s/globaler-wandel/Globaler Wandel/gi
Der Meeresspiegelanstieg wird üblicherweise als Problem von Risiko und Verwundbarkeit diskutiert, insbesondere in Bezug auf die Inselstaaten Südostasiens. Ein Ergebnis dieser Diskussionen ist die 'Aufrüstung' der urbanen Küstenlinien in der Region, die massive Investitionen für Infrastrukturmaßnahmen zum Schutz vor steigenden Überflutungsrisiken, Subsidenz und anderen damit verbundenen Gefahren nach sich zieht. Parallel dazu findet eine starke ökonomische Aufwertung der Küstengebiete statt, etwa durch die Erschließung für hochwertige Immobilienprojekte und andere Privatisierungsprozesse. Diese Entwicklungen zeigen eine gegensätzliche Realität der zukünftigen Entwicklung von städtischen Küsten auf. Das beantragte Projekt 'Towards Blue Urbanism for Sea Level Change Adaptation' erforscht dieses scheinbare Paradoxon, indem sowohl risikobezogene, als auch solche Lösungsansätze und Paradigmen der Anpassung an Meeresspiegeländerungen Gegenstand der Analyse werden, die stärker als Chance und positive Entwicklungsperspektive wahrgenommen und diskutiert werden. Den empirischen Kern bildet dabei die Fokussierung auf zwei Technologien der Anpassung, die in den letzten Jahren in verschiedenen räumlichen Kontexten an Bedeutung gewonnen haben: multifunktionelle Deiche und schwimmende Inseln und Häuser. Anhand dieser Lösungsansätze werden globale Trajektorien sowie diskursive Verschiebungen und Infragestellungen untersucht, die mit der Verbreitung solcher Technologien einhergehen. Das Forschungsprojekt verbindet dabei Schauplätze der Innovation mit Orten der Weiterverbreitung von Wissen, bis hin zu Orten der Umsetzung der Technologien in den drei Städten Jakarta, Singapur und Manila. Während diese verschiedenen Orte als 'diskursive Räume' konzipiert werden, legt das Projekt besonderes Augenmerk auf die Akteure und Akteurskonstellationen der Wissensdiffusion ('Diskursträger'), sowie die Modi und Bedingungen der Weiterverbreitung ('epistemic channels'). In diesen drei Dimensionen wird untersucht, inwiefern die Anpassung an den Meeresspiegel im 21. Jahrhundert zu einem gewinnträchtigen Investitionsbereich werden kann, der neue Formen des 'blue urbanism' ermöglicht. Auf konzeptioneller Ebene trägt das Projekt damit zu den aktuellen Diskussionen um Mikropolitiken in globalen Wissensnetzwerken bei, sowie zur Rolle von spekulativen Zukunftsentwürfen für die Anpassung urbaner Küstenregionen an Meeresspiegeländerungen.
Veranlassung Der Betrieb des ISMN an der TU Wien wurde seit seiner Implementierung im Jahr 2009 auf Projektbasis durch die Europäische Weltraumagentur (ESA) finanziert. Durch die Initiative des ICWRGC und der BfG wurde eine langfristige Finanzierung und neue Heimat des ISMN in Deutschland unter Mitwirkung des Bundesministers für Verkehr und digitale Infrastruktur a. D. Andreas Scheuer sichergestellt. Somit wurde im Jahr 2021 begonnen, den Transfer an ICWRGC/BfG vorzubereiten und neues Personal zu akquirieren. Der Transfer soll bis Ende 2022 abgeschlossen sein und der Produktionsbetrieb aufgenommen werden. Ziele - Das bedeutendste Ziel des ISMN ist die Bereitstellung und Dissemination von In-situ-Bodenfeuchtedaten. Diese Daten werden qualitätsgeprüft und harmonisiert frei zur Verfügung gestellt. Neben der Bereitstellung der Daten fungiert das ISMN als Langzeitarchiv für globale Bodenfeuchtedaten und konsolidiert diese in einer Datenbank. Dafür werden Daten von verschiedensten Datenanbietern mit unterschiedlichen Formaten prozessiert und in die Datenbank eingepflegt. Für einige der Daten erfolgt dies als kontinuierlicher Prozess, sodass Bodenfeuchtedaten als Fast-Echtzeitprodukt abgerufen werden können. Bodenfeuchte ist von großer Bedeutung für die Produktivität von Pflanzen und die Gesundheit von Ökosystemen. Somit hat sie entscheidenden Einfluss auf das Wasserdargebot für die Nahrungsmittelproduktion. Zusätzlich ist die Bodenfeuchte ein wichtiger Steuerfaktor für die Partitionierung von Energie- und Wasserflüssen an der Landoberfläche. Die Verfügbarkeit von langen Zeitreihen dieser Variable ermöglicht es Wissenschaftlern, Anwendern (z.B. Landwirte) und Entscheidungsträgern, Trends zu erkennen, den Einfluss des globalen Wandels abzuschätzen und Adaptionsstrategien zu entwickeln. Das ISMN stellt dauerhafte, harmonisierte und qualitätsgesicherte In-situ-Bodenfeuchtemessungen frei zur Verfügung. Zu diesem Zweck akquiriert und konsolidiert es global verfügbare Bodenfeuchtedaten.
Im August und September 2001 soll ein auf nepalischem Staatsgebiet gelegener und bis vor kurzem nicht zugänglicher Teil der Hochgebirgshalbwüste des Tibetischen Himalaya bezüglich seiner Wald- und Baumrelikte vegetationskundlich untersucht werden: Isolierte Vorkommen von Juniperus indica geben Anlaß zur Annahme, daß ein Trockengebiet, dessen Klimastationen 153-210 mm Jahresniederschlag verzeichnen, potentiell zumindest Offenwald haben könnte. Das Vorhaben zielt damit auf grundsätzlich neue Erkenntnisse über die Trockengrenze des Waldes. Mittels Pollenanalyse von Seggentorfen (in Zusammenarbeit mit Prof. Dr. H.-J. Beug, Göttingen) soll die Klima-, Vegetations- und Kulturlandschaftsgeschichte eines Teilraumes des Tibetischen Himalaya erstmals rekonstruiert werden. Die Untersuchungen ordnen sich damit ein in die 'Human Dimension of Global Change' - die Nichtnachhaltigkeit des Ressourcenmanagements vor allem in Grenzräumen wie der Trockengrenze des Waldes.
Water, carbon and nitrogen are key elements in all ecosystem turnover processes and they are related to a variety of environmental problems, including eutrophication, greenhouse gas emissions or carbon sequestration. An in-depth knowledge of the interaction of water, carbon and nitrogen on the landscape scale is required to improve land use and management while at the same time mitigating environmental impact. This is even more important under the light of future climate and land use changes.In the frame of the proposal 'Uncertainty of predicted hydro-biogeochemical fluxes and trace gas emissions on the landscape scale under climate and land use change' we advocate the development of fully coupled, process-oriented models that explicitly simulate the dynamic interaction of water, carbon and nitrogen turnover processes on the landscape scale. We will use the Catchment Modelling Framework CMF, a modular toolbox to implement and test hypothesis of hydrologic behaviour and couple this to the biogeochemical LandscapeDNDC model, a process-based dynamic model for the simulation of greenhouse gas emissions from soils and their associated turnover processes.Due to the intrinsic complexity of the models in use, the predictive uncertainty of the coupled models is unknown. This predictive (global) uncertainty is composed of stochastic and structural components. Stochastic uncertainty results from errors in parameter estimation, poorly known initial states of the model, mismatching boundary conditions or inaccuracies in model input and validation data. Structural uncertainty is related to the flawed or simplified description of natural processes in a model.The objective of this proposal is therefore to quantify the global uncertainty of the coupled hydro-biogeochemical models and investigate the uncertainty chain from parameter uncertainty over forcing data uncertainty up the structural model uncertainty be setting up different combinations of CMF and LandscapeDNDC. A comprehensive work program has been developed structured in 4 work packages, that consist of (1) model set up, calibration and uncertainty assessment on site scale followed by (2) an application and uncertainty assessment of the coupled model structures on regional scale, (3) global change scenario analyses and finally (4) evaluating model results in an ensemble fashion.Last but not least, a further motivation of this proposal is to provide project results in a manner that they support planning and decision taking under uncertainty, as this proposal is part of the package proposal on 'Methodologies for dealing with uncertainties in landscape planning and related modelling'.
Interne Schwerewellen (SW) verbinden verschiedene Schichten der Atmosphäre von der Troposphäre bis zur Thermosphäre und treiben die großskalige Zirkulation der mittleren Atmosphäre an. Viele der für SW relevanten Prozesse, von ihrer Entstehung über die Ausbreitung bis zur Dissipation sind jedoch unvollständig verstanden und, wegen der geringen typischen Wellenlänge, meist schlecht in numerischen Wettervorhersage- und Klimamodellen repräsentiert. GWING ist eines der Projekte der Forschergruppe MS-GWaves, die darauf abzielt, unser Verständnis der oben angesprochenen multi-skalaren dynamischen Schwerewellenprozesse zu verbessern, um letztendlich eine einheitliche Parametrisierung der in Atmosphärenmodellen nicht auflösbaren Schwerewellen (und ihrer Effekte) von der Entstehung bis zur Dissipation zu entwickeln. Um hierzu beizutragen, ist das zentrale Ziel von GWING die Entwicklung und Anwendung des atmosphärischen Zirkulationsmodells UA-ICON. Mit diesem Modell integriert GWING das in der Forschergruppe MS-GWaves entwickelte Wissen. In der zweiten Phase von GWING stehen zwei übergeordnete wissenschaftliche Fragen im Fokus: a) Welche Bedeutung haben Eigenschaften von Schwerewellen, die in klassischen Parametrisierungen nicht berücksichtigt werden, also insbesondere horizontale und nicht-inständige Propagation sowie die Wechselwirkung transienter Wellen mit dem Grundstrom? b) Welche Rolle spielen Schwerewellen für die globale Zirkulation und ihre Variabilität? Um diese Fragen zu beantworten, werden wir UA-ICON global sowohl mit einer Maschenweite von etwa 20 km (d.h. mit Auflösung von SW bis etwa 100 km Wellenlänge) als auch mit grober Auflösung, dafür aber mit der State-of-the-art Parametrisierung MS-GWaM nutzen. Weiterhin werden spezielle Beobachtungsepisoden mit sehr hoch (ca. 1,5 km) aufgelösten Nestern simuliert. Zur Evaluation und Analyse werden diese Modellsimulationen mit Beobachtungen der Partnerprojekte zusammengeführt. Die wesentlichen Entwicklungsziele für UA-ICON in Phase 2 des Projekts sind dementsprechend die Implementierung von MS-GWaM (entwickelt im Partnerprojekt 3DMSD), die Einführung physik-basierter Schwerewellenquellen (zusammen mit 3DMSD und SV) und eine verbesserte Behandlung von SW bei sehr hoher Modellauflösung. Die Nutzung der verschiedenen UA-ICON-Konfigurationen wird schließlich erlauben, die Bedeutung bisher vernachlässigter Eigenschaften von SW zu untersuchen, d.h. die erste der oben genannten Fragestellungen zu beantworten. Ein spezielles Ziel im Rahmen von GWING ist diese Untersuchung für Episoden plötzlicher Stratosphärenerwärmungen, die durch sich schnell ändernde und zonal nicht symmetrische Bedingungen des Grundstroms gekennzeichnet sind. Im Hinblick auf die zweite übergeordnete Fragestellung, wird sich GWING auf a) die Rolle der SW und einer hohen Modellausdehnung für die Simulation von Zirkulationsänderungen bei globaler Erwärmung und b) die Rolle für die Güte von Wettervorhersagen konzentrieren.
Veranlassung Vor dem Hintergrund verschiedener WSV-Anfragen zur Beratung in wasserwirtschaftlichen Fragestellungen in Tieflandregionen mit Bundeswasserstraßen (Eider, NOK, obere Havel) versucht die BfG seit einigen Jahren über Vorstudien/Einzelprojekte das erforderliche Wissen für die WSV-Auftragsbearbeitung scheibchenweise zu generieren und Schritt für Schritt Verständnislücken für die modelltechnische Abbildung des Wasser- und Bodenhaushalts zu schließen. So ist ein Strauß an Erkenntnissen und Modellen/Methoden entstanden bzw. noch am Entstehen. Die Bundeswasserstraßen im Norden Deutschlands (wie zum Beispiel der NOK und die nördlich angrenzende Eider) stehen vor dem Hintergrund des Klimawandels und des gesellschaftlichen Wandels vor großen zukünftigen Herausforderungen. Der steigende Meeresspiegelanstieg reduziert die Möglichkeiten zur Ableitung von Wasser aus dem Einzugsgebiet im Freigefälle. Eine veränderte Niederschlagsverteilung über das Jahr mit ausgeprägteren Feucht- und Trockenzeiten erfordert eine angepasste Bewirtschaftung (in Form von Be- und Entwässerung) und Moorböden verlangen aus Sicht des Klimaschutzes nach einer anderen Form der Kultivierung. Eine veränderte Wasserbewirtschaftung des Einzugsgebietes, die diese Aspekte mit einbezieht, Ersatzbauten für marode wasserbauliche Anlagen, Neubauten von Pumpwerken, eine Veränderung der Vorflut - all dies sind Optionen, die durchdacht, modelliert und hinsichtlich ihrer Wirksamkeit bewertet werden müssen. Dies sind die gegenwärtigen Fragestellungen der WSV für die nachfolgend näher charakterisierten Gebiete, zu deren Beantwortung die BfG im Rahmen ihrer Beratungsaufträge Fachbeiträge liefern muss. Voraussetzung dafür ist in einem ersten Schritt, den Wasserhaushalt und die Wasserbewirtschaftung modelltechnisch ausreichend detailliert und belastbar abzubilden. Nord-Ostsee-Kanal (NOK) Der NOK verbindet als BWaStr. auf einer Länge von ca. 100 km die Nordsee über die Unterelbe bei Brunsbüttel mit der Ostsee in der Kieler Förde. Neben seiner Hauptfunktion als Schifffahrtsstraße dient er auch zur Entwässerung des umgebenden Einzugsgebietes. Mit einem Einzugsgebiet von ca. 1530 km² ist der NOK der größte künstliche Vorfluter Schleswig-Holsteins. Eider Das ca. 2000 km² große Einzugsgebiet der Eider befindet sich im norddeutschen Tiefland nördlich des NOK und ist hydrologisch und wasserwirtschaftlich dominiert durch die Gezeiten der Nordsee und anthropogenen Steuerungen eines komplexen Entwässerungssystems bestehend aus Längs- und Quergräben, Wehren, Sielen und Schöpfwerken. Obere Havel Das obere Havelgebiet (Einzugsgebietsfläche bis zur Schleuse Spandau 3500 km²) ist ebenfalls eine Tieflandregion im Nordosten Deutschlands. Im Unterschied zum Eider- und NOK-Gebiet gibt es hier eine Vielzahl an durchflossenen Seen und die Havel selbst weitet sich an vielen Stellen seenartig auf. Damit kommt der Gewässerverdunstung ebenso wie der Interaktion zwischen Grundwasser- und Oberflächengewässer eine besonders große Bedeutung zu.
Der Klimawandel ist ein globales Phänomen. Erhöhte Treibhausgaskonzentrationen in der Atmosphäre führen zu globalen Veränderungen des Klimas. Auf lokaler Ebene können Betroffenheiten entstehen. Es ist eine besondere Herausforderung, ausgehend von globalen Klimaveränderungen auf lokale Folgen, z. B. für die Wasserstraßen, zu schließen. In KLIWAS1 wird mit Hilfe einer Kette von Modellen das Klimaänderungssignal Schritt für Schritt auf kleinere räumliche Skalen übertragen. Am Anfang stehen verschiedene Emissionsszenarien die mögliche Zukünfte beschreiben. Ausgehend von diesen Emissionsszenarien wird der Klimawandel über globale Klimamodelle, regionale Klimamodelle und Abflussmodelle bis hin zu den Wirkmodellen bis zur lokalen Ebene der Wasserstraße transferiert. Kein Modell in dieser Kette repräsentiert die Natur perfekt. Die Ergebnisse jedes Modells basieren auf Annahmen und sind mit Unsicherheiten behaftet. Im Verlauf der Modellkette summieren sich die Unsicherheiten auf. Am Ende der Modellkette ist die Bandbreite der möglichen Folgen eines Klimawandels auf lokaler Ebene sehr groß. Für die deutschen Küstengebiete der Nord- und Ostsee einschließlich der Ästuare ist es aufgrund dieser Unsicherheiten schwierig, konkrete Aussagen zu den lokalen Auswirkungen und möglichen Betroffenheiten zu machen. Eine Möglichkeit mit diesen Unsicherheiten umzugehen sind Sensitivitätsstudien. Die wichtigsten physikalischen Parameter im Ästuar sind Wasserstand, Strömungsgeschwindigkeit, Salzgehalt, Temperatur und Schwebstoffgehalt. Wie sich diese Parameter in einem Ästuar entwickeln, ist abhängig von den Randbedingungen. Die Randbedingungen werden durch die Haupteinflussfaktoren Meeresspiegel in der Nordsee, Abfluss, Wind und Topographie bestimmt, die sich direkt oder indirekt durch die Folgen eines Klimawandels verändern können. Für die Sensitivitätsstudien werden die genannten Haupteinflussfaktoren, die die Randbedingungen dieser Studien bilden, einzeln und in Kombination variiert. Auf diese Weise können Aussagen darüber getroffen werden, wie sich im Ästuar Wasserstand, Strömung, Salzgehalt und Schwebstoffe an die veränderten Randbedingungen (Folgen des Klimawandels) anpassen. Dadurch ist es möglich, festzustellen, unter welchen Bedingungen ein Schwellenwert überschritten wird, der eine Betroffenheit auslöst. Gleichzeitig tragen diese Szenarien zum Prozessverständnis des physikalischen Systems Ästuar bei. Sensitivitätsstudien liefern klare Wenn-Dann-Aussagen. Für eine zeitliche Zuordnung können die Ergebnisse der Sensitivitätsstudien über die jeweils verwendeten Haupteinflussfaktoren mit den aktuellen Klimaszenarien in Beziehung gesetzt werden. (Text gekürzt)
Der Klimawandel beinhaltet den Anstieg der atmosphärischen CO2-Konzentration, Zunahmen der mittleren Temperatur und der Sommertrockenheit sowie das vermehrte Auftreten von Hitzeperioden, d.h. Tagen mit Maximaltemperaturen über 30 C. Die Folgen dieser gleichzeitigen Veränderungen für die globale Agrarproduktion sind offen. Nach Modellabschätzungen soll insbesondere die Zunahme von Hitzeperioden zu Ertragseinbußen bei Getreidearten wie Weizen führen. Die für diese Folgenabschätzung zugrunde liegenden experimentellen Daten wurden unter Gewächshaus- oder Klimakammerbedingungen erhoben. Es sollen daher erstmals Feldversuche zur Interaktion von Hitzeperioden und erhöhter CO2-Konzentration auf Wachstum und Kornbildungsprozesse von Weizen durchgeführt werden. Dazu werden eine erhöhte CO2-Konzentration (550 ppm) mit einer Freiland-CO2-Anreicherungsanlage (Free Air Carbon Dioxide Enrichment = FACE-Technik) und Hitzeperioden (T größer als 30 oC) mit einer Felderwärmungsanlage (Free Air Temperature Enrichment = FATE-Technik) simuliert. Die Wärmebehandlung wird an zwei hitzesensitiven Entwicklungsphasen durchgeführt (P1: präflorale Phase, P2: Kornfüllungsphase). Die Hitzeexposition in P1 erfolgt in der Woche bis zur Blüte. Es soll der erwartete Abfall der Kornzahl ermittelt und auf eine Beziehung zur Temperatursumme oberhalb eines Schwellenwertes geprüft werden. In P2 soll das Temperaturmaximum an 6 Tagen erhöht und der Einfluss auf das Einzelkorngewicht erfasst werden. Für das erste Versuchsjahr ist nur die Untersuchung von Hitzeeffekten geplant. Um einen möglichst weiten Temperaturbereich abzudecken, wird dieser Versuch gleichzeitig an zwei Standorten (Braunschweig/Kiel) durchgeführt. Im zweiten und dritten Jahr soll in einem Kombinationsexperiment mit FACE und FATE geprüft werden, ob die Hitzeeffekte durch mehr CO2 in der Atmosphäre modifiziert werden. Die Ergebnisse werden für die Verbesserung von Weizenwachstumsmodellen zur Klimafolgenabschätzung bereitgestellt und können für die Züchtungsberatung verwendet werden.
| Origin | Count |
|---|---|
| Bund | 957 |
| Land | 5 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Ereignis | 4 |
| Förderprogramm | 946 |
| Text | 7 |
| unbekannt | 6 |
| License | Count |
|---|---|
| geschlossen | 11 |
| offen | 952 |
| Language | Count |
|---|---|
| Deutsch | 673 |
| Englisch | 454 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 4 |
| Dokument | 6 |
| Keine | 575 |
| Webseite | 385 |
| Topic | Count |
|---|---|
| Boden | 848 |
| Lebewesen und Lebensräume | 928 |
| Luft | 963 |
| Mensch und Umwelt | 961 |
| Wasser | 762 |
| Weitere | 945 |