreisetzung zu verbessern, ist es das Ziel dieses Pilotprojektes, den Export von gelöstem und partikulärem organischen Kohlenstoff (DOC, POC) aus Islands Gletschern erstmalig zu quantifizieren und neue Kooperationen mit isländischen Wissenschaftler/innen für gemeinsame zukünftige Forschungsprojekte aufzubauen. Hierzu werden 4 Feldkampagnen zu unterschiedlichen Jahreszeiten sowie Treffen mit isländischen Kollegen/innen durchgeführt. In jeder Feldkampagne werden von 23 Gletschern der Eiskappen Vatnajökull, Langjökull, Hofsjökull, Myrdalsjökull und Snaeellsjökull Eisproben entnommen, um die biogeochemische Diversität des glazialen OC zu charakterisieren sowie dessen Export in Verbindung mit Massenbilanzen zu quantifizieren. In Gletscherbächen werden Wasserproben entnommen, um den Austrag von OC direkt am Gletschertor zu bestimmen sowie die Kohlenstoffflüsse entlang von 6 Gletscherbächen mit unterschiedlicher Länge (2 km bis 130 km) beginnend am Gletschertor bis zur Mündung zu untersuchen. Wie sich der Gletscherrückgang langfristig auf ein Gletscherbachökosystem auswirkt, wird durch die taxonomische Bestimmung von Makroinvertebraten im Vergleich zur Bestimmung von Prof. Gíslason aus dem Jahre 1997 beurteilt. Gleichzeitig werden in diesem Gletscherbach Wasserproben zum eDNA-Barcoding entnommen, um eine rasche und gering invasive Methode zur laufenden Beobachtung des zukünftigen Einflusses der Gletscherrückgang zu entwickeln. Vor Ort werden Wassertemperatur, elektr. Leitfähigkeit, pH-Wert, gelöster Sauerstoff, Trübung und Chlorophyll alpha gemessen. Innovative Labormethoden (HPLC, DNA-Barcoding, Picarro, GC, TOC) werden zur Analyse des OC im Eis und Wasser (DOC, DIC, POC, Fluoreszenz, Absorption), der Nährstoffe (P-PO4, N-NO3, N-NO2, N-NH4), stabiler Isotope (18O, 2H), Chlorophyll alpha, CO2 und aquatischen Organismen eingesetzt. Die Anwendung statistischer Methoden (Faktorenanalyse, Hauptkomponentenanalyse) basierend auf Anregungs- und Emissionsmatrizen erlauben die Quellen des OC im Gletschereis sowie -schmelzwasser zu bestimmen und die räumliche Vielfalt des OC zu erklären. Das gewonnene Wissen wird zur Verbesserung globaler Prognosen glazialer Kohlenstofffreisetzung beitragen sowie einen intensiven Einblick in das glaziale Ökosystem geben. Für die antragstellenden Nachwuchswissenschaftler/innen entstehen vielversprechende Kooperationen mit isländischen Wissenschaftlern/innen, fokussierend auf die zeitlichen sowie räuml. Aspekte der glazialen Kohlenstoffflüsse sowie das Ökosystem Gletscher
1. Gletscherinventare Bolivien, Kolumbien, Ecuador; Peru von den Peruanern selbst. 2. Monitoring der raumzeitlichen Veraenderungen vom Pleistozaen bis zu aktuellen Ablaeufen. 3. Korrelation der Beziehung Wetter-Klima-Gletscherentwicklung 4. Deutlich staerkerer Gletscherschwund als an aussertropischen Gletschern.
Die Westliche Antarktische Halbinsel (engl. Western Antarctic Peninsula, WAP) umfasst ein hochproduktives Ökosystem und ist wohl eine der Regionen, die sich unter den Auswirkungen der globalen Erwärmung am schnellsten verändern. Natürliche zeitlich-räumliche Variabilitäten in Form von Meereis-Saisonalität, schelfübergreifendem Transport von warmem zirkumpolarem Wasser und submesoskaligen Wirbeln haben einen ausgeprägten Einfluss auf das chemische und biologische Umfeld des WAP. Daher könnten Umweltveränderungen wie das beschleunigte Abschmelzen der Gletscher, die verringerte Meereisbedeckung und die erhöhte Verfügbarkeit von UV-Licht enorme Auswirkungen auf die biogeochemischen Zyklen der Region haben. Die genaue Richtung der Veränderungen ist jedoch noch unklar, was vor allem auf den Mangel an Daten aufgrund des schwierigen Zugangs zurückzuführen ist. Klimarelevante Spurengase gehören zu hochrelevanten, noch nicht ausreichend untersuchten Verbindungen in den Polarregionen, insbesondere im WAP. Nicht nur mangelnde Datenerfassung, sondern auch ein detailliertes Verständnis der Kontrollmechanismen für den Transfer von Gasen aus der ozeanischen Mischschicht in die Atmosphäre macht es schwierig, ihre Gesamtemissionen in die Atmosphäre abzuschätzen. Die gemischte Wassermasse an der Oberfläche und die Atmosphäre sind durch natürlich vorkommende Oberflächenfilme getrennt, die die Austauschprozesse steuern. Daher ist bis heute nicht klar, ob der WAP eine Quelle oder Senke für Spurengase ist. Wir schlagen vor, eine ehrgeizige multidisziplinäre Studie durchzuführen, die darauf abzielt, die Produktion und die Austauschflüsse von Spurengasen in den Küstengewässern und im offenen Ozean des WAP zu quantifizieren. Insbesondere wollen wir: i) die Hauptproduktionswege von CH4, N2O, DMS und CO in der Region der Bransfield-Straße bewerten, ii) die Kontrollmechanismen für ihren Transfer über marine Oberflächenfilme in die Atmosphäre und ihre Variabilität während des Frühling-Sommer-Übergangs aufklären und iii) entschlüsseln, inwieweit submesoskalige Prozesse die Spurengaszyklen und Eigenschaften von Oberflächenfilmen beeinflussen. Zu diesem Zweck schlagen wir vor, verankerte Beobachtungen, saisonale Probenahmen an einer ortsfesten Station und eine Prozessstudie mit hochauflösenden physikalischen, chemischen und biologischen Messungen mit autonomen Plattformen (z.B. ferngesteuerte Katamaran und Drifter) zu verwenden. Das vorgeschlagene Projekt wird Einblicke in die Hauptkontrollen der Emissionen von Spurengasen in die Atmosphäre im WAP geben und zukünftigen Modellstudien helfen, die Darstellung der Auswirkungen der beschleunigten Gletscherschmelze in Ozean-Atmosphären-Modellen zu verbessern.
Der Klimawandel ist eine der Hauptherausforderungen für die Menschheit im 21. Jahrhundert. Seine Auswirkungen sind vielschichtig wobei der anwachsende Massenverlust von Gletschern außerhalb der großen Eisschilde sowie deren bedeutender Beitrag zum Meeresspiegelanstieg zu den am stärksten hervorstechenden zählt. Diesbezüglich sind die Gletscher und Eiskappen der Arktis aufgrund ihres großen Volumens und ihrer großen Oberfläche, die als Kontaktfläche zum Klima- und Ozeanantrieb und damit zum Klimawandel selber fungiert, von besonderer Bedeutung. Da die Arktis darüber hinaus diejenige Region der Erde mit dem höchsten, prognostizierten, zukünftigen Temperaturanstieg ist, wird erwartet, daß sich die Bedeutung der arktischen Eismassen für den Meeresspiegelanstieg auch in Zukunft fortsetzt oder sogar noch steigern wird.Die großen Gletscher der Nordpolarregion umgeben den arktischen Ozean in ähnlichen Breitenlagen, weisen aber in jüngster Zeit ein inhomogenes Verhalten auf. Diese Tatsache legt eine räumliche Variabilität der klimatischen und ozeanischen Antriebsmechanismen der Gletschermassenbilanz innerhalb der zirkumarktischen Regionen nahe und offenbart damit die Diversität der Einflüsse des Klimawandels. Bezüglich der Variabilität der Antriebsmechanismen weist Svalbard in der Arktis eine einzigartige Lage auf. Es liegt an der Grenze zwischen kalten, polaren Luftmassen und Ozeanwassern und den Einflüssen des Westspitzbergenstroms, welcher der hauptsächliche Warmwasserlieferant für das arktische Umweltsystem ist. Darum verspricht das Erforschen der Reaktionen der Gletscher auf Svalbard auf die Veränderlichkeit des Klima- und Ozeanantriebs bedeutende Einblicke in die komplexe Kausalkette zwischen Klimawandel, der Variabilität der Klima- und Ozeanbedingungen in der Arktis und der Reaktion der arktischen Landeismassen. Das Ziel des Projektes ist es eine zuverlässige Abschätzung der räumlichen und zeitlichen Variabilität der klimatischen Massenbilanz aller Gletscher und Eiskappen auf Svalbard zu erreichen und diese mit dem Klima- und Ozeanantrieb in Verbindung zu setzen. Dazu wird ein räumlich verteiltes, von statistisch downgescalten Klimadaten angetriebenes Model zur Berechnung der klimatischen Massenbilanz aufgesetzt. Die Massenbilanz aller Gletscherflächen auf Svalbard wird für den Zeitraum 1948-2013 modelliert und die zeitlich variablen Felder von Ablation, Akkumulation, wiedergefrorenem Schmelzwasser und klimatischer Massenbilanz für anschließende geostatistische Studien genutzt. Diese Studien werden potentielle Einflüsse der raumzeitlichen Variabilität von großräumigen Mustern des Luftdrucks, der Meereisbedeckung und der Meeresoberflächentemperatur auf die Variabilität der Gletschermassenbilanz auf Svalbard identifizieren und analysieren. Auch Telekonnektionen zu fernen Modi der atmosphärischen Zirkulation werden durch Studien bezüglich der potentiellen Einflüsse verschiedener atmosphärischer Zirkulationsindizes in die Betrachtungen einbezogen.
Die Häufigkeit und das Ausmaß extremer hydrologischer Ereignisse werden höchstwahrscheinlich durch den Klimawandel verstärkt. Hochalpine Einzugsgebiete sind besonders sensible Räume, da diese Regionen der Hydrosphäre stark durch Veränderungen im Temperatur- und Niederschlagsregime beeinflusst werden. Die starke Kopplung zwischen der Hydrologie und weiteren Komponenten der Geosystem in hoch gelegenen Einzugsgebieten erfordert eine detaillierte Beschreibung der ablaufenden hydrologischen Prozesse. Dieser Umstand rechtfertigt die Einrichtung dieses Teilprojekts der im Rahmen des SEHAG Projektes (Sensitivity of high Alpine geosystems to climate change since 1850) beantragten Forschergruppe. Die Innovation der vorgeschlagenen Forschungsrichtung liegt in der Untersuchung der Veränderungen in der Hydrosphäre zwischen 1850 und 2050 und wie diese mit den übrigen Komponenten der Geosystem in hochalpinen Lagen interagieren. Insbesondere werden wir gründliche Zeitreihenanalysen zur Untersuchung der Korrelation zwischen Klimawandel und den Jährlichkeiten extremer hydrologischer Ereignisse (z.B.: zeitliche Verteilung von Niederschlagsereignissen innerhalb eines Jahres und Einsetzen der Schnee- und Gletscherschmelze) durchführen. Daneben wollen wir verifizieren ob es möglich ist die Qualität der hydrologischen Modelle für hochalpine Einzugsgebiete durch 'multi-objective' Kalibrierungsansätze zu verbessern. Archive spielen dabei eine wichtige Rolle als Datenquelle zur Rekonstruktion der meteorologischen Bedingungen der Vergangenheit. Außerdem ermöglicht die Zusammenarbeit mit anderen Teilprojekten die Kalibrierung des hydrologischen Modells, sowohl gegen den Abfluss, als auch gegen Permafrost- sowie Schnee- und Gletschermessungen. Darüber hinaus werden uns die geplanten experimentellen Messungen erlauben die 'multi-objective' Kalibrierung auf weitere Parameter, wie die elektrische Leitfähigkeit des Abflusses oder die Wassertemperatur der Wildbäche auszuweiten. Das resultierende, kalibrierte Modellergebnis, für das eine intensive Unsicherheitsanalyse durchgeführt werden wird, wird dann von den weitern Teilprojekten genutzt, um die Veränderungen in der Geosystem zu interpretieren.
Origin | Count |
---|---|
Bund | 228 |
Land | 16 |
Wissenschaft | 66 |
Type | Count |
---|---|
Ereignis | 24 |
Förderprogramm | 187 |
Messwerte | 24 |
Strukturierter Datensatz | 48 |
Taxon | 7 |
Text | 21 |
unbekannt | 20 |
License | Count |
---|---|
geschlossen | 32 |
offen | 268 |
Language | Count |
---|---|
Deutsch | 175 |
Englisch | 166 |
Resource type | Count |
---|---|
Archiv | 17 |
Bild | 2 |
Datei | 48 |
Dokument | 10 |
Keine | 138 |
Unbekannt | 8 |
Webseite | 108 |
Topic | Count |
---|---|
Boden | 300 |
Lebewesen & Lebensräume | 300 |
Luft | 300 |
Mensch & Umwelt | 300 |
Wasser | 300 |
Weitere | 300 |