API src

Found 60 results.

Karte der Schutzfunktion der Grundwasserüberdeckung M 1 : 50 000

Die Schutzfunktion der Grundwasserüberdeckung beschreibt flächenhaft das natürliche Potential gegenüber einer Grundwassergefährdung durch das Eindringen von Schadstoffen von der Erdoberfläche durch den Boden und den tieferen Bereich der ungesättigten Zone bis zum Erreichen der Grundwasseroberfläche aus Sicht der geologisch-hydrogeologischen Naturraumausstattung. Unter Grundwasserüberdeckung werden dabei der Boden und der Gesteinskörper über dem obersten zusammenhängenden und für eine Grundwassergewinnung potenziell nutzbaren Grundwasserstockwerk verstanden (DIN 4049). Die vorliegende quantifizierende Methodik folgt einem zwischen den staatlichen Geologischen Diensten der Bundesrepublik Deutschland abgestimmten Konzept, welches sich den zunehmenden Interessenskonflikten im Zusammenhang mit der Nutzung natürlicher Ressourcen aus Sicht der angewandten Geowissenschaften stellt.

GTK50dig Geothermische Karte der Entzugsleistung 1:50.000

Projektbezogene Karte, gekoppelt an die laufende Erarbeitung der HyK 50. Die Karte wurde durch eine geothermische Umbewertung hydrogeologischer Körper der HyK50 Grundlagenkarte sowie der Informationsebene Grundwasserflurabstand der Karte der Schutzfunktion der Grundwasserüberdeckung aus der Hydrogeologischen Spezialkartierung 1:50000 erstellt. Die geothermische Berechnung erfolgt durch Zuweisung des Gesteinsparameters Wärmeleitfähigkeit zu den einzelnen hydrogeologischen Körpern und anschließender Berechnung der spezifischen Entzugsleistung (in Watt pro Meter) nach empirischen Formeln. Die Karte dient als Abschätzung und ist anwendbar für Erdwärmesondenvorhaben kleiner 30 kW Heizleistung und ersetzt keine konkrete Planung für ein Geothermievorhaben. Das Ergebnis sind teufenabhängige Grids für 1800 Jahresbetriebsstunden (Fall nur Heizen) und 2400 (Fall Heizen+Warmwasserbereitung) Jahresbetriebsstunden einer Wärmepumpe. Die Rasterzellen (50m x 50m) enthalten je Tiefenintervall (40m, 70m, 100m, 130m) die jeweils gemittelten Entzugsleistungswerte in W/m (Watt pro Meter) im Feld (VALUE): Grids für 1800 sowie für 2400 Jahresbetriebsstunden als Mosaik für die angegebenen Blattschnitte (Fertiggestellte Blätter): g1800h_40m (für 40m Tiefe) g1800h_70m (für 70m Tiefe) g1800h_100m (für 100m Tiefe) g1800h_130m (für 130m Tiefe) g2400h_40m (für 40m Tiefe) g2400h_70m (für 70m Tiefe) g2400h_100m (für 100m Tiefe) g2400h_130m (für 130m Tiefe) Für diese Grids für 1800 sowie 2400 Betriebsstunden und die zugehörigen Bohrtiefen 40m, 70m, 100m, 130m liegen Legenden(*.lyr)-Dateien vor, die die gemittelte Entzugsleistung in Watt pro Meter in gruppierten Farbabstufungen ausgeben. Fertiggestellte Blätter: L4946 Meißen, L4744 Riesa, L4746 Großenhain, L4944 Döbeln, L5144 Flöha, L4948 Dresden und L5148 Pirna (nur Stadtgebiet LH Dresden), L4542 Torgau-West, L4742 Wurzen, L4540 Eilenburg, L4340 Gräfenhainichen, L4342 Jessen (Elster), L4344 Herzberg, L4544 Torgau, L4546 Elsterwerda, L5342 Stollberg, L5344 Zschopau, L4754 Niesky, L4954 Görlitz, L4956, L4756, L4740 Leipzig, L4738 Leipzig-West, L4538 Landsberg

Verweilzeit des Sickerwassers in der ungesättigten Zone 2003

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Die Karte stellt die aus dem Grundwasserflurabstand, dem Aufbau der Deckschichten und der Grundwasserneubildung für den oberflächennahen, dauerhaft wasserführenden Grundwasserleiter abgeleitete Verweilzeit des Sickerwassers in der Grundwasserüberdeckung dar und kann als Maß für die intrinsische Verschmutzungsempfindlichkeit betrachtet werden. 02.16 Verweilzeit des Sickerwassers in der ungesättigten Zone Weitere Informationen

HÜK200: Schutzwirkung der Grundwasserueberdeckung

Als Grundwasserüberdeckung wird der Boden und der Gesteinskörper oberhalb der Grundwasseroberfläche bezeichnet. Basis der Bewertung war die HÜK 200. Die Einstufung der Schutzwirkung erfolgte entsprechend der LAWA-Arbeitshilfe in die Klassen günstig - mittel - ungünstig. Zunächst wurden die in der HÜK 200 abgedeckten Deckschichten in Abhängigkeit ihrer Ausbildung (Bindigkeit) und Mächtigkeit unter Einbeziehung von Bohrprofilen bewertet. Zur Einstufung des tieferen Anteils der Grundwasserüberdeckung wurden die in der HÜK 200 für den Oberen Grundwasserleiter festgelegten Gebirgsdurchlässigkeiten zu Grunde gelegt. Die Gesamtbewertung ergab sich aus der Kombination der beiden Anteile. Schichtenverzeichnisse von Bohrungen sowie Detailkartierungen wurden zur Plausibilitätskontrolle herangezogen. Die Inhalte entsprechen der HÜK 200 der BGR.

Schutzfunktion der Grundwasserüberdeckung

Geo-Informationssystem zur Beschreibung des natürlichen Schutzpotentials der Grundwasserüberdeckung gegenüber Verunreinigungen aller Art.

Erschließung und Kiesabbau sowie Verfüllung in Alterfing auf dem Grundstück Fl.Nr. 2084/2 und 2089 der Gemarkung Kay, Stadt Tittmoning

Erschließung und Kiesabbau sowie Verfüllung in Alterfing auf dem Grundstück Fl.Nr. 2084/2 und 2089 der Gemarkung Kay, Stadt Tittmoning. Die Abgrabungsfläche beträgt ca. 7,5 ha. Der Abbau ist bis in eine Tiefe von max. 32 m vorgesehen, wobei eine Grundwasserüberdeckung von 2 m erhalten bleibt. Das Rekultivierungsziel ist eine Wiederaufnahme der landwirtschaftlichen Nutzung. Der Kiesabbau ist in drei Abschnittenvorgesehen

Flurabstand des Grundwassers 2020

Die Grundwasserstände in einem Ballungsgebiet wie Berlin unterliegen nicht nur naturbedingten Abhängigkeiten, wie Niederschlägen, Verdunstungen, unterirdischen Abflüssen, sondern sie werden auch durch menschliche Einwirkungen – Grundwasserentnahmen, Bebauung, Versiegelung der Oberfläche, Entwässerungsanlagen und Wiedereinleitungen – stark beeinflusst. Hauptfaktoren bei der Entnahme sind die Grundwasserförderungen der öffentlichen Wasserversorgung, private Gewinnungsanlagen und Grundwasserförderungen bei Baumaßnahmen. Zur Grundwasserneubildung tragen hauptsächlich Niederschläge (vgl. Karte 02.17 ), Uferfiltrat, künstliche Grundwasseranreicherungen mit Oberflächenwasser und Wiedereinleitungen in das Grundwasser im Zusammenhang mit Baumaßnahmen bei. In Berlin sind zwei Grundwasserstockwerke ausgebildet: Das tiefere führt Salzwasser und ist durch eine etwa 80 Meter mächtige Tonschicht von dem oberen süßwasserführenden Grundwasserstockwerk hydraulisch – mit Ausnahme lokaler Fehlstellen der Tonschicht – getrennt. Dieses etwa 150 Meter mächtige Süßwasserstockwerk, das für die Berliner Trink- und Brauchwasserversorgung genutzt wird, besteht aus einer wechselnden Abfolge von rolligen und bindigen Lockersedimenten: Sande und Kiese (rollige Schichten) bilden die Grundwasserleiter, während Tone, Schluffe, Geschiebemergel und Mudden (bindige Schichten) Grundwasserhemmer darstellen (SenGUV 2007). Die Oberfläche des Grundwassers wird in Abhängigkeit von dem (meist geringen) Grundwassergefälle und der Geländemorphologie in unterschiedlichen Tiefen angetroffen (Abb. 1). Der Grundwasserflurabstand wird als lotrechter Höhenunterschied zwischen der Geländeoberkante und der Grundwasseroberfläche definiert (DIN 4049-3). Wird der Grundwasserleiter von schlecht durchlässigen, bindigen Schichten (Grundwasserhemmern, wie z. B. Geschiebemergel) so überlagert, dass das Grundwasser nicht so hoch ansteigen kann, wie es seinem hydrostatischen Druck entspricht, liegt gespanntes Grundwasser vor. In diesem Fall ist der Flurabstand als der lotrechte Höhenunterschied zwischen der Geländeoberkante und der Grundwasseroberfläche definiert, die von der Unterkante des grundwasserhemmenden Geschiebemergels bzw. von der Oberkante des unterlagernden Grundwasserleiters gebildet wird (Abb. 1). Die Flurabstandskarte gibt einen Überblick über die räumliche Verteilung von Gebieten gleicher Flurabstandsklassen. Sie wurde auf Grundlage der Daten aus dem Zeitraum Mai 2020 berechnet, die niedrige Grundwasserstände repräsentieren, und hat für den jeweils oberflächennahen Grundwasserleiter mit dauerhafter Wasserführung Gültigkeit. Dies ist zumeist der in Berlin wasserwirtschaftlich genutzte Hauptgrundwasserleiter, GWL 2 nach der Gliederung von Limberg & Thierbach 2002, der im Urstromtal unbedeckt, auf den Hochflächen jedoch mit bindigen Sedimentschichten bedeckt ist. Im Bereich des Panketals bezieht sich der Flurabstand auf den Grundwasserstand des GWL 1, da dieser den obersten, flächenhaft ausgebildeten Grundwasserleiter repräsentiert. Dieser Panketalgrundwasserleiter liegt über dem Hauptgrundwasserleiter. Von besonderer Bedeutung sind vor allem Flächen mit geringem Flurabstand (bis etwa vier Meter). In Abhängigkeit von der Beschaffenheit der Deckschichten über dem Grundwasser können dort Bodenverunreinigungen besonders schnell zu Beeinträchtigungen des Grundwassers führen. Die Flurabstandskarte ist eine wesentliche Grundlage für die Erarbeitung einer Karte zur Schutzfunktion der Grundwasserüberdeckung und geht als Parameter für die Mächtigkeit der Grundwasserüberdeckung in die Karte der Verweilzeit des Sickerwassers in der ungesättigten Zone ein (s. Karte 02.16 ). Die räumliche Überlagerung der Flurabstände mit der Beschaffenheit der geologischen Deckschichten ermöglicht die Abgrenzung von Gebieten unterschiedlicher Schutzfunktionen der Grundwasserüberdeckung. Die Kenntnis der Flurabstände ermöglicht des Weiteren eine Einschätzung, an welchen Standorten Grundwasser Einfluss auf die Vegetation hat. Der Einfluss des Grundwassers auf die Vegetation hängt von der Durchwurzelungstiefe der einzelnen Pflanze und, je nach Bodenart, vom kapillaren Aufstiegsvermögen des Grundwassers ab. Der Flurabstand, bei dem Grundwasser bis zu einem gewissen Grad für Bäume nutzbar sein kann, wird für Berliner Verhältnisse im Allgemeinen mit vier Metern angegeben. Die Vegetation der Feuchtgebiete ist in ihrem Wasserbedarf meist auf das Grundwasser angewiesen und benötigt einen Flurabstand von weniger als 50 Zentimetern. Im Vergleich zu der hier dargestellten Flurabstandskarte 2020, die niedrige Grundwasserstände repräsentiert, beschreibt die Flurabstandskarte 2009 mittlere Grundwasserstände. Die Grundwasserstände sind im Stadtgebiet in vielfältiger Weise künstlich beeinflusst . Die ersten Grundwasserabsenkungen und damit das Trockenlegen von Feuchtgebieten im Berliner Raum sind auf die Entwässerung von Sumpfgebieten wie z.B. dem Hopfenbruch in Wilmersdorf im 18. Jahrhundert zurückzuführen. Im 19. und 20. Jahrhundert wurden durch den Ausbau von Kanälen weitere Gebiete entwässert. Das Grundwasser wurde dann durch die verstärkte Nutzung als Trink- und Brauchwasser, durch Wasserhaltungen bei Baumaßnahmen sowie durch Einschränkungen der Grundwasserneubildungsraten infolge der Versiegelung des Bodens weiter abgesenkt bzw. starken periodischen Schwankungen mit Amplituden bis zu 10 Meter am Standort unterworfen. Bis zum Ende des neunzehnten Jahrhunderts unterlag der Grundwasserstand weitgehend nur den durch die Niederschläge hervorgerufenen natürlichen jahreszeitlichen Schwankungen. Ab 1890 bis zum Zweiten Weltkrieg prägten dann der steigende Wassergebrauch der rasch wachsenden Stadt sowie Grundwasserhaltungen das Grundwassergeschehen. Große Grundwasserhaltungen für den U- und S-Bahnbau (z. B. Alexanderplatz, Friedrichstraße) sowie andere Großbauten senkten das Grundwasser in der Innenstadt flächenhaft über längere Zeiträume um bis zu acht Meter ab. Infolge des Zusammenbruchs der Wasserversorgung am Ende des Krieges erreichte das Grundwasser fast wieder die natürlichen Verhältnisse (Abb. 2). In den Wassergewinnungsgebieten haben sich im Einzugsbereich der Brunnen der Wasserwerke dauerhafte, weitgespannte und tiefe Absenkungstrichter ausgebildet. Dort sind zudem, analog zu den innerhalb des Jahres schwankenden Fördermengen der meisten Wasserwerke, zum Teil erhebliche Schwankungen der Grundwasserstände zu beobachten. Schon zu Beginn des letzten Jahrhunderts fielen im Grunewald der Riemeistersee und der Nikolassee durch die Wasserentnahmen des Wasserwerkes Beelitzhof trocken. Der Spiegel des Schlachtensees fiel um 2 Meter, der Spiegel der Krummen Lanke um 1 Meter. Zum Ausgleich wird unter Umkehrung der natürlichen Fließrichtung seit 1913 Havelwasser in die Grunewaldseen gepumpt. Die Feuchtgebiete Hundekehlefenn, Langes Luch, Riemeisterfenn sowie die Uferbereiche der Seen konnten nur durch diese Maßnahme erhalten werden. Die Absenktrichter der Brunnengalerien an der Havel wirken sich bis weit in den Grunewald aus. So sank der Grundwasserstand am Postfenn zwischen 1954 und 1974 um 3,5 m, am Pechsee im Grunewald zwischen 1955 und 1975 um 4,5 m. Durch die Entnahme der Brunnengalerien am Havelufer kommt es selbst in unmittelbarer Nähe der Havel zu starker Austrocknung im Wurzelraum der Pflanzen. Um die negativen Auswirkungen der Grundwasserabsenkungen zu mildern, werden einige Feuchtgebiete und Moore durch Überstauung und Versickerung von Oberflächenwasser wieder vernässt. Beispiele sind die Naturschutzgebiete Großer Rohrpfuhl und Teufelsbruch im Spandauer Forst, das Teufelsfenn im Grunewald sowie die Lietzengrabenniederung mit der Bogenseekette in Pankow. Großflächige Absenkungen ergaben sich ebenso im Bereich des Spandauer Forstes, bedingt durch die seit den 1970er Jahren erheblich angestiegene Grundwasserförderung des Wasserwerkes Spandau. Mit Hilfe einer 1983 in Betrieb genommenen Grundwasseranreicherungsanlage wurde durch die Versickerung von aufbereitetem Havelwasser der Grundwasserstand allmählich wieder angehoben. Bis Mai 1987 konnte der Grundwasserstand im Spandauer Forst im Durchschnitt zwischen 0,5 und 2,5 m angehoben werden. Wegen der Vernässung von Kellern angrenzender Wohngebiete wurde die Grundwasseranreicherung in diesem Gebiet teilweise wieder beschränkt. Mit der gleichzeitigen Steigerung der Fördermengen des Wasserwerks Spandau sank der Grundwasserstand bis 1990 wieder ab. Durch eine weitere Reduzierung der Fördermengen kam es in der Folgezeit zu einem erneuten Anstieg des Grundwassers (Abb. 3). Generell ist im Westteil Berlins bereits seit Ende der 1980er Jahre ein Wiederanstieg der Grundwasserstände zu beobachten. Ursache dafür waren in erster Linie drei gegensteuernde Maßnahmen wider den sinkenden Grundwassertrend: Die Erhöhung der künstlichen Grundwasseranreicherung durch gereinigtes Oberflächenwasser in wasserwerksnahen Gebieten (Spandau, Tegel und Jungfernheide) führte zu geringeren Absenkungsbeträgen. Die Wiedereinleitpflicht bei Grundwasserhaltungsmaßnahmen für große Baumaßnahmen führte zu einer geringeren Belastung des Grundwasserhaushalts. Die Einführung des Grundwasserentnahmeentgelts bewirkte einen sparsameren Umgang mit der Ressource Grundwasser. In den östlichen Bereichen wirkte sich die aufgrund des rückläufigen Wassergebrauchs verringerte Rohwasserförderung der Berliner Wasserbetriebe seit der politischen Wende 1989 deutlich aus. Fünf kleinere Berliner Wasserwerke stellten ihre Produktion in den Jahren von 1991 bis 1997 völlig ein: Altglienicke, Friedrichsfelde, Köpenick, Riemeisterfenn und Buch. Dadurch stiegen die Grundwasserstände stadtweit bis in die Mitte der 1990er Jahre wieder an. Es kam in diesem Zeitraum gebietsweise durch den Grundwasserwiederanstieg bei nicht fachgerecht abgedichteten Kellern zu zahlreichen Vernässungsschäden. In zwei Gebieten waren die Schäden so umfangreich, dass grundwasserregulierende Maßnahmen durchgeführt wurden (Rudow, Kaulsdorf). Im September 2001 wurde zusätzlich die Trinkwasserproduktion der beiden Wasserwerke Johannisthal und Jungfernheide vorübergehend eingestellt; bei letzterem auch die künstliche Grundwasseranreicherung. Im Rahmen des Grundwassermanagements wird am Standort Johannisthal jedoch weiterhin Grundwasser gefördert, um laufende lokale Altlastensanierungen und Baumaßnahmen nicht zu gefährden. Am Standort Jungfernheide wird seit Januar 2006 die Grundwasserhaltung von einer Firma zum Schutz ihrer Gebäude betrieben. Die Gesamtförderung der Wasserwerke zu Trinkwasserzwecken hat sich innerhalb von 30 Jahren in Berlin um über ca. 40 % verringert: 1989 wurden 378 Millionen m³, im Jahr 2020 dagegen nur 234 Millionen m³ gefördert.

Flurabstand des Grundwassers 2005

Die Grundwasserstände in einem Ballungsgebiet wie Berlin unterliegen nicht nur naturbedingten Abhängigkeiten, wie Niederschlägen, Verdunstungen, unterirdischen Abflüssen, sondern sie werden auch durch menschliche Einwirkungen – Grundwasserentnahmen, Bebauung, Versiegelung der Oberfläche, Entwässerungsanlagen und Wiedereinleitungen – stark beeinflusst. Hauptfaktoren bei der Entnahme sind die Grundwasserförderungen der öffentlichen Wasserversorgung (vgl. Karte 02.11), private Gewinnungsanlagen und Grundwasserförderung bei Baumaßnahmen. Zur Grundwasserneubildung tragen hauptsächlich Niederschläge (vgl. Karte 02.13.5), Uferfiltrat, künstliche Grundwasseranreicherung mit Oberflächenwasser und Wiedereinleitung von Grundwasser im Zusammenhang mit Baumaßnahmen bei. In Berlin sind zwei Grundwasserstockwerke ausgebildet: Das tiefere führt Salzwasser und ist durch eine etwa 80 Meter mächtige Tonschicht von dem oberen süßwasserführenden Grundwasserstockwerk hydraulisch – mit Ausnahme lokaler Fehlstellen der Tonschicht – getrennt. Dieses etwa 150 Meter mächtige Süßwasserstockwerk, das für die Berliner Trink- und Brauchwasserversorgung genutzt wird, besteht aus einer wechselnden Abfolge von rolligen und bindigen Lockersedimenten: Sande und Kiese (rollige Schichten) bilden die Grundwasserleiter, während Tone, Schluffe, Geschiebemergel und Mudden (bindige Schichten) Grundwasserhemmer darstellen. Die Oberfläche des Grundwassers wird in Abhängigkeit von dem (meist geringen) Grundwassergefälle und der Geländemorphologie in unterschiedlichen Tiefen angetroffen (Abb. 1). Der Grundwasserflurabstand wird als lotrechter Höhenunterschied zwischen der Geländeoberkante und der Grundwasseroberfläche definiert. Wird der Grundwasserleiter von schlecht durchlässigen, bindigen Schichten (Grundwasserhemmern, wie z. B. Geschiebemergel) so überlagert, dass das Grundwasser nicht so hoch ansteigen kann, wie es seinem hydrostatischen Druck entspricht, liegt gespanntes Grundwasser vor. In diesem Fall ist der Flurabstand als der lotrechte Höhenunterschied zwischen der Geländeoberkante und der Grundwasseroberfläche definiert, die von der Unterkante des grundwasserhemmenden Geschiebemergels bzw. von der Oberkante des unterlagernden Grundwasserleiters gebildet wird (Abb. 1). Die Flurabstandskarte gibt einen Überblick über die räumliche Verteilung von Gebieten gleicher Flurabstandsklassen im Maßstab 1 : 50 000 (SenStadt 2006). Sie wurde auf Grundlage der Daten aus dem Zeitraum Mai 2006 berechnet. Sie hat für den jeweils oberflächennahen Grundwasserleiter mit dauerhafter Wasserführung Gültigkeit. Dies ist zumeist der in Berlin wasserwirtschaftlich genutzte Hauptgrundwasserleiter (GWL 2 nach der Gliederung von Limberg und Thierbach 2002), der im Urstromtal unbedeckt, im Bereich der Hochflächen jedoch bedeckt ist. In Ausnahmefällen wurde für die Ermittlung des Flurabstandes der GWL 1 (z. B. im Gebiet des Panketals) bzw. der GWL 4 (tertiäre Bildungen) herangezogen. Von besonderer Bedeutung sind vor allem Flächen mit geringem Flurabstand (bis etwa vier Meter). In Abhängigkeit von der Beschaffenheit der Deckschichten über dem Grundwasser können dort Bodenverunreinigungen besonders schnell zu Beeinträchtigungen des Grundwassers führen. Die Flurabstandskarte ist also eine wesentliche Grundlage für die Erarbeitung der Karte der Schutzfunktion der Grundwasserüberdeckung (s. Karte 02.16). Die räumliche Überlagerung der Flurabstände mit der Beschaffenheit der geologischen Deckschichten ermöglicht die Abgrenzung von Gebieten unterschiedlicher Schutzfunktionen der Grundwasserüberdeckung. Die Kenntnis der Flurabstände ermöglicht des Weiteren eine Einschätzung, an welchen Standorten Grundwasser Einfluss auf die Vegetation hat. Der Einfluss des Grundwassers auf die Vegetation hängt von der Durchwurzelungstiefe der einzelnen Pflanze und, je nach Bodenart, vom kapillaren Aufstiegsvermögen des Grundwassers ab. Der Grenzflurabstand, bei dem Grundwasser bis zu einem gewissen Grad für Bäume nutzbar sein kann, wird für Berliner Verhältnisse im Allgemeinen mit vier Metern angegeben. Die Vegetation der Feuchtgebiete ist in ihrem Wasserbedarf meist auf das Grundwasser angewiesen und benötigt einen Flurabstand von weniger als 50 cm. Entwicklung der Grundwasserstände Die Grundwasserstände sind im Stadtgebiet in vielfältiger Weise künstlich beeinflusst . Die ersten Grundwasserabsenkungen und damit die Vernichtung von Feuchtgebieten im Berliner Raum sind auf die Entwässerung von Sumpfgebieten wie z.B. dem Hopfenbruch in Wilmersdorf im 18. Jahrhundert zurückzuführen. Im 19. und 20. Jahrhundert wurden durch den Ausbau von Kanälen weitere Gebiete entwässert. Das Grundwasser wurde dann durch die verstärkte Nutzung als Trink- und Brauchwasser, durch Wasserhaltungen bei Baumaßnahmen sowie durch Einschränkung der Grundwasserneubildungsrate infolge der Versiegelung des Bodens weiter abgesenkt bzw. starken periodischen Schwankungen mit Amplituden bis zu 10 Meter am Standort unterworfen. Bis zum Ende des neunzehnten Jahrhunderts unterlag der Grundwasserstand weitgehend nur den durch die Niederschläge hervorgerufenen natürlichen jahreszeitlichen Schwankungen. Ab 1890 bis zum Zweiten Weltkrieg prägten dann der steigende Wassergebrauch der rasch wachsenden Stadt sowie Grundwasserhaltungen das Grundwassergeschehen. Große Grundwasserhaltungen für den U- und S-Bahnbau (Alexanderplatz) sowie andere Großbauten senkten das Grundwasser in der Innenstadt flächenhaft über längere Zeiträume um bis zu acht Meter ab. Durch den Zusammenbruch der Wasserversorgung am Ende des Krieges erreichte das Grundwasser fast wieder die natürlichen Verhältnisse (Abb. 2). In der Folgezeit, von Anfang der 1950er Jahre bis Anfang der 1980er Jahre, wurde das Grundwasser durch steigende Entnahmen erneut kontinuierlich und großflächig abgesenkt . Besonders stark machte sich dieser Trend in den Wassergewinnungsgebieten bemerkbar. Neben dem allgemeinen Anstieg des Wassergebrauchs der privaten Haushalte wurde diese Entwicklung auch durch Baumaßnahmen verursacht (Wiederaufbaumaßnahmen, U-Bahn-Bau und große Bauvorhaben). Der Ausbau der Wassergewinnungsanlagen der kommunalen Wasserwerke war im Westteil der Stadt Anfang der 1970er Jahre abgeschlossen, während in Ost-Berlin zur Versorgung der neuen Großsiedlungen in Hellersdorf, Marzahn und Hohenschönhausen Mitte der 1970er Jahre mit dem Ausbau des Wasserwerks Friedrichshagen begonnen wurde. In den Wassergewinnungsgebieten haben sich im Einzugsbereich der Brunnen der Wasserwerke dauerhafte, weitgespannte und tiefe Absenkungstrichter ausgebildet. Dort sind zudem, analog zu den innerhalb des Jahres schwankenden Fördermengen der meisten Wasserwerke, zum Teil erhebliche Schwankungen der Grundwasserstände zu beobachten. Schon zu Beginn des letzten Jahrhunderts fielen im Grunewald der Riemeistersee und der Nikolassee durch die Wasserentnahmen des Werkes Beelitzhof trocken. Der Spiegel des Schlachtensees fiel um 2 Meter, der Spiegel der Krummen Lanke um 1 Meter. Zum Ausgleich wird unter Umkehrung der natürlichen Fließrichtung seit 1913 Havelwasser in die Grunewaldseen gepumpt. Die Feuchtgebiete Hundekehlefenn, Langes Luch, Riemeisterfenn sowie die Uferbereiche der Seen konnten nur durch diese Maßnahme erhalten werden. Die Absenktrichter der Brunnengalerien an der Havel wirken sich bis weit in den Grunewald aus. So sank der Grundwasserstand am Postfenn zwischen 1954 und 1974 um 3,5 m, am Pechsee im Grunewald zwischen 1955 und 1975 um 4,5 m. Durch die Entnahme der Brunnengalerien am Havelufer kommt es selbst in unmittelbarer Nähe der Havel zu starker Austrocknung im Wurzelraum der Pflanzen. Im Südosten Berlins sind 90 % der Feuchtgebiete um den Müggelsee in ihrem Bestand bedroht (Krumme Laake Müggelheim, Teufelsseemoor, Neue Wiesen/Kuhgraben, Mostpfuhl, Thyrn, Unterlauf Fredersdorfer Fließ). Um die negativen Auswirkungen der Grundwasserabsenkungen zu mildern, werden einige Feuchtgebiete durch Überstauung und Versickerung von Oberflächenwasser wieder vernässt. Im Westteil der Stadt sind dies die Naturschutzgebiete Großer Rohrpfuhl und Teufelsbruch im Spandauer Forst und Barssee im Grunewald, im Ostteil Krumme Lake in Grünau und Schildow in Pankow. Großflächige Absenkungen ergaben sich ebenso im Bereich des Spandauer Forstes, bedingt durch die seit den 1970er Jahren erheblich angestiegene Grundwasserförderung des Wasserwerkes Spandau. Mit Hilfe einer 1983 in Betrieb genommenen Grundwasseranreicherungsanlage wird durch die Versickerung von aufbereitetem Havelwasser versucht, den Grundwasserstand allmählich wieder anzuheben. Bis Mai 1987 konnte der Grundwasserstand im Spandauer Forst im Durchschnitt zwischen 0,5 und 2,5 m angehoben werden. Wegen der Vernässung von Kellern angrenzender Wohngebiete wurde die Grundwasseranreicherung in diesem Gebiet inzwischen wieder beschränkt. Mit der gleichzeitigen Steigerung der Fördermengen des Wasserwerks Spandau sank der Grundwasserstand bis 1990 wieder ab. Durch eine weitere Reduzierung der Fördermengen kam es in der Folgezeit zu einem erneuten Anstieg des Grundwassers (Abb. 3). Generell ist im Westteil Berlins bereits seit Ende der 1980er Jahre ein Wiederanstieg der Grundwasserstände zu beobachten. Ursache dafür waren in erster Linie drei gegensteuernde Maßnahmen wider den sinkenden Grundwassertrend: Die Erhöhung der künstlichen Grundwasseranreicherung durch gereinigtes Oberflächenwasser in wasserwerksnahen Gebieten (Spandau, Tegel und Jungfernheide) führte zu geringeren Absenkungsbeträgen (vgl. Karte 02.11). Die Wiedereinleitpflicht bei Grundwasserhaltungsmaßnahmen bei großen Baumaßnahmen führte zu einer geringeren Belastung des Grundwasserhaushalts. Die Einführung des Grundwasserentnahmeentgelts bewirkte einen sparsameren Umgang mit der Ressource Grundwasser. Insgesamt befand sich die Grundwasseroberfläche im Mai 2006 auf einem relativ hohen Niveau. Grund dafür ist der rückläufige Wassergebrauch, der an der verringerten Rohwasserförderung der Berliner Wasserbetriebe seit der politischen Wende 1989 – besonders in den östlichen Bezirken – abzulesen ist. Fünf kleinere Berliner Wasserwerke stellten ihre Produktion in den Jahren von 1991 bis 1997 völlig ein: Altglienicke, Friedrichsfelde, Köpenick, Riemeisterfenn und Buch. Dadurch stiegen die Grundwasserstände stadtweit bis in die Mitte der 1990er Jahre wieder an. Es kam in diesem Zeitraum gebietsweise durch den plötzlichen Grundwasserwiederanstieg bei nicht fachgerecht abgedichteten Kellern zu zahlreichen Vernässungsschäden. In zwei Gebieten waren die Schäden so umfangreich, dass grundwasserregulierende Maßnahmen durchgeführt werden mussten (Rudow, Kaulsdorf). Im September 2001 wurde zusätzlich die Trinkwasserproduktion der beiden Wasserwerke Johannisthal und Jungfernheide vorübergehend eingestellt; bei letzterem auch die künstliche Grundwasseranreicherung. Im Rahmen des Grundwassermanagements der Senatsverwaltung für Stadtentwicklung wird am Standort Johannisthal jedoch weiterhin Grundwasser gefördert, um laufende lokale Altlastensanierungen und Baumaßnahmen nicht zu gefährden. Am Standort Jungfernheide wird seit Januar 2006 die Grundwasserhaltung von der Siemens AG zum Schutz ihrer Gebäude betrieben. Die Gesamtförderung der Wasserwerke zu Trinkwasserzwecken sank innerhalb von 17 Jahren in Berlin um über 40 %: 1989 wurden 378 Millionen m 3 , im Jahr 2006 dagegen nur noch 218 Millionen m 3 gefördert. Der Rückgang der Grundwasserförderung der Wasserwerke in den östlichen Bezirken fiel mit über 60 % in diesem Zeitraum noch deutlich höher aus. Daraus resultierte in den Jahren seit 1989 ein stadtweiter Grundwasseranstieg, der sich am stärksten im Urstromtal in der Nähe der Förderbrunnen der Wasserwerke mit ihren tiefen Absenktrichtern auswirkte. Das Ausmaß des flächenhaften Grundwasserwiederanstieges in Berlin seit 1989 verdeutlicht Abbildung 4. Hier ist der Anstieg der Grundwasserstände von 1989 bis 2002 dargestellt. h6. Dargestellt ist der Grundwasseranstieg nur im Urstromtal, da er hier für die Gebäude auf Grund des geringen Flurabstandes relevant ist. Auf den Hochflächen herrschen höhere Flurabstände.

Verweilzeit des Sickerwassers in der ungesättigten Zone 2003

In der Karte ist die Verweilzeit des Sickerwassers in der ungesättigten Zone als Maß für die intrinsische Verschmutzungsempfindlichkeit des Grundwassers dargestellt. Die Ausweisung der spezifischen Verschmutzungsempfindlichkeit erfordert die Berücksichtigung konkreter Schadstoffe, Schadstoffmengen und Nutzungen, was eher für konkrete und detaillierte Standortuntersuchungen als für großräumige Darstellungen sinnvoll ist. Berechnet wurde die mittlere Verweilzeit des Sickerwassers in der ungesättigten Zone, d.h. die Zeitdauer, die das Sickerwasser benötigt, um unter dem Einfluss der Schwerkraft von der Erdoberfläche bis zur Grundwasseroberfläche zu gelangen. Ein Verfahren, welches die Abschätzung dieser Verweilzeit auf der Basis vorhandener klimatisch-hydrologischer und geologisch-pedologischer Daten gestattet, wurde an der Brandenburgischen Technischen Universität Cottbus entwickelt (BTU-Methode) (Heinkele et al. 2000, Voigt et al. 2003). Die Berechnung der Sickerwassergeschwindigkeit und der Verweilzeit des Sickerwassers in der ungesättigten Zone erfolgt dabei in Anlehnung an die DIN 19732 "Bestimmung des standörtlichen Verlagerungspotentials von nichtsorbierbaren Stoffen". Diese Methode der DIN 19732 ist ursprünglich zur Bewertung lokaler Standorte gedacht, ist aber bei Modifizierung (s.u.) auch für großräumliche Betrachtungen geeignet. In die Ermittlung der Verweilzeit des Sickerwassers in der Grundwasserüberdeckung gehen die folgenden Parameter ein: die Grundwasserneubildung die Feldkapazität der Grundwasserüberdeckung die Mächtigkeit der Grundwasserüberdeckung. Die Grundwasserneubildung wird aus der Sickerwasserrate abgeleitet und stellt die Wassermenge dar, die das Grundwasser erreicht und die Grundwasservorräte ergänzt (s. Karte 02.13.5). Unter der Feldkapazität versteht man die Menge an Wasser, die in der ungesättigten Bodenzone aufgrund von Kohäsions- und Kapillarkräften adsorbiert ist und gegen die Schwerkraftwirkung gehalten werden kann (also nicht unmittelbar versickert). Es handelt sich dabei vor allem um Wasser in Porenmit Radien < 50 µm. Diese Wassermenge lässt sich als Bodenfeuchte in Volumenprozent des Bodens angegeben. Diese Feldkapazität ist von den Bodenarten abhängig. Die Zuweisung der Feldkapazitäten zu den Bodenarten erfolgt entsprechend der Bodenkundlichen Kartieranleitung KA 4 (Ad-hoc-Arbeitsgruppe Boden 1994). Feinkörnige Böden verfügen über eine hohe Feldkapazität (z.B. ein Ton zwischen 40% und 54%), grobkörnige Böden dagegen nur über eine geringe (z.B. ein grob- bis mittelkörniger Sand zwischen < 10% und 13%). In feinkörnigen Böden kann daher eine größere Menge an Sickerwasser adsorbiert und gespeichert werden. Eine Verlagerung des Sickerwassers durch die Schwerkraft erfolgt erst bei Wassergehalten über der Feldkapazität. Die Feldkapazität der Grundwasserüberdeckung ist das Wasser, das auf diese Weise in der gesamten ungesättigten Zone adsorbiert und zurückgehalten werden kann. Sie lässt sich aus den Angaben zur Verbreitung der Bodenarten und Gesteine in Bodenkarten, geologischen Karten und den Ergebnissen von Bohrungen unter der Berücksichtigung der Mächtigkeit der Grundwasserüberdeckung flächenhaft bestimmen. Die Mächtigkeit der Grundwasserüberdeckung entspricht dem Flurabstand des Grundwassers und ist unter Berücksichtigung der Besonderheiten von ungespannten und gespannten Grundwasserverhältnissen unmittelbar aus entsprechenden Kartenwerken ableitbar. Die Mächtigkeit der Grundwasserüberdeckung wurde der Karte 02.07 "Flurabstand" des Umweltatlas entnommen und bezieht sich auf den jeweils oberflächennahen Grundwasserleiter (GWL) mit dauerhafter Wasserführung. Dabei handelt es sich zumeist um den in Berlin wasserwirtschaftlich genutzten Haupgrundwasserleiter (GWL 2 nach der Gliederung von Limberg und Thierbach 2002), der im Urstromtal unbedeckt, im Bereich der Hochflächen jedoch bedeckt ist. In einzelnen Bereichen wurde entsprechend dem Flurabstandsplan der GWL 1 (z. B. im Gebiet des Panketales) bzw. der GWL 4 (tertiäre Bildungen) bewertet. Die Verweilzeit t s des Sickerwassers in der Grundwasserüberdeckung (und damit der Zeitraum in dem sich das Wasser von der Erdoberfläche bis zum Grundwasser bewegt) kann aus der Grundwasserneubildung, der Mächtigkeit und der Feldkapazität der der Grundwasserüberdeckung nach der folgenden Gleichung (Voigt et al., 2003) abgeleitet werden: t s = Σ M i ∗ FK i / GWNB = ( M 1 ∗ FK 1 + M 2 ∗ FK 2 +…+ M n ∗ FK n ) / GWNB dabei ist: t s Verweilzeit des Sickerwassers in der ungesättigten Zone GWNB Grundwasserneubildungsrate in mm/a FK Feldkapazität der gesamten Grundwasserüberdeckung in % bzw. mm/dm FK 1 , FK 2 … FK n Feldkapazität der 1,2…n-ten Schicht des Bodens bzw. der tieferen Grundwasserüberdeckung in mm/dm, M Mächtigkeit der gesamten Grundwasserüberdeckung in dm M 1 , M 2 … M n Mächtigkeit der 1,2…n-ten Schicht des Bodens bzw. der tieferen Grundwasserüberdeckung in dm. Das folgende Ablaufschema (Abb.1) verdeutlicht die Ermittlung der Verweilzeit auf der Basis der genannten Datengrundlagen. Die folgenden Einschränkungen für die Gültigkeit der auf der Grundlage der o.g. DIN 19732 berechneten Verweilzeiten sind zu beachten (modifiziert nach DIN 19732): Die berechnete mittlere Verlagerungsgeschwindigkeit beschreibt den Massenschwerpunkt einer Verlagerungsfront. Der durch hydrodynamische Dispersion verursachte voraus- oder nacheilende Stofffluss kann nicht berechnet werden. Die Berechnung gelten für weitgehend homogenen Untergrundaufbau. Der Einfluß stärkerer Heterogenitäten des Untergrundes, wie stark wechselnder Schichtaufbau und insbesondere bevorzugte Fließwege (Prozesse des Makroporenflusses und des preferential flow) können nicht berücksichtigt werden.

Grundwassergeschütztheit

Die Klassifizierung der Geschütztheit erfolgte in Anlehnung an das Altlastenprogramm des Freistaates Sachsen. Dabei wird die Geschütztheit in Abhängigkeit vom Grundwasserflurabstand und der Mächtigkeit bindiger Schichten innerhalb der Grundwasserüberdeckung in fünf Geschütztheitsklassen unterteilt.

1 2 3 4 5 6