Die Firma BASF Schwarzheide GmbH, Schipkauer Straße 1 in 01986 Schwarzheide, beantragt die Genehmigung nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG), auf dem Grundstück Schipkauer Straße 1, 01986 Schwarzheide in der Gemarkung Schwarzheide, Flur 6, Flurstück 470 eine Anlage zum Lagern von Abfällen über einen Zeitraum von jeweils mehr als einem Jahr mit einer Aufnahmekapazität von 10 Tonnen oder mehr je Tag zu errichten und zu betreiben.
Bei dem Vorhaben handelt es sich um eine Anlage der Nummer 8.14.2.1 GE des Anhangs 1 der Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) sowie um ein Vorhaben nach der Nummer 8.9.1.1 X der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG). Für das Vorhaben besteht somit die Pflicht zur Durchführung einer Umweltverträglichkeitsprüfung.
Weiterhin fällt das beantragte Vorhaben gemäß § 3 der 4. BImSchV unter die Industrieemissions-Richtlinie.
Für das Vorhaben wurde eine Zulassung vorzeitigen Beginns gemäß § 8a BImSchG beantragt.
Das Vorhaben umfasst im Wesentlichen die Ertüchtigung des bestehenden Gebäudes D266 auf dem Blockfeld D200 auf dem Betriebsgelände der BASF Schwarzheide GmbH und dessen Nutzung als Lageranlage für die Lagerung von Abfällen aus der Herstellung und dem Recycling von Lithiumionen-Batterien, darunter Black Mass (getrocknet oder pyrolysiert) und Abfälle aus der Produktion von kathodenaktiven Materialien (unter anderem Fehlchargen, Filterstäube), mit einer Aufnahmekapazität von 90 Tonnen pro Tag und einer Gesamtlagerkapazität von 4 500 Tonnen.
Bei Black Mass handelt es sich um ein pulverisiertes Stoffgemisch, unter anderem bestehend aus Mischoxiden von Nickel, Cobalt, Mangan, Aluminium und Lithium, Metallen (zum Beispiel Kupfer, Eisen und Aluminium), Lithiumsalzen, Graphit sowie Lösungsmitteln und Polymeren, das teilweise als wassergefährdend, störfallrelevant beziehungsweise als Gefahrstoff deklariert ist.
Die Inbetriebnahme der Anlage ist für September 2024 vorgesehen.
Die Firma BASF Schwarzheide GmbH, Schipkauer Straße 1 in 01986 Schwarzheide, beantragt die Genehmigung nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG), auf dem Grundstück Schipkauer Straße 1, 01986 Schwarzheide in der Gemarkung Schwarzheide, Flur 6, Flurstück 470 eine Anlage zum Lagern von Abfällen über einen Zeitraum von jeweils mehr als einem Jahr mit einer Aufnahmekapazität von 10 Tonnen oder mehr je Tag zu errichten und zu betreiben.
Bei dem Vorhaben handelt es sich um eine Anlage der Nummer 8.14.2.1 GE des Anhangs 1 der Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) sowie um ein Vorhaben nach der Nummer 8.9.1.1 X der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG). Für das Vorhaben besteht somit die Pflicht zur Durchführung einer Umweltverträglichkeitsprüfung.
Weiterhin fällt das beantragte Vorhaben gemäß § 3 der 4. BImSchV unter die Industrieemissions-Richtlinie.
Für das Vorhaben wurde eine Zulassung vorzeitigen Beginns gemäß § 8a BImSchG beantragt.
Das Vorhaben umfasst im Wesentlichen die Ertüchtigung des bestehenden Gebäudes D206 auf dem Blockfeld D200 auf dem Betriebsgelände der BASF Schwarzheide GmbH und dessen Nutzung als Lageranlage für die Lagerung von Abfällen aus der Herstellung und dem Recycling von Lithiumionen-Batterien, darunter Black Mass (getrocknet oder pyrolysiert) und Abfälle aus der Produktion von kathodenaktiven Materialien (unter anderem Fehlchargen, Filterstäube), mit einer Aufnahmekapazität von 90 Tonnen pro Tag und einer Gesamtlagerkapazität von 6 500 Tonnen. Die Umschlagmenge beträgt 6 000 Tonnen pro Jahr.
Bei Black Mass handelt es sich um ein pulverisiertes Stoffgemisch, unter anderem bestehend aus Mischoxiden von Nickel, Cobalt, Mangan, Aluminium und Lithium, Metallen (zum Beispiel Kupfer, Eisen und Aluminium), Lithiumsalzen, Graphit sowie Lösungsmitteln und Polymeren, das teilweise als wassergefährdend, störfallrelevant beziehungsweise als Gefahrstoff deklariert ist.
Die Inbetriebnahme der Anlage ist für Mai 2023 vorgesehen.
Als Hauptverbreitungsgebiet eines Rohstoffes wird ein großräumig unbegrenztes, geologisch heterogen aufgebautes Gebiet mit möglichen und wahrscheinlichen, bisher im Einzelnen noch nicht untersuchten oder bekannten Rohstoffvorkommen oder –lagerstätten bezeichnet. Hier dargestellt werden die Hauptverbreitungsgebiete von Industriemineralen, wie z.B. Kaolin (z.B. Füllstoff in Papierindustrie), Bentonit (z.B. Lebensmittel- und Bauindustrie), Graphit (z.B. Batterien, Bleistifte) und Kieselerde (z.B. Füllstoff in chemischer Industrie). Als Attribute angehängt sind Rohstoffgruppe, Rohstoff, Flächenkategorie und Steckbrief. Ein mit den Flächen verknüpfter Steckbrief liefert Informationen unter Anderem bezüglich der Gesteinsentstehung und -eigenschaften, Gewinnung, Verwendung und wirtschaftlicher Bedeutung des vorgestellten Rohstoffes. Als Datengrundlage für die Modellierung der Hauptverbreitungsgebiete diente die Digitale Geologische Karte 1:25.000 (dRK25), deren geologischen Einheiten den rohstoffgeologischen Einheiten zugeordnet wurden, die Karte oberflächennaher Rohstoffe (KOR200) im Maßstab 1:200.000, Flächen der Regionalplanung im Maßstab 1:100.000 (VR/VB), Rohstoffgewinnungsflächen und die Lagerstättenkarte von Bayern 1:500.000. Bitte beachten: Der vorliegende Datensatz ist nicht tagesaktuell. Der Darstellungsmaßstab ist 1:2.000.000 bis 1:120.000.
(Stand 2020)
Zielsetzung:
Batterien spielen eine entscheidende Rolle in der Transformation der (Strom-)Wirtschaft zu einer CO2 neutralen Zukunft. Die Emissionsreduktion hängt primär vom vorliegenden Strom- bzw. Energiemix ab. Einerseits für den Energieaufwand während der Erzeugung, andererseits während ihres Betriebs. Überdies dürfen CO2 Emissionen für die Erzeugung, Raffinierung und den Transport von Grundmaterialien nicht vernachlässigt werden. Hier setzen die in diesem Projekt beschriebenen Innovationen an. Aktuelle State-of-the-Art LIB Batterien verwenden einerseits nicht weltweit geläufige Rohstoffe, wie Lithium, Kobalt, Nickel, Mangan und Graphit. Diese Rohstoffe werden primär in China raffiniert. Die so hergestellten Ausgangsmaterialien werden dann ihrerseits erneut über weite Strecken transportiert. Anodenseitig wird aktuell Graphit verwendet. Beispielsweise stammen sowohl natürlicher (74%) als auch synthetischer Graphit (51%) primär aus China, weswegen chinesische Exportrestriktionen auf diesen essentiellen Zellbestandteil ein zusätzliches Hemmnis für die europäische LIB Technologie darstellen. Zusätzlich bedürfen LIB Batterien deutlich mehr CO2 in der Herstellung aufgrund der Anforderung an die Trockenräume, was bei NIB zumindest mit zusätzlicher Forschung deutlich reduzierbar wäre. Im Gegensatz dazu beruhen die Materialien für hier entworfene NIB auf weltweit geläufigen Mengenrohstoffen, was sowohl Kosten, CO2 Emissionen, Umweltbelastungen, und eben auch Abhängigkeiten von außereuropäischen Ländern minimiert.
Für eine Transformation hin zu einer nachhaltigen, erneuerbaren Wirtschaft sind billige Energiespeicher essenziell. Seit langem werden in den Roadmaps NIB als die beste Zukunftstechnologie bezeichnet, um möglichst kostengünstige Energiespeicher zu bauen. Daher wurde ein Konzept der vertikalen Integration entlang der Wertschöpfungskette erarbeitet, dass mit hoher Erfolgswahrscheinlichkeit, binnen von zwei Jahren zu einem NI-Batteriepack Prototyp führen soll. Der große Vorteil darin besteht in der raschen Weitergabe von Innovationssprüngen an den Prototypen und eventuellen Produkten. Die Zielsetzung ist eine Zelle mit einer Energiedichte von 180 Wh/kg zu entwickeln, welche dann in Endanwendungen wie Gabelstapler, Heimspeicher, und stationäre Speicher eingesetzt werden kann. Durch den angestrebten niedrigen Preis pro kWh für NIB’s sind alle Anwendungen mit einer niedrigen bis mittleren Energiedichte denkbar.
Fazit:
In diesem Projekt wurde eine Methode entwickelt, um Mangan-dotiertes preussisch Weiss deutlich langlebiger zu machen - mit Zyklenzahlen, die man auch von Lithium-Eisen-Phosphat Akkus kennt, die schon bisher als sehr langlebig gelten. Durch die Erhöhung Spannung können der wesentliche Nachteil der geringeren Energiekapazität von preussisch Weiss mitigiert werden. Das so entstandene Material kann nicht nur LFP, sondern auch NiCd und Blei-Säure Batterien ersetzen.
Ultrafeine Partikel haben in den letzten Jahren zunehmend an Bedeutung gewonnen. Diese sogenannten Nanopartikel sind vielfaeltig anwendbar, wie z.B. als Ausgangsmaterialien fuer hochfeste Werkstoffe, in Gassensoren, als Katalysatoren, in Arzneimitteln und in Testaerosolen fuer die Heissgasentstaubung. Es wurde eine Anlage zur Nanopartikelerzeugung durch Laserverdampfung entwickelt. Zur Herstellung wird Aluminiumoxidkeramik, Graphit, Kupfer oder Aluminium mit einem C02-Laser verdampft. Aus der Kondensation entstehen kugelfoermige Primaerpartikel in einem Groessenbereich zwischen 10 und 500 Nanometern. Nach der Erstarrung koennen die Partikel durch Agglomeration unregelmassig geformte Ketten oder Flocken bilden. Deshalb wird das Aerosol so weit verduennt, dass Kollisionen der Partikel unwahrscheinlich werden und damit die Agglomerationswahrscheinlichkeit stark reduziert wird. Das zu verdampfende Material, in Form eines runden Targets, ist unter einen Drehteller montiert, der in Rotation versetzt und gleichzeitig horizontal verschoben wird. Der Laserstrahl wird von unten auf das Target fokussiert und hinterlasst durch die Targetbewegung eine spiralfoermige Bahn auf der Materialoberflaeche. Das Material verdampft lokal im Laserfokus. Der Dampf wird durch radial zustroemendes Argon in einen Sinterkegel unterhalb des Targets transportiert, wo in der heissen Zone die Kondensation und Koagulation stattfindet. In diesem Bereich bleiben die Partikel durch Absorption der Laserstrahlung fluessig, unterhalb der heissen Zone erstarren sie. Durch die Volumenaufweitung des Kegels nach unten und das seitliche Zustroemen von Argon nimmt die Partikelkonzentration von oben nach unten stark ab. Die Partikel werden auf einer Filtermembran abgeschieden und mit einem Rasterelektronenmikroskop auf Groesse, Form und Agglomerationsgrad untersucht. Neben dem Ziel der Nanopartikelerzeugung werden die zugrundeliegenden Prozesse Verdampfung, Kondensation und Koagulation sowohl experimentell als auch theoretisch detailliert untersucht.
1
2
3
4
5
…
34
35
36