In diesem Fachinformationssystem werden für das Land Niedersachsen Informationen zur aktuellen Verkehrslage (Kamerabilder, Verkerhrswarndienst), zu Autobahnbaustellen, zu Schulausfällen sowie zu Hochwasser und Fährausfällen präsentiert. Weiterhin werden Informationen zur Verkehrslenkung für Messe- und Großveranstaltungen und zu Baustellen der Region Hannover als auch zum Parkleitsystem der Stadt Hannover präsentiert.
Die Olympischen Disziplinen im Rudern und Schwimmen wurden im Shunyi Water Park im Nordosten Pekings ausgetragen. Die extra dafür angelegten künstlichen Seen werden zum Teil mit Grundwasser aus Brunnen im Umland des Parks versorgt. In Zusammenarbeit mit unserem chinesischen Kooperationspartner BNEAT Co. Ltd. wurde ribeka beauftragt ein Grundwasser Monitoring System für das Umland des Shunyi Water Park zu entwerfen und installieren. Zahlreiche Multi-Parameter Datenlogger wurden in den Brunnen zur Überwachung der Grundwasserqualität und der zeitlichen Entwicklung des Grundwasserstandes installiert. Die Datenlogger wurden mit der neuesten Generation von GPRS Datenübertragungsmodulen ausgerüstet. Das Grundwassermonitoring kann somit in Echtzeit durchgeführt werden, die Daten sind direkt in der Grundwasser Monitoring Software GW-Base® verfügbar. Der technische Support erfolgt über unseren chinesischen Kooperationspartner als auch durch regelmäßige Besuche von ribeka Personal in Peking.
Eine Fülle an wissenschaftlichen Studien hat sich mit der Reaktion der stratosphärischen und troposphärischen Dynamik auf vulkanische Aerosole beschäftigt. Wegen der geringen Anzahl an gut beobachteten großen Eruptionen sowie der internen Variabilität des Systems gibt es zwar immer noch einige unbeantwortete Fragen, aber dennoch einen allgemeinen Konsens dass große Eruptionen insbesondere zu einer Beschleunigung der stratosphärischen Meridionalzirkulation, einer Verstärkung des stratosphärischen Polarwirbels und einer troposphärischen Reaktion auf diese stratosphärische Anomalien führen. Wenig ist hingegen über die Auswirkung auf die Mesosphäre bekannt. Es gibt indirekte Hinweise auf Temperaturanomalien durch die Beobachtung von polaren mesosphärischen Wolken (PMC) sowie direkte aus Lidarbeobachtungen nach der Pinatuboeruption. Der potenzielle Mechanismus dahinter ist allerdings weitgehend unbekannt. Unser Projekt möchte diese Wissenslücke schließen.In Phase I von VolDyn konnten wir zeigen, dass Daten des HALOE (Halogen Occultation Experiment) Satelliteninstruments, welches seine Beobachtung kurz nach dem Pinatuboausbruch aufnahm, auf positive Temperaturanomalien in der oberen Mesosphäre hindeuten, die möglicherweise mit dieser Eruption zusammenhängen. Erste Simulationen mit dem UA-ICON (upper atmosphere icosahedral non-hydrostatic) Modell zeigen für die Sommerhemisphäre einen starken Einfluss der stratosphärischen Zirkulationsanomalien auf die Mesosphäre. Derzeit untersuchen wir inter-hemisphärische Kopplungsprozesse.In Phase II von VolDyn werden wir weiterhin UA-ICON nutzen, um die Sensitivität der mesosphärischen Störung systematisch auf spezifische Charakteristika einer Eruption zu untersuchen, etwa die emittierte Schwefelmasse, den Breitengrad der Eruption oder die Jahreszeit während des Ausbruches.Da die mesosphärischen Anomalien wahrscheinlich sensitiv gegenüber der Charakteristik von stratosphärischen Zirkulationsanomalien sind, wollen wir die Pinatuboeruption (der größte Vulkanausbruch in der Satellitenära) und ihren Einfluss bis in die Mesosphäre so realistisch wie möglich simulieren und dabei auf ein Nudging der Stratosphäre zurückgreifen. Unser Ziel besteht darin, nicht nur einen qualitativen, sondern auch einen quantitativen Vergleich mit existierenden Beobachtungen zu ziehen – etwas, dass für andere massive Eruptionen wie die des Tambora oder Krakatau nicht möglich ist. Um die Simulationsergebnisse mit Beobachtungen zu vergleichen, werden wir praktisch alle verfügbaren Temperaturmessungen nutzen, welche die Mesosphäre zum Zeitpunkt des Pinatuboausbruches (oder kurz danach) erfasst haben.Nicht nur die Zirkulation, sondern auch Wasserdampfanomalien könnten zu den beobachteten PMC-Signalen beigetragen haben. Aus diesem Grund wollen wir den Transport von vulkanischem Wasserdampf bis in die polare Sommermesopausenregion in weiteren Modellstudien analysieren.
Die Entwicklung arktischer Luftmassen ist wichtig für die Entstehung und Beständigkeit von Wolken und Niederschlag. Zwei Phänomene – warme und feuchte Einflüsse aus dem Süden sowie kalte und trockene Strömungen aus dem Norden – verursachen besonders starke und schnelle Änderungen in den Luftmassen. Während dieser Ereignisse ändern sich die Zustände z.B. der Wolken, der Stabilität und des Feuchtebudgets sowohl räumlich als auch zeitlich. Aufgrund dieser schnellen Änderungen sowie den generellen arktischen Bedingungen mit niedrigen und oft starken Inversionen, ist es schwierig die Prozesse mit globalen Modellen mit einer groben Auflösung sinnvoll wiederzugeben. Um die entscheidenden Prozesse sowohl besser zu erfassen als auch zu parameterisieren, wird in diesem Projekt eine Kombination aus detaillierten Beobachtungen mit dem HALO Flugzeug und hoch-aufgelösten Simulationen mit dem ICON-LEM verwendet. Durch die lange Reichweite des HALO Flugzeuges wird es möglich sein dasselbe Ereignis mehrmals zu messen und dadurch einen breiten Einblick in die Struktur der Luftmasse zu bekommen. Darüber hinaus wird es durch die Lagrangsche, d.h. mit der Strömung mitbewegte, Flugstrategie möglich sein, die zeitliche Entwicklung der Luftmassen während der Ereignisse zu erfassen. Durch lokale Verfeinerungen um den tatsächlichen Flug herum wird die Auflösung des ICON-LEM Setups zwischen 1 km und 100 m variieren. Mit dieser einzigartige Kombination von Flugzeugbeobachtungen und hochauflösender Modellierung wird es möglich sein, das Feuchtebudget während der beobachteten warmen und kalten Einströmungen abzuschätzen. Anhang dieser Abschätzung können anschließend offene Fragen wie die Effizienz des Niederschlages sowie deren Einfluss auf die Beständigkeit der arktischen Mischphasenwolken untersucht werden. Während die Lagrangsche Flugstrategie es ermöglicht neue und einzigartige Forschungsfragen zu untersuchen, stellt sie die Flugplanung vor eine große Herausforderung, da eine gute Abschätzung der Luftströmungen unerlässlich sein wird. Teil dieses Projekts ist es deshalb auch die Flugplanung durch hochaufgelöste Vorhersagen und die Verfolgung bestimmter Luftmassen zu unterstützen. Insbesondere die Berechnung mehrerer Trajektorien wird es ermöglichen die verbleibenden Unsicherheiten abzuschätzen und sinnvolle Flugmuster vorzuschlagen. Die vorgeschlagene Kombination von Flugzeugbeobachtungen und hochauflösender Modellierung wird zu einem besseren Verständnis der Änderungen im Feuchtebudget und der Erhaltung von Mischphasenwolken während der feuchten sowie kalten Luftströmungen in der Arktis führen.
Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.
Bild: SenUVK; Jörg Lange Verkehrsregelungszentrale In der Verkehrsregelungszentrale (VKRZ) werden die Berliner Ampeln an über 2.100 Kreuzungen und Verkehrsbeeinflussungsanlagen gesteuert sowie die Verkehrslage auf über 1.600 Kilometer Straße beobachtet. Die Zentrale gehört zu den größten in Deutschland. Weitere Informationen Bild: www.kabgrafie.de Verkehrsbeeinflussung Moderne Verkehrsbeeinflussungsanlagen (VBA) leisten heute einen wichtigen Beitrag, den Verkehr sicherer und flüssiger fließen zu lassen – auch und vor allem in Berlin. Der Nutzen ist groß: Neben der Verbesserung des Verkehrsflusses werden auch die Emissionen verringert. Weitere Informationen Bild: SenMVKU Die Verkehrsinformationszentrale (VIZ) Berlin: Ihr kostenloser Mobilitätsservice Die Verkehrsinformationszentrale (VIZ) Berlin stellt umfassende, kostenfreie Mobilitätsdienste für alle Verkehrsteilnehmenden bereit – von Fahrgästen im öffentlichen Verkehr über Radfahrende und zu Fuß Gehende bis hin zu Autofahrenden. Weitere Informationen Bild: Ralf Rühmeier Ampeln und Co. Damit Berlins Verkehrsströme möglichst reibungsfrei und gefahrlos fließen, betreibt die Stadt gut 2.000 Ampeln. Hier erfahren Sie Wissenswertes über Geschichte, Technik und Koordination von Ampeln. Weitere Informationen Bild: SenUVK Dauerhafte Anordnungen Auf der Grundlage der Straßenverkehrs-Ordnung (StVO) ordnen die Straßenverkehrsbehörden an, welche Regelungen im Interesse der Sicherheit und Ordnung des Straßenverkehrs erforderlich sind. Dies sind Verkehrszeichen und Fahrbahnmarkierungen, aber auch Verkehrsampeln und Parkscheinautomaten. Weitere Informationen Bild: djama / fotolia.com Temporäre Genehmigungen (Anordnungen, Erlaubnisse) Die Abteilung Verkehrsmanagement ist die zuständige Behörde für die Erteilung von temporären Genehmigungen auf Hauptverkehrsstraßen z.B. für Verkehrsregelungen aufgrund von Baustellen, Großveranstaltungen und Filmdreharbeiten. Weitere Informationen Bild: SenMVKU Verkehrserhebungen Die Abteilung Verkehrsmanagement ist für die Durchführung und Auswertung von Verkehrserhebungen zuständig, die für die Behörden des Landes Berlin für die Zwecke der Verkehrslenkung und -planung sowie Stadtplanung benötigt werden. Weitere Informationen Bild: p365.de - Fotolia.com Aufgaben der Straßenverkehrsbehörden Die Behörden des Landes Berlin und die Bezirke teilen sich die Zuständigkeit für den Straßenverkehr. Lesen Sie hier, an welche Behörde Sie sich bei Fragen wenden sollten. Weitere Informationen finden Sie auf Bluesky unter https://bsky.app/profile/vizberlin.bsky.social mit täglich aktuellen Zahlen in einer Kartenansicht Weitere Informationen
| Origin | Count |
|---|---|
| Bund | 151 |
| Land | 24 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Förderprogramm | 134 |
| Text | 31 |
| Umweltprüfung | 2 |
| unbekannt | 8 |
| License | Count |
|---|---|
| geschlossen | 37 |
| offen | 134 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 160 |
| Englisch | 31 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Dokument | 10 |
| Keine | 107 |
| Webseite | 66 |
| Topic | Count |
|---|---|
| Boden | 96 |
| Lebewesen und Lebensräume | 154 |
| Luft | 99 |
| Mensch und Umwelt | 175 |
| Wasser | 74 |
| Weitere | 170 |