Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.
These datasets display the results of multivariate statistical analysis non-metric multidimensional scaling (NMDS) based on Bray Curtis dissimilarity of the organic matter (OM) molecular compositions of surface glacier purple ice- and red snow-algae dominated samples collected on the Greenland Ice Sheet at ca. 61°1’ N,46°8’ W (Rossel et al., 2025). The molecular compositions of the samples were obtained by ultrahigh resolution analysis on a 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS, Rossel et al., 2025). All reported NMDS datasets display the molecular loadings and samples scores for the first two axes of the NMDS (NMDS1 and NMDS2), the number occurrences of each molecular formula per sample type, and molecular properties of the formulae such as: mass (MWwa), hydrogen/carbon (H/Cwa) and oxygen/carbon (O/Cwa) ratios, aromaticity index (AI-modwa), double bond equivalents (DBEwa) and DBE minus oxygen (DBE-Owa), Nominal oxidation state of carbon (NOSCwa) and the molecular category the formula was assigned (Aromatics, Condensed aromatics, highly unsaturated, unsaturated aliphatics and saturated). Furthermore, the NMDS datasets are separated according to the compared sample set. In the first NMDS analysis (Table S1, Fig 1 in Rossel et al., in review), we compared all samples: the initial OM from glacier ice- (T0_Ice) and snow-algae (T0_Snow) dominated habitats and the up to 24 days (T3-T24) in situ incubated samples under dark (D) and light (L) conditions. These OM samples, include both dissolved organic matter (DOM) and particulate organic matter (POM), the latter extracted with hot water (HW) and sodium hydroxide (Na) to represent water-soluble and particle-associated OM, respectively (see methods). In the second and third NMDS analyses, we compared DOM and POM samples separated (Table S2 and Table S3, respectively). Following the separation of all analyzed samples in the first NMDS (purple and red samples in Fig 1 in Rossel et al., in review), OM molecular signals related to glacier ice-algae (Table S4) and snow-algae (Table S5) were separated using NMDS1 values ≤ 0.45 and ≥ 0.45, respectively (Fig. 1b and Fig. 1c in Rossel et al., in review). Additionally, these separated molecular signals for glacier ice-algae and snow-algae samples were used to calculate intensity weighted (subscript wa) values for MWwa, H/Cwa and O/Cwa ratios, AI-modwa, NOSCwa, DBEwa and DBE-Owa for each sample (Table S6).
Die Wechselwirkung zwischen der Kryosphäre und dem Ozean bildet eine der Hauptursachen für lokale und globale Veränderungen des Meeresspiegels. Das Schmelzen des grönländischen Eisschildes trägt derzeit zu rund einem Drittel zum globalen Meeresspiegelanstieg bei, und der Massenverlust des Eisschildes und damit der Transport von Eis aus dem Eisschild in den Ozean beschleunigen sich weiter. Bis vor kurzem schien es, als sei die Beschleunigung der abfließenden Eisströme auf Grönlands Westküste und die Fjorde im Südosten beschränkt, während die Gletscher im Nordosten als weitgehend stabil galten. Einer dieser scheinbar stabilen Gletscher ist der Nioghalvfjerdsbrae oder 79°Nord Gletscher, der größere zweier Gletscher, die aus dem nordostgrönländischen Eisstrom gespeist werden und direkt ins Meer münden. Wegen der Existenz einer Kaverne unter der schwimmenden Eiszunge analog zu den Schelfeisen der Antarktis ist der 79°Nord Gletscher für Studien der Eis Ozean Wechselwirkung sehr interessant, besonders da das Einzugsgebiet des nordostgrönländischen Eisstroms mehr als 15% der Fläche des grönländischen Eisschildes erfasst. Aktuelle Studien weist nun auf eine Beschleunigung des Eisstromes und eine Abnahme der Eisdicke entlang der Küste von Nordostgrönland hin. Gleichzeitig wurde eine Erwärmung und eine Zunahme des Volumens des Atlantikwassers in der Ostgrönlandsee und der Framstraße beobachtet. Unser Projekt hat zum Ziel, (1) die Mechanismen zu verstehen, mit denen der Ozean Wärme aus der Framstraße und vom Kontinentalhang Nordostgrönlands in die Kaverne unter dem schwimmenden 79°N Gletscher transportiert, (2) die Rolle externer Variabilität relativ zu Prozessen innerhalb der Kaverne hinsichtlich ihres Einflusses auf das Schmelzen an der Eisunterseite zu untersuchen und (3) die wichtigsten Sensitivitäten innerhalb dieses gekoppelten Systems aus Eis und Ozean zu identifizieren. Wir verfolgen dieses Ziel durch eine Kombination von gezielter Beobachtung und innovativer hochauflösender Modellierung. Im Rahmen zweier Forschungsreisen mit dem Eisbrecher FS Polarstern werden Strömungsgeschwindigkeiten, Hydrographie und Mikrostruktur sowohl mit gefierten als auch mit verankerten Instrumenten gemessen. Diese Beobachtungen werden durch den Einsatz eines autonomen Unterwasserfahrzeugs ergänzt. Zur Modellierung nutzen wir das Finite Element Sea ice Ocean Model (FESOM), das um eine Schelfeiskomponente erweitert wurde und in einer Konfiguration betrieben wird, die mit hoher Auflösung die kleinskaligen Prozesse auf dem Kontinentalschelf vor Nordostgrönland und in der Kaverne unter dem 79°N Gletscher in einem globalen Kontext wiedergibt. Zusammen mit den Beiträgen unserer Kooperationspartner aus der Glaziologie und der Tracerozeanographie entwickelt sich aus der Synthese dieser beiden Komponenten ein detailliertes Bild der Prozesse auf dem Kontinentalschelf Nordostgrönlands, einer Schlüsselregion für zukünftige Veränderungen des globalen Meeresspiegels.
Mit dem hier vorgestellten Projekt wollen wir zwei Fragen beantworten, die momentan im Zusammenhang mit zunehmendem Schmelzen des grönländischen Eisschildes heiß diskutiert werden: der Zeitpunkt ersten Auftretens von Veränderungen im subpolaren Nordatlantik und die Wahrscheinlichkeit von Extremereignissen im Ozean jeweils hervorgerufen durch einen verstärkten bis außergewöhnlich starken Schmelzwassereintrag. Beides werden wir mit Hilfe von Simulationen mit dem neuen, bereits getesteten globalen Klimamodell FOCI-VIKING10 quantifizieren. Dieses einzigartige Modell ist für die Aufgabe besonders geeignet, weil es durch eingebettetes 2-Wege Nesting eine höhere Ozeangitterauflösung von 1/10° im Nordatlantik (30°-85°N) ermöglicht. In einer Reihe von multidekadischen Simulationen mit globaler Erwärmung von 1958-2050 schreiben wir unterschiedliche Projektionen des zukünftigen Schmelzwasserabflusses von Grönland vor, indem wir die lokalen, beobachteten Abflussraten bis 2016 verwenden und für die Folgejahre die lokalen Trends extrapolieren. Ergänzt werden die Trends durch stochastische Variabilität und systematisch eingefügte Extremwerte. Darüber hinaus werden wir neue Wege für die Modellvalidierung gehen, indem gezielt Satelliten- und Argo-float-Daten des meeresoberflächennahen Salzgehaltes auf räumliche und zeitliche Variabilität analysiert und verglichen werden. Als Hauptergebnis des Projektes werden wir Angaben zu Ort, Zeit und Größe der Veränderungen bereitstellen, mit denen der Ozean auf einen realistisch ansteigenden Schmelzwasserabfluss von Grönland reagiert, sowie Einblick in einen möglichen Einfluss auf das europäische Wetter und Klima geben.
Grönland beheimatet, abgesehen von seinem großen Eisschild, eine Vielzahl von weitaus kleineren peripheren Gletschern. Der Anteil dieser Gletscher am gesamten Eismassenverlust Grönlands geht weit über den Anteil hinaus, den diese Gletscher an der gesamten Eismasse und –fläche einnehmen. Da sie sich meist in gebirgigem Gelände entlang der Küsten befinden, erfordern numerische Modelle dieser Eismassen geeignete räumliche Auflösungen, die nicht von Eisschildmodellen erreicht werden können. Kalbende Gletscher tragen in besonderem Maße zum Gesamtmassenverlust bei. Über den Zeitraum 2003-2008 trugen die peripheren Gletscher 14% zum grönlandweiten Eismassenverlust bei. Ihr Beitrag zum Meeresspiegelanstieg wird Prognosen zufolge in Zukunft weiter ansteigen, wobei aktuell verfügbare Projektionen unter Annahme einer Klimaentwicklung entlang des RCP 8.5 einen Eismassenverlust von bis zu ~50% im 21. Jahrhundert vorhersagen. Es existiert eine deutliche regionale Variabilität, die eine komplexe Kombination von atmosphärischen und ozeanischen Antriebsmechanismen widerspiegelt. Nichtsdestotrotz ist keines der aktuell verfügbaren regionalskaligen Gletschermodelle in der Lage, ozeanische Einflüsse auf die Frontalablation an den kalbenden Gletscherzungen explizit aufzulösen. Abgesehen von zwei Modellen wird Frontalablation sogar vollständig ignoriert. Folglich existieren auch bisher keinerlei Abschätzungen bezüglich der Mengen von Frontalablation an Grönlands peripheren Gletschern, weder für Vergangenheit, Gegenwart, noch Zukunft.Das Ziel des Projektes ist die Erstellung von CMIP6-basierten Projektionen der zukünftigen Entwicklung von Grönlands peripheren Gletschern im 21. Jahrhundert unter besonderer Berücksichtigung von kalbenden Gletschern. Wir werden sowohl Schmelzwasserabflüsse als auch Beiträge zum Meeresspiegelanstieg quantifizieren. Wir werden das Open Global Glacier Model (OGGM) dahingehend weiterentwickeln, dass es in seinem Frontalablationsmodul ozeanische Antriebsmechanismen berücksichtigt. Dies wird durch spezielle Downscaling-Routinen für Klima- und Ozeandaten unterstützt werden. Wir werden die Modelperformance von OGGM in Abhängigkeit von verschiedenen räumlichen Auflösungen der Antriebsdaten im Detail evaluieren, um herauszufinden, ob und inwieweit die Anwendung optimierter Skalenübergänge von der großen synoptischen hinunter auf die kleinere, lokale Skala der peripheren Gletscher dazu beiträgt, die Modelperformance zu steigern. Die Ergebnisse des Projektes werden ein gesteigertes Maß an Verständnis bezüglich der atmosphärischen und ozeanischen Einflüsse auf die Entwicklung der peripheren Gletscher Grönlands liefern. Weiterhin werden wird Empfehlungen bezüglich der optimalen Komplexität zukünftiger, regionalskaliger Gletschermodellierungen abgeben und dabei besonders kalbende Gletscher berücksichtigen.
In diesem Projekt werden wir die grönländische Küste als ideales Ziel für eine Prozessstudie nutzen, um zu untersuchen, wie sich Veränderungen des Wasserkreislaufs auf die Biogeochemie und Produktivität des Ozeans auswirken.Mit zunehmender jährlicher Abflussmenge aus dem Grönländischen Eisschild (GrIS) stellt sich die Frage, wie sich dieser Süßwasserabfluss auf die Produktivität der Schelfmeere in Grönland auswirkt. Der GrIS ist das zweitgrößte Eisschild der Erde. Wenn Süßwasser vom GrIS in den Ozean gelangt, entstehen in den Küstengewässern der Insel starke physikalische und biogeochemische Gradienten. Diese Gradienten sind am ausgeprägtesten in den Fjorden Grönlands, die flächenmäßig zu den größten maritimen Kohlenstoffsenken gehören. Grönlands Fjorde und Schelfmeere beherbergen auch national wichtige Fischereien, deren Zukunft für die grönländische Wirtschaft von entscheidender Bedeutung ist.Obwohl allgemein anerkannt ist, dass Süßwasser-Gletscher-Inputs die regionale Ozeanzirkulation beeinflussen, steht unser Verständnis von Verbindungen zwischen der Physik der Schmelzwasser-Freisetzung und langfristigen Veränderungen in der marinen Biogeochemie noch in den Anfängen. Ein Thema von aktuellem Interesse für der Intergovernmental Panel on Climate Change (IPCC) ist, wie Kryosphäre und Ozean biogeochemisch in einem sich erwärmenden Klima interagieren werden. Das Hauptziel hier wird sein, zu bestimmen, wie die physikalischen und chemischen Veränderungen, die durch erhöhte Süßwassereinträge in den Ozean um Grönland verursacht werden, die Verfügbarkeit von Nährstoffen (Makronährstoffe und Mikronährstoffe) für Phytoplankton und somit die Primärproduktion beeinflussen.Durch die Kombination von Feldforschung mit idealisierten Modellen werden die Auswirkungen der drei wichtigsten unterschiedlichen Süßwasserquellen (Oberflächenabfluss, Untergrundabfluss und Eisbergschmelze) bestimmt. Die Chemie des Mündungs-Mischprozesses, welcher häufig schnelle Veränderungen der chemischen Form und damit der Bioverfügbarkeit von Nährstoffen induziert wenn sich Süß- und Salzwasser mischen, wird untersucht. Der Nährstofflimitierungsstatus von Phytoplanktongemeinschaften in von Süßwasser beeinflussten Gebieten in Grönland wird bestimmt und somit der Nettoeffekt gleichzeitiger Veränderungen der physikalischen und chemischen Zusammensetzung der Wassersäule bewertet.Dadurch wird es möglich sein, die Auswirkungen der Zunahme von Süßwassereintrag in den polaren Ozean, im Hinblick auf Änderungen der Primärproduktion im Meer zu verstehen.
Die atlantische meridionale Zirkulation (AMOC) ist wesentlicher Bestandteil der Wärmeflüsse im Klimasystem, deren Veränderung in Bezug auf den künftigen Klimawandel nur schwer vorherzusagen ist. In diesem Projekt richten wir unseren Blick in die Vergangenheit auf das Marine Isotopenstadium (MIS) 11, dass vor rund 410,000 Jahren mit ähnlichen Orbitalparametern zu einer rund 30,000 Jahre andauernden Warmzeit geführt hat. Ein großer Teil des Grönländischen Eisschilds war abgeschmolzen und folglich der Meeresspiegel deutlich gegenüber heute erhöht. Traditionelle Nährstoff-Spurenstoffe liefern Hinweise auf eine starke Tiefenwasserbildung zu dieser besonderen Warmzeit. Um die Herkunft der Wassermassen, deren Strömungswege sowie die Mischungsverhältnisse zu rekonstruieren, hat sich das Isotopenverhältnis 143Nd/144Nd in der authigenen Phase von Tiefseesedimenten als sehr nützlicher Spurenstoff erwiesen. Im Rahmen dieses Projekts, haben wir die Nd-Isotopie aus authigenen Fe-Mn Ablagerungen an zahlreichen ODP/IODP Sedimentkernen, für die Dauer des MIS-11 und der vorangegangenen Eiszeit MIS-12 extrahiert. Im Atlantik ist eine deutliche Zunahme weniger radiogenen Neodyms meßbar, die wahrscheinlich eine stärkere Tiefenwasserbildung selbst in Zeiten einen verstärkten Eisverlustes in Grönland aufweist. Die untersuchten Sedimente bilden den gesamten tiefen Atlantik von Nord nach Süd ab, sowie einige Regionen mit direktem regionalen Einfluß auf die Nd-Isotopie. Neben einer starken Tiefenzirkulation während MIS-11 konnte auch ein wichtiger Beitrag von Wasser aus der Arktis (nahe der Island-Schottland-Schwelle), sowie ein langanhaltender Einfluss von Wasser der Labrador See nachgewiesen werden. Im tiefen Westatlantik sind über den gesamten Zeitraum des Interglazials sehr unradiogenen Nd Isotopenwerte vorzufinden. In diesem Fortsetzungsprojekt, möchten wir die zeitliche Auflösung der Nd-Isotopenuntersuchungen einiger Sedimentkerne aus der Labradorsee und dem Kapbecken verbessern und die Publikation der Ergebnisse mit Fokus auf den Vergleich von MIS-11 und einem zukünftig wärmeren Klima vorantreiben und bewerten.
Origin | Count |
---|---|
Bund | 39 |
Wissenschaft | 3 |
Type | Count |
---|---|
Ereignis | 5 |
Förderprogramm | 30 |
Text | 4 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 4 |
offen | 38 |
Language | Count |
---|---|
Deutsch | 39 |
Englisch | 19 |
Resource type | Count |
---|---|
Bild | 1 |
Datei | 5 |
Dokument | 3 |
Keine | 16 |
Webseite | 25 |
Topic | Count |
---|---|
Boden | 36 |
Lebewesen und Lebensräume | 37 |
Luft | 39 |
Mensch und Umwelt | 42 |
Wasser | 42 |
Weitere | 42 |