API src

Found 241 results.

Similar terms

s/grubenwaesser/Grubenwasser/gi

Flusslandschaft des Jahres 2010/2011 ist die Emscher

2010 und 2011 ist die Emscher, ein Fluss in Nordrhein-Westfalen, die Flusslandschaft des Jahres der NaturFreunde Deutschlands und des Deutschen Anglerverbandes. Die Emscher galt lange Zeit als schmutzigster Fluss Deutschlands. Der etwa 83 Kilometer lange Fluss wurde seit der Industrialisierung für Abwasser (Kloake), Grubenwasser der Bergwerke und Industrieabwasser der großen Stahlwerke missbraucht. Mit dem Strukturwandel im Ruhrgebiet und dem gestiegenen Umweltbewusstsein wurde aber auch die Emscher wieder sauberer.

Xtra-mix\Steinkohle-RU-2030

Steinkohle-Bergbau in Russland: Strombedarf nach #1, CH4-Emissionen nach #4 mit 20% Reduktion gegenüber 2000, alle anderen Daten nach # 2 ausser Angaben für feste Reststoffe (Abraum) und Wasserbedarf (Sümpfungswasser) nach #3. Auslastung: 7000h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 440000m² gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 25a Leistung: 2000MW Nutzungsgrad: 97,1% Produkt: Brennstoffe-fossil-Kohle

Xtra-Tiefbau\Steinkohle-DE-Vollwert-2005

Steinkohle-Tiefbau inkl. Aufbereitung in Westdeutschland, Energiebedarf nach #1, CH4-Emissionen aktualisiert nach #4 inkl. diffuser Emissionen aus Lagerung und Transport, alle anderen Daten nach #2, ergänzt um Angaben für feste Reststoffe (Abraum) und Wasserbedarf (Sümpfungswasser): 2,25 m3 Wasser und 0,9 m3 Abraum je t Förderung nach #3. Die Wassermengen beinhalten Sümfpungswässer und Wasser für die Aufbereitung der Rohkohle. Auslastung: 7000h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 100000m² gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 25a Leistung: 2000MW Nutzungsgrad: 100% Produkt: Brennstoffe-fossil-Kohle

Markt für Gold

technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of gold production (US): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. BENEFICIATION: Bald Mountain Mines: The ore treatment method is based on conventional heap leaching technology followed by carbon absorption. The loaded carbon is stripped and refined in the newly commissioned refinery on site. Water is supplied by wells located on the mine property. Grid power was brought to Bald Mountain Mine in 1996. For this purpose, one 27-kilometre 69 KVA power line was constructed from the Alligator Ridge Mine substation to the grid. Golden Sunlight Mines: The ore treatment plant is based on conventional carbon-in-pulp technology, with the addition of a Sand Tailings Retreatment (STR) gold recovery plant to recover gold that would otherwise be lost to tailings. The STR circuit removes the heavier gold bearing pyrite from the sand portion of the tailings by gravity separation. The gold is refined into doré at the mine. Tailing from the mill is discharged to an impoundment area where the solids are allowed to settle so the water can be reused. A cyanide recovery/destruction process was commissioned in 1998. It eliminates the hazard posed to wildlife at the tailings impoundment by lowering cyanide concentrations below 20 mg/l. Fresh water for ore processing, dust suppression, and fire control is supplied from the Jefferson Slough, which is an old natural channel of the Jefferson River. Ore processing also uses water pumped from the tailings impoundment. Pit water is treated in a facility located in the mill complex prior to disposal or for use in dust control. Drinking water is made available by filtering fresh water through an on-site treatment plant. Electric power is provided from a substation at the south property boundary. North-Western Energy supplies electricity the substation. Small diesel generators are used for emergency lighting. A natural gas pipeline supplies gas for heating buildings, a crusher, air scrubber, boiler, carbon reactivation kiln, and refining furnaces. Cortez Mine: Three different metallurgical processes are employed for the recovery of gold. The process used for a particular ore is determined based on grade and metallurgical character of that ore. Lower grade oxide ore is heap leached, while higher-grade non-refractory ore is treated in a conventional mill using cyanidation and a carbon-in-leach (“CIL”) process. When carbonaceous ore is processed by Barrick, it is first dry ground, and then oxidized in a circulating fluid bed roaster, followed by CIL recovery. In 2002 a new leach pad and process plant was commissioned; this plant is capable of processing 164 million tonnes of heap leach ore over the life of the asset. Heap leach ore production is hauled directly to heap leach pads for gold recovery. Water for process use is supplied from the open pit dewatering system. Approximately 90 litres per second of the pit dewatering volume is diverted for plant use. Electric power is supplied by Sierra Pacific Power Company (“SPPC”) through a 73 kilometre, 120 kV transmission line. A long-term agreement is in place with SPPC to provide power through the regulated power system. The average power requirement of the mine is about 160 GWh/year. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. OTHER MINES: Information about the technology used in the remaining mines is described in the References. WATER EMISSIONS: Water effluents are discharged into rivers. References: Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Barrick (2006b) Environment: Performance Tables from http://www.barrick. com/Default.aspx?SectionID=8906c4bd-4ee4-4f15-bf1b-565e357c01e1& LanguageId=1 Newmont (2005b) Now & Beyond: Sustainability Reports. Newmont Mining Corporation. Retrieved from http://www.newmont.com/en/social/reporting/ index.asp technologyComment of gold production (CA): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. BENEFICIATION: In the Porcupine Mines, gold is recovered using a combination of gravity concentration, milling and cyanidation techniques. The milling process consists of primary crushing, secondary crushing, rod/ball mill grinding, gravity concentration, cyanide leaching, carbon-in-pulp gold recovery, stripping, electrowinning and refining. In the Campbell Mine, the ore from the mine, after crushing and grinding, is processed by gravity separation, flotation, pressure oxidation, cyanidation and carbon-in-pulp process followed by electro-winning and gold refining to doré on site. The Musselwhite Mine uses gravity separation, carbon in pulp, electro¬winning and gold refining to doré on site. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Effluents are discharged into the ocean. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (AU): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Water effluents are discharged into rivers. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (TZ): The mining of ore from open pit and underground mines is considered. technologyComment of gold refinery operation (ZA): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold refinery operation (RoW): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold-silver mine operation with refinery (PG): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The recovery processes of the Misima Mine are cyanide leach and carbon in pulp (CIP). The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: The recovery process in the Porgera Mine is pressure oxidation and cyanide leach. The slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. WATER SUPPLY: For Misima Mine, process water is supplied from pit dewatering bores and in-pit water. Potable water is sourced from boreholes in the coastal limestone. For Porgera Mine, the main water supply of the mine is the Waile Creek Dam, located approximately 7 kilometres from the mine. The reservoir has a capacity of approximately 717, 000 m3 of water. Water for the grinding circuit is also extracted from Kogai Creek, which is located adjacent to the grinding circuit. The mine operates four water treatment plants for potable water and five sewage treatment plants. ENERGY SUPPLY: For Misima Mine, electricity is produced by the mine on site or with own power generators, from diesel and heavy fuel oil. For Porgera Mine, electricity is produced by the mine on site. Assumed with Mobius / Wohlwill electrolysis. Porgera's principal source of power is supplied by a 73-kilometre transmission line from the gas fired and PJV-owned Hides Power Station. The station has a total output of 62 megawatts (“MW”). A back up diesel power station is located at the mine and has an output of 13MW. The average power requirement of the mine is about 60 MW. For both Misima and Porgera Mines, an 18 MW diesel fired power station supplies electrical power. Diesel was used in the station due to the unavailability of previously supplied heavy fuel oil. technologyComment of gold-silver mine operation with refinery (CA-QC): One of the modelled mine is an open-pit mine and the two others are underground. technologyComment of gold-silver mine operation with refinery (RoW): The mining of ore from open pit mines is considered. technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of processing of anode slime from electrorefining of copper, anode (GLO): Based on typical current technology. Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, copper telluride cement and crude selenium to further processing. technologyComment of silver-gold mine operation with refinery (CL): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. BENEFICIATION: The processing plant consists of primary crushing, a pre-crushing circuit, (semi autogenous ball mill crushing) grinding, leaching, filtering and washing, Merrill-Crowe plant and doré refinery. The Merrill-Crowe metal recovery circuit is better than a carbon-in-pulp system for the high-grade silver material. Tailings are filtered to recover excess water as well as residual cyanide and metals. A dry tailings disposal system was preferred to a conventional wet tailings impoundment because of site-specific environmental considerations. technologyComment of silver-gold mine operation with refinery (RoW): Refinement is estimated with electrolysis-data. technologyComment of treatment of precious metal from electronics scrap, in anode slime, precious metal extraction (SE, RoW): Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, Palladium to further processing

Potenzialstudie Warmes Grubenwasser

Mit der Energiewende rückt auch die Wärmewende immer mehr in den Fokus. Der Wärmemarkt bietet durch den Einsatz erneuerbarer Energien und der Nutzung besonders energieeffizienter Technologien sowie durch Energieeinsparung große Potenziale zur Reduktion von Treibhausgasemissionen. NRW hat als Energie- und Industrieland mit hoher Bevölkerungsdichte hier eine besondere Verantwortung. Derzeit erfolgt die Wärmeversorgung der Gebäude in NRW vor allem durch fossile Energieträger. Der 2015 veröffentlichte LANUV-Fachbericht zu den Potenzialen der oberflächennahen Geothermie weist ein sehr hohes Ausbaupotenzial auf diesem Gebiet aus und verdeutlicht, dass die Transformation auf erneuerbare und effiziente Energieformen Schritt für Schritt gelingen kann. Da auch die Nutzung von Erdwärme, z.B. aus dem Grubenwasser stillgelegter Bergwerke, einen Beitrag zur Wärmeversorgung liefern kann, hat das Ministerium für Wirtschaft, Digitalisierung und Energie des Landes NRW das LANUV mit der Ermittlung der Potenziale des warmen Grubenwassers in NRW beauftragt. Die Potenzialstudie Warmes Grubenwasser zeigt, dass dort, wo Grubenwasser durch Wasserhaltungs- bzw. Sümpfungsmaßnahmen anfällt, hohe technische Potenziale bestehen, deren Nutzung ein wichtiger Baustein für eine erfolgreiche Wärmewende in NRW sein kann. Die Ergebnisse der Studie fließen in das Wärmekataster des Energieatlas NRW ein und liefern somit eine wichtige Datengrundlage für das Gelingen der Wärmewende in NRW. Fachbericht 116 | LANUV 2021 Fachbericht 96 | LANUV 2019 Fachbericht 62 | LANUV 2016

Potenzialstudie Industrielle Abwärme

Der fortschreitende Klimawandel erfordert eine schnelle und nachhaltige Energiewende. Neben dem Ausbau der Erneuerbaren Energien ist die Effizienz ein entscheidender Hebel zur Erreichung lokaler, regionaler, bundesweiter und globaler Klimaschutzziele. Das Landesamt für Natur, Umwelt und Verbraucherschutz führt seit 2012 Potenzialstudien zur Energiewende in Nordrhein-Westfalen durch. Durch fundierte Analysen werden der aktuelle Bestand an erneuerbaren Energien und effizienten Technologien sowie umweltverträgliche Potenziale auf regionaler Ebene ermittelt. So werden Grundlagendaten zur Unterstützung der Energiewende erarbeitet. Untersucht wurden bisher die Energieträger Wind, Sonne, Biomasse, Geothermie, Wasserkraft, Pumpspeicher und warmes Grubenwasser. Die Ergebnisse werden als Fachbericht sowie im Fachinformationssystem Energieatlas der Öffentlichkeit zur Verfügung gestellt, wodurch sie die Arbeit von Kommunen, Genehmigungsbehörden, Energieversorgern und weiteren Akteuren unterstützen. In Deutschland ist Wärme die wichtigste Prozessenergie der Industrie. Die sichere Energieversorgung ist einer der bedeutendsten Standortfaktoren und entscheidend für die Wirtschaftlichkeit eines Unternehmens und die Attraktivität einer Region. Mehr als ein Drittel der industriell eingesetzten Prozessenergie geht global als Abwärme verloren (energy2.0, 2012; Donnerbauer, 2015). Damit ist die Weiternutzung anfallender Abwärme sowohl aus ökonomischer Sicht als auch im Sinne der Nachhaltigkeit ein notwendiger Schritt.

Main topic: Salt water in the Asse mine

Water has been seeping into the Asse II mine for decades, resulting in a risk of what is known as “drowning”. Miners use this term to describe a situation in which so much water enters a mine that it is no longer safe to work in it and the mine must be abandoned. Around 12 cubic metres of solution per day are currently seeping into the mine through cracks in the surrounding rock and salt. This volume is equivalent to about 50 bathtubs. Even the experts from the BGE cannot predict how the rate of influx will vary over time, and it could change at any time in such a way that safe operation of the mine was no longer possible. In this case, the retrieval of radioactive waste would have to be abandoned. On this page Causes and background Not all water is the same How is the salt water monitored? How is the salt water disposed of? Will the disposal options remain constant? Is there no better way to seal the mine? Questions and answers Over decades of intensive salt mining, miners created numerous cavities in a very confined space, especially on the southern edge of the salt structure. These cavities are permanently exposed to rock pressure and are being slowly but steadily compressed. The movement of the rock creates cracks that allow water to penetrate into the mine. A blessing in disguise: the penetrating water contains large quantities of salt. Experts describe this as a saturated rock salt solution, meaning that the solution cannot dissolve any new rock salt and thereby enlarge the flow pathways. Rock salt is the term used by miners to refer to sodium chloride, also known as common salt. There are also other types of salt, such as various potassium salts. Incidentally, the amount of water in the mine is independent of the amount of rainfall above ground, because the water first travels through the rock for very long periods of time before penetrating into the mine. In other words, we don’t collect more water underground in times of higher rainfall. Diagrams : Intensive salt mining has left its mark on the Asse II mine. The resulting cavities were later largely backfilled, thereby stabilising the facility. The diagrams show all the cavities that ever existed in the Asse II mine – which were never open at the same time – as well as the mine in 2015, when numerous cavities had already been filled in . There are around 570 spots in the Asse II mine that are slightly damp or dripping. These spots often dry up on their own. In other places, the BGE collects the solution on a continuous basis. The most important collection point is the so-called main collection point at a depth of 658 metres (see diagram). This point is located around 100 metres above the emplacement chambers containing radioactive waste at the 750-metre level. At the main collection point, the BGE experts are currently collecting around 95% of the salt solution leaking into the Asse II mine (type A solution). This had no contact with the radioactive waste. An additional 1 cubic metre of salt water per day is collected below the main collection point (type B solution). This solution also had no contact with the radioactive waste. Further down in the mine, salt water that has come into contact with the radioactive waste and is contaminated is also collected. This comes to a small amount, averaging around 15 litres per day (type C solution). No matter where the BGE collects the solution, it undergoes intensive analysis. Among other things, checks are made of the following: volume of influent solution salt content temperature density. The solution is also analysed for radioactive substances, with tritium playing a particularly important role in this context. Tritium is a radioactive variant of hydrogen and originates from the stored waste. As this radioactive substance is gaseous and so small, it can escape from the emplacement chambers through extremely fine cracks and is absorbed on contact with the underground solution. However, measurements show that the solution from the main collection point (type A solution) contains only around a tenth of the quantity of tritium that would be permitted in drinking water. The collected salt water also contains traces of other radioactive substances that originate from the surrounding rock and have been absorbed by the water on its way through the rock mass. These substances are of natural origin and have nothing to do with the nuclear waste in the Asse II mine. The solution collected at the main collection point and cleared from a radiological perspective leaves the Asse II mine every three weeks. It is handed over to a certified specialist company from the chemical industry in order to recycle the salt. The solution is radiologically harmless. The solution arising at other collection points remains in the mine and is generally not radioactively contaminated. It is used in the mine to produce concrete, which the miners use to fill in residual cavities with a view to stabilising the mine. If the solution can only be collected after it has come into contact with the radioactive waste (type C solution), this usage is only possible to a limited extent. If the radioactive contamination is comparatively low, the BGE also uses this solution to make concrete in the deepest areas of the mine. This procedure has been authorised by the state mining office and ensures that the radioactive substances contained in the concrete no longer reach the surface. If the solution has a higher level of contamination, however, it is declared as radioactive waste and handed over to the state collection point of Lower Saxony. This rarely happens, however, and only applies to a few litres of solution. The BGE is constantly exploring other disposal options. It is important to do so because the mine can only be operated safely in the long term if the solution can be handed over on a regular basis. For example, the BGE currently only hands over type A solution, which is collected above the 700-metre level and is well below the limit value for tritium in the Drinking Water Ordinance. This voluntary commitment can only be met if the quantity of solution arising does not increase significantly below the 700-metre level. Since significantly larger quantities of water cannot be utilised underground, a disposal option would then have to be identified outside the Asse for type B solution in order to ensure continued safe operation of the mine. Since type B solution also has no contact with the waste, radiological clearance appears to be possible. Ultimately, the requirements of the Radiation Protection Act are decisive when it comes to the disposability of the solutions. Stabilisation work There is no way to seal the mine so that no more solution can enter. This is because the rock on the southern flank has been extensively loosened by rock displacement into the mining areas, and blocking one route would lead a new one to break open. It is important to stabilise the mine, and the BGE therefore backfills all cavities that are no longer required for the recovery of radioactive waste. This causes the mine to deform more slowly, as empirical values have already shown. It is impossible to predict how long the mine can be operated safely. An important prerequisite for the retrieval of waste is that the main collection point can be operated in a stable manner or alternative methods can be found for salt water management. Salt water has been flowing into the Asse mine since 1988. So far, a large part of this salt water has been collected at a depth of 658 metres at the so-called main collection point. This salt water is then tested for possible radiological contamination and pumped above ground. The situation has changed since the start of the year, and a greater volume of salt water is now being collected at several points below 658 metres than at the main collection point. Most of the radioactive waste lies at a depth of 750 metres. It is located in the former mining chambers of the old salt mine, which dates back more than 100 years. A measuring programme is being deployed there to check whether salt water comes into contact with the waste and therefore becomes contaminated. The measurements at the 750-metre level currently give no indication of an increase in contaminated solutions. There is no evidence that contaminated salt water reaches the surface, nor is this to be expected in the immediate future. Based on current knowledge, it would take several hundred years for radioactive substances to reach the surface. It is impossible to make a detailed calculation of the potential level of radiation exposure in the future, as this depends on the exact course of release. Possible scenarios range from exposure below the permissible limits to a slight exceeding of the limits. A large-scale evacuation is not to be expected. The BGE is continuing to pursue the retrieval of radioactive waste, and planning is ongoing. The BGE will only be able to say how current events affect retrieval planning once it has more information on how current events unfold and the plans have been reviewed accordingly. The BGE has been implementing precautionary measures to stabilise the mine for years. These precautionary measures are part of emergency planning and constitute a prerequisite for the retrieval of radioactive waste. Cross-flooding the mine is part of the emergency measures set out in the emergency planning. These measures will be implemented if the influx of solution increases to such an extent that it is no longer technically controllable. This is not currently the case. At present, miners are gradually working their way into the main collection point at the 658-metre level within the secured area in order to locate potential damaged areas of containment liner that are accessible and to carry out appropriate repairs. In April 2024, the BGE made an application for complete renovation of the main collection point at the 658-metre level. This project will be pursued further. The application has been submitted to the State Office for Mining, Energy and Geology (LBEG), which is the competent authority in this instance. As part of the application, the BGE requested that the LBEG allow necessary exploratory work to begin in advance of renovation based on a partial licence.

History of the Asse II mine

History of the Asse II mine The Asse II mine is one of three facilities constructed on the Asse mountain range in around 1900 for the purpose of salt extraction, which was discontinued in 1964. The mine was subsequently bought by the federal government in 1965 and, from 1967 to 1978, was used for the emplacement of around 47,000 cubic metres of low- and intermediate-level radioactive waste. Research work was carried out until 1995. Following the completion of this work, preparations were made for the mine’s decommissioning. This was to be carried out in accordance with mining law and without proof of long-term safety. In 2009, the facility was brought under the purview of nuclear law in response to demands from society and politics. Since 2013, there has been a legal mandate for the retrieval of the emplaced radioactive waste. According to current knowledge, this is the only way to ensure long-term safety. Salt extraction in the Asse II mine Potash salt was mined in the northern flank of the Asse II mine from 1909 to 1925, when the extraction work was discontinued for financial reasons. The chambers were backfilled during extraction with material arising as part of potash production. The mining of rock salt began in 1916 and continued until 1964. Here, too, mining was discontinued for financial reasons. A total of 131 mining chambers were created in the southern flank and remained open for several decades. The numerous cavities are exposed to geostatic pressure and are now leading to stability problems. Emplacement, research and planned decommissioning under mining law In 1965, the Federal Ministry of Research commissioned the Association for Radiation Reasearch (now known as Helmholtz Zentrum München) to carry out research into the final disposal of radioactive waste in the Asse II mine . The first waste was delivered in 1967. Emplacement was carried out based on the provisions of the Federal Mining Act and the Radiation Protection Ordinance. Around 47,000 cubic metres of low- and intermediate-level radioactive waste were emplaced by the time emplacement finished in 1978. Although the facility was officially operated as a research mine, these emplacement operations effectively constituted the final disposal of almost all low- and intermediate-level radioactive waste from the Federal Republic of Germany from 1971 onwards. In 1987, the “area below the 800 m level” was created beneath the former extraction mine. This area was used to research whether salt was suitable for the storage of heat-generating radioactive waste. The research work ended in 1995. Since 1988, water has been entering the mine in the form of groundwater from the surrounding rock. This water is saturated with rock salt and does not lead to the dissolution of salt in the mine. From 1995 to 2004, the cavities that were still open in the southern flank were backfilled using salt material with a view to stabilising the mine. However, the chosen method did not achieve this aim satisfactorily. In 1997, the former operator presented a framework operating plan for the decommissioning of the Asse II mine. The radioactive waste was to remain in the mine, and no long-term safety demonstration would be carried out. Likewise, no such demonstration was envisaged in the final operating plan presented in 2007. Planned retrieval of radioactive waste In 2008, the Federal Ministry of Research and the environment ministries of the federal government and the State of Lower Saxony decided to treat the Asse II mine as a repository. The mine came under the purview of nuclear law in 2009. As well as stricter requirements for operation, decommissioning and radiation protection, the legislation also requires public participation with regard to the facility’s decommissioning. When the Asse mine came under the purview of nuclear law, the Federal Office for Radiation Protection (BfS) became its operator and was tasked with decommissioning the facility without delay. In 2010, a comparison of multiple decommissioning options showed that the stipulated long-term safety could only be demonstrated by retrieving the radioactive waste from the Asse II mine. In 2013, the Bundestag (the lower house of Parliament in Germany) passed the “Lex Asse” legislation – the “Law on Speeding up the Retrieval of Radioactive Waste and the Decommissioning of the Asse II Mine” – with the backing of a broad political majority. Retrieval was thereby enshrined in the Atomic Energy Act. In 2017, within the framework of the restructuring of final disposal activities, the BGE assumed operating responsibility from the BfS. There were no changes to the legal mandate for the retrieval of radioactive waste from the Asse II mine. In April 2020, the BGE presented its retrieval plan, in which it described how it intended to retrieve the radioactive waste. For further information on the retrieval plan, please refer to the main topic on retrieval (German only) .

„Betrifft: Konrad“: Rückblick 2022 und Ausblick auf 2023

Das Endlager Konrad nimmt weiter Gestalt an. Immer mehr Räume in 800 bis 850 Metern Tiefe und immer mehr Bauwerke über Tage werden fertig, berichtete der Projektleiter Konrad, Peter Duwe, beim Jahresrückblick auf 2022. Das trifft derzeit für die Anlage am Schacht 1 noch deutlich stärker zu als am Schacht 2. In diesem Jahr soll sich das aber umkehren. Dann startet voraussichtlich der Hochbau wesentlicher Gebäude am Schacht 2. Insgesamt fiel die Bilanz von Peter Duwe vor mehr als 80 Teilnehmenden überwiegend positiv aus. Der Fertigstellungstermin 2027 werde weiter im Blick behalten, auch wenn er nicht ohne Risiko behaftet sei. Am Ende der Veranstaltung hat sich gezeigt, dass es zu zahlreichen Aspekten des Endlagers Konrad Fragen gibt. „Wir freuen uns über jede Frage, die uns erreicht und werden auch weiterhin versuchen, mit den Menschen der Region ins Gespräch zu kommen“, sagte der Leiter der Infostelle Konrad, Michael Lohse. Auch Projektleiter Peter Duwe hat sich über die rege Beteiligung sehr gefreut. Auf Konrad 1 wurden die letzten Gebäude hochgezogen Mit den neuen Gebäuden für die Wache, das Heizhaus und die Werkstatt ist der Hochbau auf der Anlage am Schacht Konrad 1 abgeschlossen. Wache und Heizhaus werden aktuell in den Regelbetrieb überführt. In der Werkstatt läuft der Innenausbau und die ersten Maschinen werden installiert. Ebenfalls konnte die Einrichtung der zentralen Warte vollendet werden. Im Maschinenhaus Nord wartet bereits eine neue Fördermaschine darauf, ihren Betrieb aufzunehmen. Zuvor sind aber noch Arbeiten am Förderturm und an der Führungsmechanik für den Förderkorb im Schacht zu erledigen. Mehr dazu im Ausblick 2023. Auf Konrad 2 stehen die ersten Gebäude Der sogenannte Betriebshof ist ein Gebäudekomplex aus zwei Gebäuden . Hier sind neben einem Lokschuppen auch eine Halle für eine Friktionswinde zum Seilwechsel für den „Aufzug“ im Schacht gebaut worden sowie ein Werkstattgebäude. Das im Jahr 2008 für die Zwischenzeit aufgestellte Fördergerüst ist 2022 zurückgebaut worden . Bis der neue Förderturm gebaut ist, sorgt eine Kleinförderanlage für die Seilfahrten nach unter Tage. Diese kommt ohne Fundament um den Schacht 2 aus. Dadurch ist es möglich geworden, die Fundamentreste des alten Fördergerüsts zu entfernen. Das ist eine wichtige Voraussetzung für den Neubau. Nicht zuletzt muss die Grubenwasser-Übergabestation genannt werden, die im Jahr 2022 im Rohbau fertiggestellt wurde . Sie ist das erste nach den besonders strengen Regeln des kerntechnischen Ausschusses (KTA) erbaute Gebäude auf Konrad 2. Hier werden später noch Tanks zum Sammeln des Grubenwassers sowie Pump- und Messtechnik eingebaut. 2023 bringt weitere sichtbare Veränderungen Beim Blick auf das laufende Jahr zeigt sich rasch, welche Herausforderungen beim Bau des Endlagers Konrad noch zu meistern sind. So steht am Schacht Konrad 1 zum Beispiel der Wechsel des inneren Führungsgerüstes an. Das ist die Stahlkonstruktion innerhalb des Schachtes. An dieser Konstruktion sind unter anderem die Führungen (Spurlatten) für den Förderkorb über Tage befestigt, damit dieser vollständig aus der Schachtröhre herausfahren kann. Das vorhandene Führungsgerüst stammt noch aus der Bauzeit des Schachtes in den 1960er Jahren und muss für mindestens 40 weitere Jahre Betriebszeit ausgetauscht werden. Das passiert in der zweiten Jahreshälfte und dauert rund ein halbes Jahr. In dieser Zeit stehen die Förderkörbe auf Konrad 1 still. Es können deshalb unter Tage nur dringend notwendige Arbeiten vorgenommen werden. Die dafür benötigte Belegschaft wird über die kleine Anlage im Schacht Konrad 2 ein- und ausfahren. Parallel dazu ist geplant am Schacht 2 die Arbeiten am Fundament des neuen Förderturms , dem sogenannten Schachtkeller, zu beginnen. Dabei wird der Lastfall Erdbeben nach den Regelvorgaben des kerntechnischen Ausschusses in die Tragwerksplanung berücksichtigt. Dies geht über die Berechnungsvorgaben des Planfeststellungsbeschlusses hinaus. Mit anderen Worten: Der neue Schacht und seine Anlagen werden – mit Blick auf das aktuelle technische Regelwerk – erdbebensicher gebaut. Atomrechtliche Vorgaben sind auch beim anstehenden Bau der Umladehalle von entscheidender Bedeutung. Hierzu werden gerade die eingereichten Unterlagen geprüft. Derzeit erfolgen vorbereitende Maßnahmen und die Einrichtung der Baustelle. Die Umladehalle wird am Ende eine Länge von rund 160 Metern haben. Sie ist das zentrale Gebäude des Endlagers Konrad über Tage. Hier kommen die Transporte mit den Behältern an. Die Behälter durchlaufen dann eine Reihe von Prüfschritten nach deren positivem Ergebnis sie ihre letzte Etappe nach unter Tage und bis zu den Einlagerungskammern absolvieren. Rege Teilnahme in der Info Konrad sowie online Daneben gab es zahlreiche Fragen zu der Ausführung der Transportstrecken und Funktionsräume des Endlagers unter Tage sowie zu den Einlagerungskammern. Während letztere mit einem bergbautypischen Anker-Maschendraht-Ausbau ausgeführt werden, erfolgt der Ausbau der Transportstrecken und Funktionsräume im zweistufigen Tunnelbauverfahren. Das ist viel aufwendiger, aber notwendig, damit die Bereiche über eine Betriebszeit von rund 40 Jahren ohne größere Nacharbeiten betrieben werden können. Ein Teil der Fragen, die noch nicht in den „Fragen und Antworten“ auf der Internetseite enthalten sind, werden dort ergänzt. Außerdem werden alle offengebliebenen Fragen der Veranstaltung gesammelt und zeitnah mit Antworten unter dieser Meldung veröffentlicht sowie in den Fragen und Antworten. Am Ende der Veranstaltung gab es noch Gelegenheit, Themenvorschläge zu nennen. Das möchten die Unternehmenskommunikation und der Fachbereich gerne aufgreifen für die kommenden Veranstaltungen im Rahmen der Betrifft-Reihe. Geplant ist eine Veranstaltung direkt auf der Schachtanlage Konrad 1. Dabei können dann Gäste vor Ort an einer Besichtigungsrunde über das Gelände teilnehmen. Alle Informationen dazu werden frühzeitig im Internet und über unseren lokalen Veranstaltungsverteiler mitgeteilt. Veranstaltungsreihe Betrifft: Konrad Die Veranstaltungsreihe „Betrifft: Konrad“ ist ein Forum für interessierte Bürger*innen, um über aktuelle Arbeiten und Fragestellungen mit den Beschäftigten der BGE ins Gespräch zu kommen. Themenvorschläge können gerne an dialog(at)bge.de gesendet werden. Die offenen Fragen aus der Betrifft: Konrad Folgende Fragen wurden gestellt, können aus Zeitgründen aber erst im Nachgang der Veranstaltung beantwortet werden: Wie läuft in der Zeit des Führungsgerüstwechsels die Seilfahrt und welcher zweite Rettungsweg steht ohne Schacht 1 zur Verfügung? Wie ist der aktuelle Stand der Überprüfung der sicherheitstechnischen Anforderungen des Endlagers Konrad nach dem Stand von Wissenschaft und Technik (ÜsiKo)? Ist ausgeschlossen, dass die Abluft im Endlagerbetrieb Radioaktivität enthält und wie? Gibt es am Lüftergebäude auf Konrad 2 jetzt schon Messgeräte zur Messung von radioaktivem Argon und radioaktiven Staub? Wodurch ist sichergestellt, dass – mit Blick auf die geplanten Verfüllmaßnahmen der Einlagerungskammern – keine Alkali-Kieselsäure-Reaktion (AKR) – landläufig Betonkrebs eintritt? In einem Bericht zu den Asse-Abfällen der BGE werden "augenscheinlich" die Endlagerbedingungen Konrad herangezogen. Dort leitet man "Restriktivste Grenzwerte in Becquerel für das Endlager Konrad" ab und bewertet dann die Asse-Abfälle und welche Nuklide diese Grenzwerte überschreiten. Warum ist das so? Wann kann, aus heutiger Sicht, das erste Gebinde entgegengenommen werden? Wann beginnt die Einlagerung?

Kalenderwochen 29 und 30/2018

Aktuelle Arbeiten - Endlager Morsleben Übersicht über die wesentlichen Arbeiten in den Kalenderwochen 29 und 30/2018 Gewährleistung der Betriebssicherheit Bergleute müssen das Endlager nach Berg- und Atomrecht betreiben. Der Eintrag von Braunkohlenfilterasche in Abbau 2 des Einlagerungsbereiches Südfeld auf der 4. Ebene (Sohle) ist abgeschlossen (siehe Wochenbericht KW 23/24) . Die Abbaue 1 und 2 wurden mit rund 8.175 Kubikmetern Braunkohlenfilterasche verfüllt. Bergleute beginnen mit dem Rückbau des Ascheeintragssystems. Das neu errichtete Wettertor auf der 2. Ebene im Ostfeld wird durch die Qualitätssicherung abgenommen (siehe Wochenbericht KW 19/20) . Bergleute beginnen damit, eine geringe Unterspülung im Bereich der Schachtwasserhaltung auf der 2. Ebene zu verfüllen. Die Unterspülung ist durch den Austritt von Schachtwasser aufgrund einer defekten Pumpe entstanden, stellt jedoch keine Gefahr für den Betrieb des Endlagers dar. Mitarbeiter der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) bauen Mikroakustiksensoren in dafür geschaffene Bohrungen auf der 1. Ebene in der Nordstrecke ein (siehe Wochenbericht KW 15/16) . Sie dienen der geomechanischen Überwachung im Umfeld von Abbau 1a, in dem sich eine Lösungszutrittsstelle befindet. Meldepflichtige Ereignisse Betriebsstörungen oder Störfälle bis zu Unfällen sind den zuständigen Aufsichtsbehörden zu melden. Grundlage ist die Atomrechtliche Sicherheitsbeauftragten- und Meldeverordnung (AtSMV) Am 27. Juli 2018 gibt es bei einer Überprüfung der Hilfsfahranlage von Schacht Bartensleben, die beim Versagen der Schachtförderanlage zur Rettung der auf dem Förderkorb befindlichen Personen zum Einsatz kommt, eine Störung. Ein Haltemagnet löst beim Anfahren des oberen Schachtendschalters nicht aus und es wird keine Sicherheitsbremsung ausgelöst. Während des Fahrens der Hilfsfahranlage befinden sich keine Personen auf dem Fördermittel. Am 28. Juli 2018 geht die Hilfsfahranlage wieder in Betrieb. Eine N-Meldung (Normalmeldung mit geringer sicherheitstechnischer Bedeutung) wird fristgerecht an die atomrechtliche Aufsicht des Bundesamtes für kerntechnische Entsorgungssicherheit gegeben. Das Ereignis hat keine Auswirkungen auf den sicheren Endlagerbetrieb, auf Personen oder die Umgebung. Einblick Aufgenommen im November 2017 Der Abbau 1a ist ein Steinsalzabbau auf der 1. Ebene der Grube Bartensleben. Hier befindet sich eine Lösungszutrittsstelle, die rund um die Uhr überwacht wird. Rund 2,2 Kubikmeter gesättigte Salzlösung traten hier im Jahr 2017 auf. Sie stammt noch aus der Zeit der Salzentstehung vor rund 260 Millionen Jahren. Die Menge ist so gering, dass zur genauen Erfassung eine Tropfenzählanlage installiert werden musste: Planen fangen die Tropfen auf, die sich an der Decke (Firste) und den Wänden (Stoß) des oberen Abbaus bilden, und leiten diese über Trichter in Behälter. Jeder Tropfen, der in den Behälter fällt, wird akustisch registriert. Nur so können die geringen Mengen zuverlässig gemessen werden. Über die Aktuellen Arbeiten Mit den aktuellen Arbeiten bieten wir Ihnen einen regelmäßigen Überblick zu den wichtigsten Arbeiten und Meilensteinen im Endlager Morsleben. Die Arbeiten sind den wesentlichen Projekten zugeordnet, um den Fortschritt der einzelnen Projekte nachvollziehbar zu dokumentieren. Wir bitten zu beachten, dass nicht alle Arbeiten, die täglich über und unter Tage stattfinden, an dieser Stelle dokumentiert werden können. Bei Bedarf steht Ihnen das Team der Infostelle Morsleben gerne für weitere Auskünfte zur Verfügung. Links zum Thema Alle Wochenberichte im Überblick Einblicke Nr. 3 - Thema: Wo geht es hin? Meldepflichtige Ereignisse im Endlager Morsleben für das erste Halbjahr 2018

1 2 3 4 523 24 25