API src

Found 138 results.

Kartierung von Klimagasen mittels spektroskopischer Messung von reflektiertem Sonnenlicht

Urbane Emissionen von Kohlendioxid (CO2) und Methan (CH4) machen einen Großteil der Treibhausgasemissionen weltweit aus. Deshalb sind Städte auch Vorreiter bei der Entwicklung von Emissionsreduktionsmaßnahmen zur Mitigation des Klimawandels. Solche Maßnahmen müssen durch räumlich und zeitlich hochaufgelöste, vollständige, verlässliche und verifizierte Informationen begleitet und in Bezug auf ihre Effizienz überprüft werden. Unter den Beobachtungsmethoden für Treibhausgase gibt es allerdings eine Lücke im Bereich der horizontalen, flächendeckenden Kartierung auf der Skala einiger Kilometer. Dort braucht es eine Technik, die die Empfindlichkeitslücke zwischen lokalen in-situ Messungen und regional-integrierenden Säulenmessungen durch Fernerkundungsmessungen füllt.Hier schlage ich vor, urbane Treibhausgasquellen mit einer innovativen und portablen Technik zu studieren, die die CO2 und CH4 Konzentrationsfelder flächendeckend kartieren kann und so die Beobachtungslücke erfasst. Die erste Studienregion ist der Großraum Los Angeles, wo sich die CO2 und CH4 Emissionen auf mehr als 100 MtCO2/a und 300 ktCH4/a belaufen, was die Region zu einer der größten, lokalisierten Quellen weltweit macht. Los Angeles wurde in der Vergangenheit vielfältig in Bezug auf seine Treibhausgasquellen untersucht, indem beispielsweise Inventarisierungen durchgeführt und durch atmosphärische Messungen bewertet wurden. Ein herausragendes Experiment läuft gerade im Rahmen des CLARS-FTS (California Laboratory for Atmospheric Remote Sensing - Fourier Transform Spectrometer) – ein Spektrometer, das auf Mt. Wilson stationiert ist und reflektiertes Sonnenlicht aus dem Los Angeles Stadtgebiet einfängt. Wir haben eine portable Variante dieses Instruments entwickelt und schlagen nun vor beide Instrumente gemeinsam mit kalifornischen Partnern bei einer Feldkampagne zu betreiben.Dabei ist es unser Ziel das neue portable Observatorium zu validieren und für zukünftige Langfristvorhaben zu empfehlen. Dazu wollen wir innovative Beobachtungsmuster wie die Definition von Zoom-Regionen oder die Verwendung von gekreuzten Lichtwegen ausprobieren, um die räumliche und zeitliche Auflösung zu optimieren. Zudem werden wir die Genauigkeiten verbessern, indem wir einen neuen Ansatz der Strahlungstransportmodellierung implementieren, der simultan mit der Gasbestimmung auch die Streuung an atmosphärischen Partikeln berücksichtigt. Für die Fallstudie Los Angeles werden wir die Variabilität und die Gradienten der CO2 und CH4 Konzentrationen auf ihre Konsistenz mit den Emissionsinventaren überprüfen und untersuchen, bis zu welchem Grad sich die Einflüsse des meteorologischen Transports, der regionalen Advektion, episodischer Ereignisse und der urbanen Biosphäre unterscheiden lassen.

Der Einfluss von Strömung auf Methanproduktion und -oxidation in aquatischen Sedimenten.

Binnengewässer sind ein wichtiger Bestandteil des globalen Kohlenstoffkreislaufs und vor allem Emissionen des Treibhausgases Methan (CH4) aus Gewässern sind von zunehmendem globalen Interesse. Jüngste wissenschaftliche Untersuchungen zielen darauf ab, das prozessbasierte Verständnis der räumlichen und zeitlichen Dynamik der CH4-Emissionen aus Gewässern und ihrer treibenden Faktoren zu verbessern. Prognosen dazu, wie sich Methanemissionen aus Gewässern durch anthropogenen Einflüsse oder durch den Klimawandel bedingt verändern, sind auf Basis bisheriger Modelle nicht zuverlässig möglich. Viele der Faktoren, welche die Raten der Methanproduktion, -Oxidation und Emission in aquatischen Sedimenten beeinflussen, stehen in direkter oder indirekter Beziehung zur Strömungsgeschwindigkeit. Die Strömungsabhängigkeit der Methanproduktion und Methanemissionen von aquatischen Ökosystemen wurde jedoch bisher nicht explizit untersucht. In diesem Projekt werden wir neuartige experimentelle Mesokosmensysteme einsetzen, um die Strömungsabhängigkeit dieser Prozesse in einer Reihe von gezielten Laborexperimenten zu untersuchen. Der experimentelle Aufbau simuliert die Bedingungen, denen aquatische Sedimente in einem hydraulischen Gradienten von schnell fließenden (lotischen) hin zu schwach strömenden (lentischen) Systemen ausgesetzt sind. Solche Übergänge treten beispielsweise entlang von Längsgradienten in Flussstauhaltungen auf. Unsere Experimente zielen darauf ab, den Einfluss der Strömungsgeschwindigkeit auf diejenigen Prozesse zu untersuchen, die zur Bilanz von Methan im Sediment und an der Sediment-Wasser-Grenzfläche beitragen. Die Ergebnisse werden wir in ein prozessbasiertes Modell implementieren, welches neben relevanten biogeochemischen Parametern auch die Strömungsgeschwindigkeit als explizite Randbedingung berücksichtigt. Mit dem validierten Modell werden wir die Relevanz der Strömungsgeschwindigkeit für die Emissionen von Methan aus unterschiedlichen Gewässern mit Hilfe eines systemanalytischen Ansatzes untersuchen.

Vermeidung von Treibhausgasemissionen bei der Produktion Seltener Erden durch Transfer von Ressourcen-Technologie aus dem Weltraum auf die Erde, Teilprojekt: Prozessmodellierung und Simulation zur Steigerung der Effizient (PROMOTE)

Dieses Vorhaben wird im Rahmen des Programms 'Nachhaltig im Beruf' gefördert

KlimaPay

Grünes Eisen aus Namibia, Teilvorhaben: Wasserstoffherstellung für die Eisenerzreduktion

Photochemie von wichtigen reaktiven Stickstoffverbindungen in der Mesosphäre/unteren Thermosphäre und Stratosphäre

Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.

Eine neue Bedrohung der stratosphärischen Ozonschicht durch anthropogene kurzlebige Halogenverbindungen

Die stratosphärische Ozonschicht bietet der Erde einen wirkungsvollen Schutzschild gegen den ultravioletten, schädigenden Anteil der solaren Strahlung. Der anthropogene Ozonabbau, verursacht durch Emissionen von langlebigen Fluorchlorkohlenwasserstoffen (FCKWs), war eines der größten Umweltprobleme der letzten Jahrzehnte. Emissionen von FCKWs wurden infolge des Montrealer Abkommens von 1987 stark reduziert und eine langsame Erholung der Ozonschicht wird im Laufe der nächsten Jahrzehnte erwartet. Im Gegensatz dazu werden die Emissionen von sehr kurzlebigen Halogenverbindungen (Very Short-Lived Halocarbons, VSLH), welche auch stratosphärisches Ozon zerstören, aufgrund von neuen Technologien ansteigen. Chemische Oxidationsprozesse in der marinen Umwelt, insbesondere die neuartigen Behandlungsverfahren von Ballastwasser, und anwachsende tropische Makroalgenkulturen beeinflussen biogeochemische Kreisläufe und können zu einem starken Anstieg der VSLH Produktion und Emission führen. Zusätzlich zu ihrem schädlichen Effekt auf die Ozonschicht, beeinflussen VSLH den atmosphärischen Strahlungsantrieb und das Vermögen der Atmosphäre viele natürliche und anthropogene Spurenstoffe zu entfernen (atmosphärische Oxidationspotential). Momentan ist nur sehr wenig über die zukünftig zu erwartenden anthropogenen VSLH Emissionen aus dem Ozean sowie ihre bedrohliche Wirkung auf die atmosphärische Chemie bekannt und fundierte wissenschaftliche Untersuchungen sind dringend erforderlich. Das Ziel dieses Antrages ist es, momentane und zukünftige Emissionen anthropogener VSLH und ihren Einfluss auf atmosphärische Zusammensetzung und Chemie zu quantifizieren. Ein besonderer Fokus liegt auf der Untersuchung einer möglichen neuen Bedrohung der stratosphärischen Ozonschicht. In einem ersten Schritt werden globale Karten der ozeanischen Emissionen von anthropogenen VSLH erstellt. Im zweiten Schritt wird, basierend auf atmosphärischer Chemie-Transport Modellierung, die Entwicklung der anthropogenen VSLH in der Atmosphäre quantifiziert. Zu diesem Zweck werden Küsten-auflösende Modellsysteme entwickelt, welche später dazu beitragen Parametrisierungen anthropogener VSLH Prozesse für globale Klima-Chemie Modelle zu erstellen. In einem dritten Schritt wird der globale Einfluss der anthropogenen VSLH auf Ozonabbau, Strahlungsantrieb und atmosphärisches Oxidationspotential bestimmt und mögliche Rückkopplungsmechanismen werden identifiziert. Der interdisziplinäre Forschungsplan umfasst die Synthese existierender Daten, Messungen, sowie Ozean-Zirkulation-, Biogeochemie- und atmosphärische Klima-Chemie Modellierung. Das Forschungsvorhaben wird die Frage beantworten, ob anthropogene Aktivitäten in der marinen Umwelt eine Bedrohung für die stratosphärische Ozonschicht darstellen. Solch eine Risikoabschätzung ist von großer gesellschaftlicher Bedeutung und liefert entscheidende Information für politische Entscheidungsträger bezüglich der Planung zukünftiger menschlicher Aktivitäten.

Bedeutung von mehrjährigen und nicht mehrjährigen Flüssen für Kohlendioxid- und Methanemissionen bei Regenereignissen und Trocknungs-Wiederbefeuchtungszyklen (StreamFlux)

Fließgewässer tragen wesentlich zum globalen organischem Kohlenstoffkreislauf und zu der Emission der klimarelevanten Gase Kohlendioxid (CO2) und Methan (CH4) bei. Die Dynamik der CO2-Emissionen wurde mit dem Wasserabfluss und der Hydrologie des Einzugsgebietes in Verbindung gebracht, während CH4 mit dem Biom des Fließgewässers und der umgebenden Landnutzung korrelierte. Die Mehrzahl dieser Studien wurde jedoch an ganzjährig wasserführenden (perennierenden) Fließgewässern und unter stabilem Wasserabfluss durchgeführt, mit einer nur begrenzten Abdeckung von Hochwasserepisoden (Niederschlagsereignissen). Bislang sind daher Gasemissionen von nicht ganzjährig wasserführenden (intermittierenden) Fließgewässern nicht ausreichend in den lokalen und regionalen Kohlenstoff-Budgets enthalten. Diese erlangen jedoch erhöhte Bedeutung, da die aktuellen Prognosen zum Klimawandel darauf hindeuten, dass das Ausmaß und die Häufigkeit schwerer klimatischer Ereignisse wie Überschwemmungen und Dürre wahrscheinlich zunehmen wird. Das vorgeschlagene Projekt zielt darauf ab, diese wichtige Forschungslücke zu schließen, indem die treibenden Kräfte und die jahreszeitliche Relevanz der CO2- und CH4-Emissionen nicht nur in perennierenden sondern auch in intermittierenden Fließgewässern untersucht werden sollen. Das erste Ziel des Projekts ist die Quantifizierung der lokalen Relevanz von ereignisgesteuerten CO2- und CH4-Emissionen aus perennierenden Fließgewässern mittels einer Kombination von i) State-of-the-art Techniken zur Quantifizierung von Gasflüssen über die Wasser-Luft-Grenzfläche, ii) Sensoren nach dem Stand der Technik und In-situ-Gasmessungen und iii) etablierten Verfahren zur Bewertung der mikrobiellen Gemeinschaft und potentieller metabolischer Aktivität Das zweite Projektziel ist die Untersuchung des Kohlenstoff-Kreislaufs und der Gasemissionen von kontinentalen, nicht-perennierenden Fließgewässern, mit Schwerpunkt auf Trocknungs- und Wiederbefeuchtungszyklen. Das Projekt konzentriert sich auf das Einzugsgebiet des Flusses Queich (271 km2) in Rheinland-Pfalz. Der Fluss entspringt in einem natürlichen Reservoir (Biosphärenreservat Pfälzerwald) und fließt entlang eines ausgeprägten Landschaftsgefälles (natürlich bis anthropogen beeinflusst). Diese Umgebung bietet ein ideales Untersuchungsgebiet um die Rolle der Hydrologie und der Bodennutzung für kohlenstoffrelevante Gasemissionen aus Fließgewässern zu erforschen. Das übergeordnete Ziel des Projekts ist die Quantifizierung der Beiträge von episodischen (ereignisbasierten) Einflüssen und von saisonalen Trocknungs-Wiederbefeuchtungszyklen zum lokalen und regionalen Kohlenstoff-Kreislauf. Die Projektdaten werden mit zusätzlichen hydrologischen und biogeochemischen Daten in bestehenden geografischen Informationssystemen kombiniert, um die Entwicklung von Upscaling-Verfahren zu ermöglichen, die die oben genannten Beiträge schließlich in umfangreiche Budgets für den Kohlenstoffkreislauf überführen können.

Erforschung eines Geopolymer-Schaums zur energieeffizienten Dämmung und Stabilisierung von 3D-gedruckten Gebäuden (GeoSchaum), Teilvorhaben: Tragfähigkeitssteigerung sowie Wärme- und Schalldämmung 3D-gedruckter Gebäude

1 2 3 4 512 13 14