s/globales-klimamodell/Globales Klimamodell/gi
Wissenschaftler sowie Politiker erwägen die regionale Verwendung von Marine Cloud Brightening (RegMCB) als mögliche Solar Radiation Management Technologie um die Erderwärmung durch anthropogene Treibhausgase gezielt zu verlangsamen. Während theoretische Arbeiten bezeugen, dass dieser Ansatz prinzipiell einen kühlenden Effekt im Klimasystem erzeugen kann, verbleiben enorme Unsicherheiten bezüglich der Wirksamkeit und der potentiellen Auswirkungen dieses Ansatzes. Dennoch werden erste MCB Feldexperimente in Australien bereits durchgeführt und sind auch in anderen Ländern in der Planung.Der aufhellende Effekt in marinen Wolken durch die kontinuierliche Emission von Seesalz in die untere Troposphäre ist bis heute nur hinreichend verstanden. Der Grad der Wirksamkeit dieser Technologie basiert hauptsächlich auf entweder hoch-aufgelösten Modellrechnungen, welche räumlich und zeitlich stark eingeschränkt sind, oder auf globalen Klimamodellrechnungen, welche auf stark vereinfachten Annahmen über den Ausstoß von Seesalzpartikeln basieren. Diese Lücke zwischen bisher verwendeten Modellansätzen werden wir innerhalb dieses Forschungsantrags schließen. Mit Hilfe von Simulationen von möglichen MCB Strategien innerhalb des Kalifornischen Stratocumulus Wolkendecks, werden wir den Wirksamkeitsgrad dieser Technologie unter realistischen Annahmen quantifizieren, und gleichzeitig potentielle Auswirkungen auf der regionalen Skala identifizieren und quantifizieren können.Innerhalb dieses Projektes werden wir eine vereinfachte Version von ICON-HAM, einem Klimamodell mit einer umfassenden Parametrisierung der Aerosolmikrophysik inklusive Strahlungskopplung und Aerosol-Wolken-Wechselwirkungen, entwickeln und verifizieren. Unser Modellansatz beinhaltet die volle Komplexität ICON-HAMs für Seesalzgrößenverteilungen während alle anderen Aerosolspezien mit konstanten Hintergrundkonzentrationen vorgeschrieben werden. Diese Modellversion wird wir mithilfe von Beobachtungen des Kalifornischen Stratocumulus Wolkendecks verifiziert werden. Das Kalifornische Deck ist eins der vier subtropischen Stratocumulusregionen weltweit und ist im Vergleich zu den anderen Decks am umfassendsten vermessen und verstanden. Innerhalb von RegMCB werden wissenschaftliche Erkenntnisse gewonnen welche uns helfen werden den Wirksamkeitsgrad und die Grenzen dieser Technologie zu quantifizieren. Innerhalb dieses Antrages werden erstmals Simulationen durchgeführt welche auf realistischen MCB Szenarien basieren und die nötige Komplexität beinhalten Aerosol-Wolken-Wechselwirkungen korrekt abzubilden. Gleichzeitig tragen die hier vorgeschlagenen Arbeiten zu einer Verbesserung unseres Verständnisses und der Repräsentation von Aerosol-Wolken-Wechselwirkungen in marinen Stratocumuli allgmein bei.
Der Strahlungsantrieb durch anthropogene Aerosole aufgrund von Aerosol-Wolken-Wechselwirkungen ist die Hauptunsicherheit bezüglich des Antriebs des Klimawandels. Für Flüssigwasserwolken, die den Strahlungsantrieb im solaren (kurzwelligen) Spektrum dominieren, konnten mittlerweile einige Fortschritte in der Quantifizierung erzielt werden. Im Gegensatz dazu gibt es für den Strahlungsantrieb im langwelligen (terrestrischen) Spektralbereich nur sehr grobe Abschätzungen von Klimamodellen. In Vorarbeiten haben wir einen Vorschlag entwickelt, wir aktive Fernerkundung zur Charakterisierung von Eiskristallkonzentrationen und Aerosol benutzt werden könnte, um eine beobachtungsbasierte Abschätzung des Strahlungsantriebs durch Aerosol-Wolken-Wechselwirkungen im langwelligen Spektrum zu ermöglichen. Allerdings sind die Satellitendaten höchst unsicher und benötigen eine Validierung mit Referenzdaten. In FLASH wird vorgeschlagen, (i) die Satelliten-abgeleitete Eiskristallkonzentration sowie ihre Sensitivität bezüglich Temperatur, Vertikalwind und Aerosolbedingungen mit den neuen In-situ-Daten von HALO zu validieren bzw. evaluieren, (ii) die Ableitung der Eiskristallkonzentration vom Satelliten mit der von Lidar und Radar an Bord von HALO zu verifizieren, (iii) Klimamodelle zu evaluieren und zur Interpretation der statistischen Relationen zu benutzen, und (iv) schließlich eine Abschätzung des Strahlungsantriebs durch Aerosol-Wolken-Wechselwirkungen und seines Unsicherheitsbereichs zu erarbeiten. Die Rolle von FLASH im SPP 1294 ist es, die vorhandenen Daten auszuwerten und mit den Daten geplanter Kampagnen in integrierender Weise zu arbeiten mit dem Ziel, eine bessere Abschätzung des Aerosol-Wolken-Strahlungsantriebs zu erreichen, neue innovative Satellitendaten zu validieren, und die relevanten Parametrisierungen in Klimamodellen zu evaluieren und zu verbessern.
Dieser Datenbestand dient der Analyse atmosphärischer Zirkulationsbedingungen (Wetterlagen, NAO) im nordatlantisch-mitteleuropäischen Sektor wie sie von Reanalyse- und globalen Klimamodellen (Status: 2010) simuliert werden. Ausgewählt wurden solche Klimamodelläufe, die für Mitteleuropa oder Deutschland regionalisiert wurden. Mit dem Datenbestand kann einerseits die Eignung der verschiedenen Modelle zur Reproduktion der beobachteten Zirkulationsverhälnisse (1950-2000) geprüft werden. Andererseits können simulierte Änderungen (2001-2100) ausgewertet werden. Zusätzlich werden Temperatur -und Niederschlagsdaten bereitgestellt, mit denen die Wetterwirksamkeit der Wetterlagen je GCM bewertet werden kann.
Gletscher haben im 20. Jh. weltweit starke Rückgänge erfahren, was auch für Gletscher in den Tropen gilt. Obwohl die Gletscher am Kilimanjaro (Tansania) ähnliche Charakteristika wie andere tropische Gletscher aufweisen (starke Empfindlichkeit auf Klimaelemente, die von der Luftfeuchtigkeit gesteuert werden), verlangt die Untersuchung ihres Verhaltens eine spezielle Sichtweise. Diese ist notwendig, da am Kilimanjaro zwei verschiedene Gletschersysteme existieren: die tafelförmigen Gletscher auf dem Gipfelplateau und die Hanggletscher unterhalb des Gipfelplateaus auf den steilen Flanken des Berges. Plateaugletscher sind von seitlich zurückweichenden, vertikalen Eiskliffs umrandet, die zu einer stetigen Abnahme der Ausdehnung von Plateaugletschern führen - selbst wenn sich auf deren horizontalen Oberflächen Schnee und folglich Gletschermasse ansammelt. Ein Vorprojekt konnte belegen, dass die klimatische Hauptursache für den seit 1880 andauernden Rückgang der Gletscher am Kilimanjaro ein regional trockeneres Klima seit dem späten 19. Jh. ist. Ebenso wurde klar, dass das gegenwärtige Klima die Gletscher nahe an das vollständige Verschwinden drängt. Dies wirft wiederum die Frage auf, unter welchen Klimabedingungen sie überhaupt existieren und sich bilden konnten. Das beantragte Projekt setzt sich daher das Ziel, eine mindestens 500 Jahre umfassende Zeitreihe des Gletscherverhaltens am Kilimanjaro zu rekonstruieren. Da andere Rekonstruktionen (v.a. Seespiegelstände) andeuten, dass die regionalen Klimaschwankungen vor 1880 größer als nachher waren, scheint es möglich, dass die Gletscher am Kilimanjaro eine relativ kurze Lebenszeit und daher ein zyklisches Verhalten aufweisen. Im vorgeschlagenen Projekt werden meteorologische Messungen im Gipfelbereich des Kilimanjaro dazu dienen, ein Massenbilanzmodell anzutreiben, zu kalibrieren und zu validieren. Dieses an der Physik der Gletscher orientierte Modell quantifiziert den Massenaustausch zwischen Gletscher und Atmosphäre. Input-Daten, die mehrere Jahrhunderte umfassen, sollen schließlich aus Simulationen des Paläoklimas mit gekoppelten Zirkulationsmodellen (globale Klimamodelle) kommen. Um den Klimamodell-Output auf die lokalen Verhältnisse am Kilimanjaro zu transferieren, ist eine Regionalisierungstechnik (statistisches Downscaling) notwendig. Durch die Anwendung des regionalisierten Datensatzes auf das Massenbilanzmodell entsteht im letzten Schritt eine mindestens 500-jährige Reihe des Gletscherverhaltens (und potenzieller Zyklizität) am Kilimanjaro, die mit (a) anderen Rekonstruktionen von klimaempfindlichen Umweltsystemen (Seestände, Eisbohrkerne) und (b) der großräumigen Klimadynamik im Zirkulationsmodell verglichen werden kann. Der experimentelle Teil des Projekts betrifft die Modellierung der vertikalen Eiskliffs sowie die Erzeugung zeitlich hochaufgelöster lokaler Daten aus dem globalen Klimamodell. usw.
The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.
Der Klimawandel ist ein globales Phänomen. Erhöhte Treibhausgaskonzentrationen in der Atmosphäre führen zu globalen Veränderungen des Klimas. Auf lokaler Ebene können Betroffenheiten entstehen. Es ist eine besondere Herausforderung, ausgehend von globalen Klimaveränderungen auf lokale Folgen, z. B. für die Wasserstraßen, zu schließen. In KLIWAS1 wird mit Hilfe einer Kette von Modellen das Klimaänderungssignal Schritt für Schritt auf kleinere räumliche Skalen übertragen. Am Anfang stehen verschiedene Emissionsszenarien die mögliche Zukünfte beschreiben. Ausgehend von diesen Emissionsszenarien wird der Klimawandel über globale Klimamodelle, regionale Klimamodelle und Abflussmodelle bis hin zu den Wirkmodellen bis zur lokalen Ebene der Wasserstraße transferiert. Kein Modell in dieser Kette repräsentiert die Natur perfekt. Die Ergebnisse jedes Modells basieren auf Annahmen und sind mit Unsicherheiten behaftet. Im Verlauf der Modellkette summieren sich die Unsicherheiten auf. Am Ende der Modellkette ist die Bandbreite der möglichen Folgen eines Klimawandels auf lokaler Ebene sehr groß. Für die deutschen Küstengebiete der Nord- und Ostsee einschließlich der Ästuare ist es aufgrund dieser Unsicherheiten schwierig, konkrete Aussagen zu den lokalen Auswirkungen und möglichen Betroffenheiten zu machen. Eine Möglichkeit mit diesen Unsicherheiten umzugehen sind Sensitivitätsstudien. Die wichtigsten physikalischen Parameter im Ästuar sind Wasserstand, Strömungsgeschwindigkeit, Salzgehalt, Temperatur und Schwebstoffgehalt. Wie sich diese Parameter in einem Ästuar entwickeln, ist abhängig von den Randbedingungen. Die Randbedingungen werden durch die Haupteinflussfaktoren Meeresspiegel in der Nordsee, Abfluss, Wind und Topographie bestimmt, die sich direkt oder indirekt durch die Folgen eines Klimawandels verändern können. Für die Sensitivitätsstudien werden die genannten Haupteinflussfaktoren, die die Randbedingungen dieser Studien bilden, einzeln und in Kombination variiert. Auf diese Weise können Aussagen darüber getroffen werden, wie sich im Ästuar Wasserstand, Strömung, Salzgehalt und Schwebstoffe an die veränderten Randbedingungen (Folgen des Klimawandels) anpassen. Dadurch ist es möglich, festzustellen, unter welchen Bedingungen ein Schwellenwert überschritten wird, der eine Betroffenheit auslöst. Gleichzeitig tragen diese Szenarien zum Prozessverständnis des physikalischen Systems Ästuar bei. Sensitivitätsstudien liefern klare Wenn-Dann-Aussagen. Für eine zeitliche Zuordnung können die Ergebnisse der Sensitivitätsstudien über die jeweils verwendeten Haupteinflussfaktoren mit den aktuellen Klimaszenarien in Beziehung gesetzt werden. (Text gekürzt)
Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.
Mit dem hier vorgestellten Projekt wollen wir zwei Fragen beantworten, die momentan im Zusammenhang mit zunehmendem Schmelzen des grönländischen Eisschildes heiß diskutiert werden: der Zeitpunkt ersten Auftretens von Veränderungen im subpolaren Nordatlantik und die Wahrscheinlichkeit von Extremereignissen im Ozean jeweils hervorgerufen durch einen verstärkten bis außergewöhnlich starken Schmelzwassereintrag. Beides werden wir mit Hilfe von Simulationen mit dem neuen, bereits getesteten globalen Klimamodell FOCI-VIKING10 quantifizieren. Dieses einzigartige Modell ist für die Aufgabe besonders geeignet, weil es durch eingebettetes 2-Wege Nesting eine höhere Ozeangitterauflösung von 1/10° im Nordatlantik (30°-85°N) ermöglicht. In einer Reihe von multidekadischen Simulationen mit globaler Erwärmung von 1958-2050 schreiben wir unterschiedliche Projektionen des zukünftigen Schmelzwasserabflusses von Grönland vor, indem wir die lokalen, beobachteten Abflussraten bis 2016 verwenden und für die Folgejahre die lokalen Trends extrapolieren. Ergänzt werden die Trends durch stochastische Variabilität und systematisch eingefügte Extremwerte. Darüber hinaus werden wir neue Wege für die Modellvalidierung gehen, indem gezielt Satelliten- und Argo-float-Daten des meeresoberflächennahen Salzgehaltes auf räumliche und zeitliche Variabilität analysiert und verglichen werden. Als Hauptergebnis des Projektes werden wir Angaben zu Ort, Zeit und Größe der Veränderungen bereitstellen, mit denen der Ozean auf einen realistisch ansteigenden Schmelzwasserabfluss von Grönland reagiert, sowie Einblick in einen möglichen Einfluss auf das europäische Wetter und Klima geben.
| Origin | Count |
|---|---|
| Bund | 292 |
| Land | 8 |
| Wissenschaft | 21 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Förderprogramm | 282 |
| Text | 6 |
| unbekannt | 25 |
| License | Count |
|---|---|
| geschlossen | 10 |
| offen | 304 |
| unbekannt | 3 |
| Language | Count |
|---|---|
| Deutsch | 180 |
| Englisch | 179 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Bild | 2 |
| Datei | 2 |
| Dokument | 4 |
| Keine | 200 |
| Unbekannt | 1 |
| Webseite | 111 |
| Topic | Count |
|---|---|
| Boden | 229 |
| Lebewesen und Lebensräume | 245 |
| Luft | 302 |
| Mensch und Umwelt | 317 |
| Wasser | 246 |
| Weitere | 310 |