<p>Gesundheitsrisiken durch Hitze</p><p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten.</p><p>Informationen zur interaktiven Karte</p><p>Quellen: <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> 2000-2024 – <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>/Climate Data Center, <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2000-2024 – DWD/Climate Data Center; Daten für 2024 – Persönliche Mitteilung des DWD vom 15.05.2025.</p><p>Bearbeitung: Umweltbundesamt, FG I 1.6/FG I 1.7</p><p>Gesundheitsrisiko Hitze</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe<a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a> 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren (vgl.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich.</p><p><em>Tipps zum Weiterlesen:</em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. & Mücke, H.-G. (2017): <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>
<p>Treibhausgas-Emissionen</p><p>Das Umweltbundesamt ist in Sachen Treibhausgasemissionen die offizielle Anlaufstelle und wichtiger Ansprechpartner in Deutschland.</p><p>Die Lufthülle unseres Planeten besteht aus verschiedenen Gasen, die über vielfältige Funktionen und Prozesse zu einem komplexen chemischen System verknüpft sind. Anthropogene Emissionen bedrohen das atmosphärische Gleichgewicht vor allem in zweierlei Hinsicht: Treibhausgasemissionen führen zu einem Anstieg der globalen Temperatur. Die Klassischen Luftschadstoffe sind für <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a> und <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a> von Ökosystemen, aber auch für eine Gefährdung der menschlichen Gesundheit verantwortlich.</p><p>Auf den folgenden Seiten geben wir eine kurze Einführung in die im Kyoto-Protokoll geregelten Treibhausgase und erläutern, wie sie entstehen und sich auf unser <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a> auswirken. Wir stellen Ihnen die wichtigsten Emissionsquellen vor und liefern aktuelle Daten zur Entwicklung der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen. Außerdem zeigen wir, wie Deutschland in Sachen Emissionen im Vergleich zu anderen EU-Staaten dasteht und wie die für Deutschland verpflichtende internationale Emissionsberichterstattung funktioniert.</p>
Die Veränderung des globalen Wasserkreislaufs durch den Klimawandel ist eine der größten Herausforderungen für die Gesellschaft, da trockene Regionen trockener und feuchte Regionen feuchter werden. Das Problem besteht darin, dass 85 % der Verdunstung und 77 % der Niederschläge über den Ozeanen stattfinden und der globale Wasserkreislauf aufgrund der schwierigen Beobachtungsbedingungen über den Ozeanen nur unzureichend verstanden wird. Der Austausch von Süßwasser zwischen dem Ozean und der Atmosphäre findet jedoch in einer obersten dünnen Schicht der Meeresoberfläche statt, den so genannten Oberflächenfilm. Die Verdunstung von Wasserdampf aus den Oberflächenfilmen erhöht deren Salzgehalt, während der Niederschlag den Salzgehalt in den Oberflächenfilmen verringert. Das Hauptziel dieses Forschungsprojekts ist ein umfassendes Verständnis der Dynamik und der Veränderungen des Salzgehalts und der damit zusammenhängenden thermischen Felder in den ozeanischen Oberflächenfilmen und der oberflächennahen Schicht (NSL) sowie deren Zusammenhang mit den verdunstenden Süßwasserflüssen zu erzielen. Einer der Hauptpunkte dieser Arbeit ist, dass Süsswasserflüsse (Verdunstung minus Niederschlag) direkt auf die Meeresoberfläche einwirkt und daher vorwiegend den Salzgehalt der Oberflächenfilme quasi-instant beeinflusst, während die derzeitigen Methoden, die den Salzgehalt der gemischten Schicht verwenden, sich auf dekadischen Skalen beziehen. Eine umfassende Reihe von Experimenten wird in einer großmaßstäblichen Mesokosmenanlage an der Universität Oldenburg durchgeführt, in der die treibenden Kräfte für die Verdunstung kontrolliert werden können (Wassertemperatur, Windgeschwindigkeit, turbulente Vermischung, Lufttemperatur und -feuchtigkeit). Im Mittelpunkt steht eine Expedition in den Mittelatlantik mit seinem hohen Oberflächensalzgehalt, d. h. Verdunstungsraten übersteigen die Niederschlagsraten. Während der Expedition kommt ein funkgesteuertes Katamaran zum Einsatz, der in der Lage ist, Oberflächenfilme zu sammeln. Die Beobachtungen werden durch Messungen von Bojen, schiffsbasierten Messungen und Satelliten unterstützt. Die Arbeiten ergänzen die laufenden Aktivitäten zur Untersuchung des Zusammenhangs zwischen dem Salzgehalt der Oberflächenfilme und den Niederschlägen. Diese Arbeit ist ein erster Schritt, um zu verstehen, wie der Salzgehalt der Oberflächenfilme und der oberflächennahe Salzgehalt verwendet werden können, um dynamische Süsswasserflüsse zu integrieren und Parametrisierungen zur Extrapolation von Süsswasserflüssen unter Verwendung von satellitengestützten Salzgehaltsdaten zu entwickeln.
Aktuelle wissenschaftliche Studien legen nahe, dass die aktuelle Erderwärmung durch Treibhausgasemissionen hervorgerufen wird, die vom Menschen verursacht sind. Um gegen diese Entwicklung geeignete Maßnahmen ergreifen zu können bzw. um zu überprüfen, ob solche Maßnahmen von Erfolg gekrönt sind, ist es notwendig, die Schadstoffkonzentrationen inklusive der zugehörigen Emissionsquellen genau zu kennen. Diese Informationen sind bisher jedoch sehr lückenhaft und beruhen auf sogenannten 'bottom-up' Berechnungen. Da diese Kalkulationen nicht auf direkten Messungen beruhen, weisen sie große Ungenauigkeiten auf und sind außerdem nicht in der Lage, bisher unbekannte Emissionsquellen zu identifizieren. In dem hier vorgestellten Projekt soll ein mesoskaliges Netzwerk für die Überwachung von Luftschadstoffen wie CO2, CH4, CO, NO2 und O3 aufgebaut werden, das auf dem neuartigen Konzept der differentiellen Säulenmessung beruht. Bei diesem Ansatz wird die Differenz zwischen den Luftsäulen luv- und leewärts einer Stadt gebildet. Diese Differenz ist proportional zu den emittierten Schadstoffen und somit eine Maßzahl für die Emissionen, welche in der Stadt generiert werden.Mithilfe dieser Methode wird es in Zukunft möglich sein, städtische Emissionen über lange Zeiträume hinweg zu überwachen. Damit können neue Informationen über die Generierung und Umverteilung von Luftschadstoffen gewonnen werden. Wir werden u.a. folgende zentrale Fragen beantworten: Wie verhält sich der tatsächliche Trend der CO2, CH4 und NO2 Emissionen in München über mehrere Jahre? Wo sind die Emissions-Hotspots? Wie akkurat sind die bisherigen 'bottom-up' Abschätzungen? Wie effektiv sind die Maßnahmen zur Emissionsreduzierung tatsächlich? Sind vor allem für Methan weitere Maßnahmen zur Reduzierung der Emissionen notwendig? Zu diesem Zweck werden wir ein vollautomatisiertes Messnetzwerk aufbauen und passende Methoden zur Modellierung entwickeln, welche u.a. auf STILT (Stochastic Time-Inverted Lagrangian Transport) und CFD (Computational Fluid Dynamics) basieren. Mithilfe der Modellierungsresultate werden wir eine Strategie entwerfen, wie städtische Netzwerke zur Überwachung von Luftschadstoffen aufgebaut werden müssen, um repräsentative Ergebnisse zu erhalten. Außerdem können mit den so gewonnenen städtischen Emissionszahlen z.B. dem Stadtreferat, den Stadtwerken München oder der Bayerischen Staatsregierung Möglichkeiten zur Beurteilung der Effektivität der angewandten Klimaschutzmaßnahmen an die Hand gegeben werden. Das hier vorgestellte Messnetzwerk dient somit als Prototyp, um die grundlegenden Fragen zum Aufbau eines solchen Sensornetzwerks zu klären, damit objektive Aussagen zu städtischen Emissionen möglich werden. Dieses Projekt ist weltweit einmalig und wird zukunftsweisende Ergebnisse liefern.
Räuber-Beute-Beziehungen zwischen Bakterien und ihren eukaryotischen Räubern werden seit langem in der terrestrischen Ökologie untersucht, jedoch werden die Interkationen zwischen Mikroeukaryoten oft vernachlässigt. Mikroalgen nehmen eine Schlüsselposition als phototrophe Organismen in den marinen und Süßwasserökosystemen der Antarktis und Arktis ein; die meiste Energie und die meisten Nährstoffe werden durch diese zu höheren trophischen Ebenen kanalisiert. In diesem Kontext fehlen Studien in den terrestrischen Ökosystemen der Antarktis. Die terrestrische Vegetation der Antarktis wird dominiert durch kryptogamen Bewuchs mit einer Vielzahl und hoher Abundanz von Mikroalgen. Bis zu 55% des eisfreien Bodens der antarktischen Halbinsel und bis zu 70% im arktischen Spitzbergen werden von biologischen Bodenkrusten (Biokrusten) bedeckt. Diese Zahlen werden zukünftig auf Grund des Klimawandels und der daraus folgenden Erwärmung der Polarregionen steigen (“Arctic Greening”). Man kann daher annehmen, dass ein großer Anteil der Primärproduktion in den Polarregionen durch Mikroalgen in Biokrusten realisiert wird. Dennoch fehlt die Verbindung zu höheren trophischen Ebenen; insbesondere, wenn man bedenkt, dass in der Antarktis algenfressende Metazoen selten und artenarm sind. Cercozoa sind eine der häufigsten algenkonsumierenden einzelligen Eukaryoten (Protisten) in terrestrischen Systemen; vorläufige Ergebnisse zeigen: algenkonsumierende Cercozoa dominieren die mikrobielle Gemeinschaft in den Biokrusten der Polarregionen. Wir werden zum ersten Mal die Räuber-Beute-Beziehung in Biokrusten zwischen den Algen als Primärproduzenten und den wichtigsten Algenkonsumenten erforschen, um so ein vollständigeres Bild des terrestrischen Nahrungsnetzes in den beiden Polarregionen zu erhalten. Um das zu erreichen, kombinieren wir einen Barcode-basierten Hochdurchsatz-Illumina Ansatz mit klassischen Kulturexperimenten, welche Aufschluss über ökologische Funktionen der einzelnen Organismen liefern. Damit erhalten wir erstmalig ein umfassendes Bild der Räuber-Beute-Beziehung zwischen Mikroalgen und ihren Räubern, den Cercozoa, für das terrestrische Ökosystem in Arktis und Antarktis. Diese Daten werden zur Beantwortung der folgenden Fragen beitragen: Wie wichtig ist das terrestrische Nahrungsnetz in den Polarregionen? Und hat die Klimaerwärmung das Potential diese Interaktionen zu verändern?
Wissenschaftler sowie Politiker erwägen die regionale Verwendung von Marine Cloud Brightening (RegMCB) als mögliche Solar Radiation Management Technologie um die Erderwärmung durch anthropogene Treibhausgase gezielt zu verlangsamen. Während theoretische Arbeiten bezeugen, dass dieser Ansatz prinzipiell einen kühlenden Effekt im Klimasystem erzeugen kann, verbleiben enorme Unsicherheiten bezüglich der Wirksamkeit und der potentiellen Auswirkungen dieses Ansatzes. Dennoch werden erste MCB Feldexperimente in Australien bereits durchgeführt und sind auch in anderen Ländern in der Planung.Der aufhellende Effekt in marinen Wolken durch die kontinuierliche Emission von Seesalz in die untere Troposphäre ist bis heute nur hinreichend verstanden. Der Grad der Wirksamkeit dieser Technologie basiert hauptsächlich auf entweder hoch-aufgelösten Modellrechnungen, welche räumlich und zeitlich stark eingeschränkt sind, oder auf globalen Klimamodellrechnungen, welche auf stark vereinfachten Annahmen über den Ausstoß von Seesalzpartikeln basieren. Diese Lücke zwischen bisher verwendeten Modellansätzen werden wir innerhalb dieses Forschungsantrags schließen. Mit Hilfe von Simulationen von möglichen MCB Strategien innerhalb des Kalifornischen Stratocumulus Wolkendecks, werden wir den Wirksamkeitsgrad dieser Technologie unter realistischen Annahmen quantifizieren, und gleichzeitig potentielle Auswirkungen auf der regionalen Skala identifizieren und quantifizieren können.Innerhalb dieses Projektes werden wir eine vereinfachte Version von ICON-HAM, einem Klimamodell mit einer umfassenden Parametrisierung der Aerosolmikrophysik inklusive Strahlungskopplung und Aerosol-Wolken-Wechselwirkungen, entwickeln und verifizieren. Unser Modellansatz beinhaltet die volle Komplexität ICON-HAMs für Seesalzgrößenverteilungen während alle anderen Aerosolspezien mit konstanten Hintergrundkonzentrationen vorgeschrieben werden. Diese Modellversion wird wir mithilfe von Beobachtungen des Kalifornischen Stratocumulus Wolkendecks verifiziert werden. Das Kalifornische Deck ist eins der vier subtropischen Stratocumulusregionen weltweit und ist im Vergleich zu den anderen Decks am umfassendsten vermessen und verstanden. Innerhalb von RegMCB werden wissenschaftliche Erkenntnisse gewonnen welche uns helfen werden den Wirksamkeitsgrad und die Grenzen dieser Technologie zu quantifizieren. Innerhalb dieses Antrages werden erstmals Simulationen durchgeführt welche auf realistischen MCB Szenarien basieren und die nötige Komplexität beinhalten Aerosol-Wolken-Wechselwirkungen korrekt abzubilden. Gleichzeitig tragen die hier vorgeschlagenen Arbeiten zu einer Verbesserung unseres Verständnisses und der Repräsentation von Aerosol-Wolken-Wechselwirkungen in marinen Stratocumuli allgmein bei.
Wir wollen die Rolle von Hyperthermie im Massenaussterben an der Perm/Trias-Grenze, der größten biotischen Krise in der Erdgeschichte, verstehen. Trotz ihrer erheblichen Bedeutung für die Evolution des Lebens werden die auslösenden Mechanismen für diese Krise noch immer sehr kontrovers diskutiert. Dieses Massenaussterben ist das gravierendste vergangene Beispiel einer durch Klimaveränderungen, besonders durch globale Erwärmung, ausgelöste Krise. Sie kann daher als ein Analogon für die Reaktion der Biodiversität auf die zukünftige anthropogene Klimaänderung angesehen werden. Wir schlagen hier ein Forschungsprojekt vor, in welchem die Konsequenzen von Stress durch Erwärmung während des end-Permischen Massenaussterbens und der Erholung in der frühen Trias untersucht wird. Wir wählen die Ostracoden als Modell-Organismen für simultane Untersuchungen ihrer Evolutionsgeschichte und ihrer Reaktion auf Klimaveränderungen (besonders hinsichtlich der Erwärmung am Perm/Trias-Grenzintervall). Die zu untersuchenden Aufschlüsse liegen im Nordwest-Iran (Region von Julfa), Zentraliran (Region von Abadeh) und dem Zagros-Gebirge (Region von Esfahan); diese Regionen repräsentieren Tiefschelf- bis Flachwasser-Habitate. Unsere Studie wird die Untersuchung von Isotopengeochemie (Analysen von delta13C und delta18O) unter Anwendung der SIMS-Technologie von Ostracodenschalen beinhalten. Außerdem werden die Ostracoden-Vergesellschaftungen hinsichtlich ihrer taxonomischen Diversität, morphologischen Disparität, Grad des Endemismus, Veränderungen in der Größe der Individuen usw. untersucht.
Holozäne Meeresspiegeländerungen waren von Ort zu Ort verschieden. Großräumige Mechanismen, die für die beobachtete Variabilität verantwortlich sind, umfassen das Wechselspiel zwischen eustatischen Schmelzwassereinträgen und isostatischen Ausgleichsbewegungen der festen Erde infolge des postglazialen Massenaustausches zwischen polaren Eisschilden und den Ozeanen. Diese Prozesse werden durch ozeanographische Faktoren, regional und über kürzere Zeitskalen, weiter differenziert. Während des frühen Holozäns stieg der Meeresspiegel in den äquatorialen Ozeanbecken rasch an, was den dominanten eustatischen Einfluss reflektiert. Im mittleren Holozän, als sich das Abschmelzen der Eisschilde verlangsamte, wurden Meeresspiegeländerungen in den Tropen vor allem durch isostatische Prozesse gesteuert da die absinkenden peripheren Vorlandausbuchtungen in höheren Breiten eine Umverteilung der Wassermassen vom Äquator hin zu den Polen bewirkten. Im Spät-Holozän / Anthropozän wurde die tropische Meeresspiegelvariabilität weitgehend durch dynamisch-ozeanographische und sterische Faktoren bestimmt. Die Kenntnis des raum-zeitlichen Zusammenspiels zwischen den vorherrschenden Prozessen holozäner Meeresspiegeländerungen in Äquatornähe ist essentiell, um die Dynamiken vergangener Eisschilde zu verstehen, Erdparameter in glazialen isostatischen Ausgleichsmodellen zu definieren und anthropogene Einflüsse zu bewerten. Dieses Projekt liefert einen Beitrag zum Verständnis der dominanten Einflussfaktoren des Holozänen / Anthropozänen Meeresspiegels in Indonesien, einem Archipel der gefährdet vom zukünftigen Meeresspiegelanstieg ist. Wir werden die Rate des Meeresspiegelanstiegs im frühen Holozän und den Zeitpunkt als der Meeresspiegel erstmals seine gegenwärtige Position erreichte, anhand von Korallenbohrkernen im tektonisch stabilen Spermonde-Archipel, Sulawesi, rekonstruieren. Die Ergebnisse werden mit Simulationen zu den glazialen isostatischen Ausgleichsbewegungen verglichen, um zu ermitteln, ab wann die Isostasie der dominierende Faktor für den Anstieg des Meeresspiegels im frühen Holozän wurde. Dieses Projekt wird außerdem widersprüchliche Meeresspiegelrekonstruktionen in Süd-Sulawesi, durch gründliche Feldarbeiten evaluieren. Zusammen mit den Rekonstruktionen für das frühe Holozän werden diese Ergebnisse verwendet, um die regionalen Erdmodell-Parameter zu begrenzen und um isostatische Hintergrundsignale zu den anthropogenen und dynamisch-ozeanographischen Einflüssen zu ermitteln. Schließlich wird dieses Projekt die erste hochauflösende Meeresspiegelrekonstruktion für das Spät-Holozän / Anthropozän in Südostasien liefern. Basierend auf einer fließenden zeitlichen Abfolge fossiler Mikroatolle, die bis in das 17. Jahrhundert zurückreichen wird, wird der sterische Beitrag zur Meeresspiegelvariabilität im Indopazifischen Raum während der Kleinen Eiszeit und der globalen Erwärmung des 20. Jahrhunderts bewertet.
Origin | Count |
---|---|
Bund | 1453 |
Kommune | 1 |
Land | 349 |
Wissenschaft | 53 |
Type | Count |
---|---|
Daten und Messstellen | 29 |
Ereignis | 67 |
Förderprogramm | 1051 |
Lehrmaterial | 3 |
Taxon | 12 |
Text | 546 |
Umweltprüfung | 1 |
unbekannt | 133 |
License | Count |
---|---|
geschlossen | 659 |
offen | 1177 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 1474 |
Englisch | 627 |
Resource type | Count |
---|---|
Archiv | 17 |
Bild | 36 |
Datei | 91 |
Dokument | 259 |
Keine | 943 |
Multimedia | 1 |
Unbekannt | 14 |
Webdienst | 2 |
Webseite | 706 |
Topic | Count |
---|---|
Boden | 1840 |
Lebewesen und Lebensräume | 1840 |
Luft | 1840 |
Mensch und Umwelt | 1840 |
Wasser | 1840 |
Weitere | 1840 |