API src

Found 92 results.

Grundwasserdynamik 2022

Die Darstellung der Grundwasserdynamik beinhaltet verschiedene Layer: Stützstellen, die Grundwasserdynamik (Hydroisohypsen) in 1-m Auflösung und 5-m-Auflösung und den Grundwasserflurabstand. Datengrundlage bilden dabei die sachsenweit durchgeführten Grundwasserstichtagsmessungen vom Frühjahr 2022 im oberen Hauptgrundwasserleiter (Porengrundwasserleiter). Die Höhenangaben der Hydroisohypsen beziehen sich auf Meter über NHN. Im Lockergesteinsbereich erfolgt die Darstellung der Hydroisohypsen im 1 m-Abstand. Im Lössgebiet, Randpleistozän und der Vorerzgebirgssenke werden die Hydroisohypsen im 5 m-Abstand dargestellt. Die Hydroisohypsen sind zwar im Lössgebiet darstellbar, allerdings kann durch die unsichere Mächtigkeit der Lössauflage innerhalb eines Gebietes auch das Abflussverhalten von Grundwasser nicht eindeutig bestimmt werden. Diese daraus resultierenden Unsicherheiten sollten bei der Betrachtung der Hydroisohypsen im Lössgebiet beachtet werden. Hinzufügbar sind ebenso die für die Erstellung der Grundwasseroberfläche verwendeten Stützstellen. Diese repräsentieren die im Rahmen der Stichtagsmessung erhobenen Messwerte des Grundwasserstandes in Meter über NHN. Die Grundwasserflurabstände werden in Meter unter Gelände mit einer Auflösung von 8 m x 8 m angegeben. Diesbezüglich erfolgte die Erstellung der Grundwasserflurabstände durch Verschnitt des Rasters der Geländeoberkante (DGM) mit dem vormals ermittelten Raster der Grundwasserdynamik. Die durch den Bergbau beeinflussten Gebiete haben eine gestörte Grundwasserdynamik bzw. komplexe hydrodynamische Verhältnisse, sodass eine Darstellung der Hydroisohypsen und Grundwasserflurabstände mit hinreichender Genauigkeit nicht gewährleistet werden kann. WICHTIGE FACHLICHE HINWEISE Die Darstellungen der Hydroisohypsen und Grundwasserflurabstände geben den momentanen Zustand der Grundwasserverhältnisse zur Stichtagsmessung wieder. Die Grundwasseroberfläche ist jedoch in ständiger Veränderung. Eine Kartendarstellung kann daher immer nur die Situation zu einem bestimmten Zeitpunkt abbilden. Um eine umfassendere und präzisere Aussage über die Grundwasserverhältnisse an einem bestimmten Punkt zu treffen, ist es ratsam, auch die Messwerte und Ganglinienverläufe benachbarter Grundwassermessstellen zu betrachten. Methodisch bedingt sind grundstücks- oder flurstücksbezogene Aussagen jedoch nicht ohne Weiteres möglich. Für die Ableitung eines höchsten zu erwartenden Grundwasserstandes (Bemessungsgrundwasserstand) oder einer kleinräumigen Grundwasserstandsermittlung wird die Hinzuziehung von weiteren Daten oder Fachleuten bzw. Gutachtern empfohlen.

Grundwasserdynamik 2021

Die Darstellung der Grundwasserdynamik beinhaltet verschiedene Layer: Stützstellen, die Grundwasserdynamik (Hydroisohypsen) in 1-m Auflösung und 5-m-Auflösung und den Grundwasserflurabstand. Datengrundlage bilden dabei die sachsenweit durchgeführten Grundwasserstichtagsmessungen vom Herbst 2021 im oberen Hauptgrundwasserleiter (Porengrundwasserleiter). Die Höhenangaben der Hydroisohypsen beziehen sich auf Meter über NHN. Im Lockergesteinsbereich erfolgt die Darstellung der Hydroisohypsen im 1 m-Abstand. Im Lössgebiet, Randpleistozän und der Vorerzgebirgssenke werden die Hydroisohypsen im 5 m-Abstand dargestellt. Die Hydroisohypsen sind zwar im Lössgebiet darstellbar, allerdings kann durch die unsichere Mächtigkeit der Lössauflage innerhalb eines Gebietes auch das Abflussverhalten von Grundwasser nicht eindeutig bestimmt werden. Diese daraus resultierenden Unsicherheiten sollten bei der Betrachtung der Hydroisohypsen im Lössgebiet beachtet werden. Hinzufügbar sind ebenso die für die Erstellung der Grundwasseroberfläche verwendeten Stützstellen. Diese repräsentieren die im Rahmen der Stichtagsmessung erhobenen Messwerte des Grundwasserstandes in Meter über NHN. Die Grundwasserflurabstände werden in Meter unter Gelände mit einer Auflösung von 8 m x 8 m angegeben. Diesbezüglich erfolgte die Erstellung der Grundwasserflurabstände durch Verschnitt des Rasters der Geländeoberkante (DGM) mit dem vormals ermittelten Raster der Grundwasserdynamik. Die durch den Bergbau beeinflussten Gebiete haben eine gestörte Grundwasserdynamik bzw. komplexe hydrodynamische Verhältnisse, sodass eine Darstellung der Hydroisohypsen und Grundwasserflurabstände mit hinreichender Genauigkeit nicht gewährleistet werden kann. WICHTIGE FACHLICHE HINWEISE Die Darstellungen der Hydroisohypsen und Grundwasserflurabstände geben den momentanen Zustand der Grundwasserverhältnisse zur Stichtagsmessung wieder. Die Grundwasseroberfläche ist jedoch in ständiger Veränderung. Eine Kartendarstellung kann daher immer nur die Situation zu einem bestimmten Zeitpunkt abbilden. Um eine umfassendere und präzisere Aussage über die Grundwasserverhältnisse an einem bestimmten Punkt zu treffen, ist es ratsam, auch die Messwerte und Ganglinienverläufe benachbarter Grundwassermessstellen zu betrachten. Methodisch bedingt sind grundstücks- oder flurstücksbezogene Aussagen jedoch nicht ohne Weiteres möglich. Für die Ableitung eines höchsten zu erwartenden Grundwasserstandes (Bemessungsgrundwasserstand) oder einer kleinräumigen Grundwasserstandsermittlung wird die Hinzuziehung von weiteren Daten oder Fachleuten bzw. Gutachtern empfohlen.

Grundwasserdynamik 2016

Die Darstellung der Grundwasserdynamik beinhaltet verschiedene Layer: Stützstellen, die Grundwasserdynamik (Hydroisohypsen) in 1-m Auflösung und 5-m-Auflösung und den Grundwasserflurabstand. Datengrundlage bilden dabei die sachsenweit durchgeführten Grundwasserstichtagsmessungen vom Frühjahr 2016 im oberen Hauptgrundwasserleiter (Porengrundwasserleiter). Die Höhenangaben der Hydroisohypsen beziehen sich auf Meter über NHN. Im Lockergesteinsbereich erfolgt die Darstellung der Hydroisohypsen im 1 m-Abstand. Im Lössgebiet, Randpleistozän und der Vorerzgebirgssenke werden die Hydroisohypsen im 5 m-Abstand dargestellt. Die Hydroisohypsen sind zwar im Lössgebiet darstellbar, allerdings kann durch die unsichere Mächtigkeit der Lössauflage innerhalb eines Gebietes auch das Abflussverhalten von Grundwasser nicht eindeutig bestimmt werden. Diese daraus resultierenden Unsicherheiten sollten bei der Betrachtung der Hydroisohypsen im Lössgebiet beachtet werden. Hinzufügbar sind ebenso die für die Erstellung der Grundwasseroberfläche verwendeten Stützstellen. Diese repräsentieren die im Rahmen der Stichtagsmessung erhobenen Messwerte des Grundwasserstandes in Meter über NHN. Die Grundwasserflurabstände werden in Meter unter Gelände mit einer Auflösung von 8 m x 8 m angegeben. Diesbezüglich erfolgte die Erstellung der Grundwasserflurabstände durch Verschnitt des Rasters der Geländeoberkante (DGM) mit dem vormals ermittelten Raster der Grundwasserdynamik. Die durch den Bergbau beeinflussten Gebiete haben eine gestörte Grundwasserdynamik bzw. komplexe hydrodynamische Verhältnisse, sodass eine Darstellung der Hydroisohypsen und Grundwasserflurabstände mit hinreichender Genauigkeit nicht gewährleistet werden kann. WICHTIGE FACHLICHE HINWEISE Die Darstellungen der Hydroisohypsen und Grundwasserflurabstände geben den momentanen Zustand der Grundwasserverhältnisse zur Stichtagsmessung wieder. Die Grundwasseroberfläche ist jedoch in ständiger Veränderung. Eine Kartendarstellung kann daher immer nur die Situation zu einem bestimmten Zeitpunkt abbilden. Um eine umfassendere und präzisere Aussage über die Grundwasserverhältnisse an einem bestimmten Punkt zu treffen, ist es ratsam, auch die Messwerte und Ganglinienverläufe benachbarter Grundwassermessstellen zu betrachten. Methodisch bedingt sind grundstücks- oder flurstücksbezogene Aussagen jedoch nicht ohne Weiteres möglich. Für die Ableitung eines höchsten zu erwartenden Grundwasserstandes (Bemessungsgrundwasserstand) oder einer kleinräumigen Grundwasserstandsermittlung wird die Hinzuziehung von weiteren Daten oder Fachleuten bzw. Gutachtern empfohlen.

Trinkwassergewinnungsgebiet

Die vorliegenden Daten entsprechen den Darstellungen des Landschaftsrahmenplans-SH 2019. Unter Umständen sind mittlerweile aktuellere Datensätze verfügbar. Darstellung der Grundwassereinzugsgebiete der Wasserwerke der öffentlichen Trinkwasserversorgung mit einer Entnahmemenge ab 100.000 Kubikmeter pro Jahr, für die kein Trinkwasserschutzgebiet festgesetzt oder geplant ist. Entnahmen aus unterschiedlichen Grundwasser-stockwerken führen in einigen Fällen zu Überlagerungen hydraulisch getrennter Einzugsge¬biete. Die Datengrundlage zur Festlegung der Trinkwassergewinnungsgebiete ist heterogen: Die Ermittlung der Trinkwassergewinnungsgebiete der größeren Wasserwerke wie beispielsweise im Raum Kiel oder im Osten von Hamburg beruht in der Regel auf umfangreichen hydrogeologischen Ausarbeitungen mit Grundwassergleichenplänen, die meist eine recht zuverlässige Abgrenzung des jeweiligen Grundwassereinzugsgebietes erlauben. Grundlage der Ermittlung der Trinkwassergewinnungsgebiete im Raum Lübeck ist ein landeseigenes Grundwasserströmungsmodell als Ergebnis umfangreicher, landeseigener Untersuchungen zur Geologie und Grundwasserdynamik in diesem Raum. Auch im Raum Flensburg und Wacken liefern Grund-wasserströmungsmodelle Anhaltspunkte zur Einzugsgebietsabgrenzung. In vielen Fällen erfassen vorliegende Ausarbeitungen und Grundwassergleichenpläne jedoch nicht das gesamte Grundwassereinzugsgebiet. Insbesondere bei kleineren Wasserwerken beschränken sich Informationen oft nur auf den Nahbereich der Fassungsanlagen. Einzugsgebiete können dann nur näherungsweise, teils durch Einbeziehung zusätzlicher Informationen aus dem Geologischen Landesarchiv, anhand vorliegender überregionaler Trendpläne zu generellen Grundwasserströmungsverhältnissen oder unter Berücksichtigung morphologischer Gegebenheiten abgegrenzt werden. Der in Schleswig-Holstein verwendete Begriff „Trinkwassergewinnungsgebiet“ ist rechtlich nicht normiert, eigene rechtsverbindliche Regelungen für Trinkwassergewinnungsgebiete bestehen nicht. Der Begriff „Trinkwassergewinnungsgebiet“ ist allerdings als Kategorie in der Regionalplanung eingeführt, da in Trinkwassergewinnungsgebieten neben der Sicherung der öffentlichen Trinkwasserversorgung dem Gesichtspunkt des vorsorgenden Grundwasserschutzes bei der Abwägung mit anderen Nutzungsansprüchen ein besonderes Gewicht zukommt.

Hydrogeologische Raumgliederung BB

Der Datensatz beinhaltet Daten vom LBGR über die Hydrogeologische Raumgliederung Brandenburgs und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Die Karte gibt einen Überblick zu den hydrogeologischen Raumgliederungen Brandenburgs. Die Gliederungseinheiten tragen den angewandten Charakter von Nutzungsräumen. Sie werden anhand von Wassereinzugsgebieten und Charakteristiken dazugehöriger Grundwasserdynamik beschrieben. Für das Territorium einer hydrogeologischen Einheit werden vergleichbare Grundwasserverhältnisse vorausgesetzt.

Hydrogeologische Übersichtskarte von Niedersachsen 1 : 200 000 - Versalzung des Grundwassers

Die Karte zeigt die mögliche Grundwasserversalzung im Maßstab 1:200 000. Süßwassererfüllte Grundwasserleiter sind in Niedersachsen nur bis zu einer Tiefe von maximal 300 m anzutreffen. Ihr Vorkommen ist auf die Bereiche beschränkt, in denen ein ständiger Wasseraustausch durch versickerndes Niederschlagswasser erfolgt (Zone des aktiven Wasseraustausches). Darunter ist eine zunehmende Versalzung des Grundwassers zu beobachten (Zone des verzögerten Wasseraustausches). In größeren Tiefen schließt sich ein Bereich mit weitgehend stagnierendem Grundwasser an. Der enge Zusammenhang zwischen Süßwasservorkommen und aktivem Wasseraustausch macht die Grundwasserdynamik zu einem zentralen Kriterium bei der Bewertung der Nutzbarkeit der Grundwasserleiter sowie auch bei der Abgrenzung von Grundwasserkörpern. Die Tiefenlage der versalzten Wässer, dass heißt, der Tiefgang des aktiven Wasseraustausches, wird wesentlich durch die hydraulischen Eigenschaften der Gesteinsschichten und das Potenzial der durchflossenen Süßwasserkörper gesteuert. Sie variiert demzufolge sehr stark. In großflächigen Vorflutbereichen ( z.B. Elbe-, Weser-, und Allerniederung), in denen der hydrostatische Druck infolge des Übertrittes großer Grundwassermengen in die Vorfluter abrupt abgebaut wird, können großräumige Druckgefälle auftreten, die ein Aufdringen von tiefen versalzten Wässern bis in den oberflächennahen Grundwasserbereich bewirken ( Binnenländische Versalzung ). Die Versalzungsbereiche im Tiefengrundwasser sind oft an die in den älteren Untergrund eingeschnittenen quartären Schmelzwasserrinnen gebunden. Die Tiefenlage der Versalzung liegt dort in einem Niveau, in dem außerhalb der Rinnen keine Grundwasserleiter mehr ausgebildet sind. Im Binnenland sind ferner rund 400 km2 als Grundwasserversalzungsbereiche einzustufen, die durch Ablaugungsvorgänge an hoch liegenden Salzstöcken verursacht sind ( Salzstockablaugung, Subrosion, vgl. Salzstrukturen Norddeutschlands 1 : 500 000, © BGR, 2008). An der Nordseeküste ist als Folge des allgemeinen Meeresspiegelanstieges nach der letzten Eiszeit auf breiter Front Meerwasser in die binnenländischen Grundwasserleiter eingedrungen ( Küstenversalzung ), wobei das in ihnen befindliche Süßwasser verdrängt wurde. Betroffen von dieser Art der Grundwasserversalzung ist ein bis zu 20 km breiter, insgesamt 2500 km2 großer Küstenstreifen, der somit für die Grundwassernutzung weitgehend ausfällt. Nur auf den Küsteninseln haben sich unter den Dünengebieten durch versickernde Niederschläge Süßwasserlinsen gebildet, die in begrenztem Umfang eine Trinkwasserförderung erlauben. Insgesamt sind in Niedersachsen Gebiete mit einer Gesamtfläche von rd. 6500 km2 von Grundwasserversalzungen betroffen, die dort eine Grundwassernutzung erschweren oder unmöglich machen. Zur Abgrenzung der Gebiete mit versalztem Grundwasser wurden die Ergebnisse von Wasseranalysen, geoelektrischen Sondierungen und Aufschlussbohrungen mit geophysikalischen Bohrlochmessungen ausgewertet. Ein Wasser wird als versalzt bezeichnet, wenn sein Chloridgehalt 250 mg/l übersteigt, was in etwa der menschlichen Geschmacksgrenze entspricht. In der Karte wird im Lockergestein unterschieden, ob der gesamte Grundwasserkörper versalzt ist oder ob Salzwasser nur in einem Teil des Grundwassers angetroffen wurde. Im Festgestein werden nur oberflächennahe Versalzungen, auch im Bereich von Salzhalden, dargestellt.

Tree inventory dataset of floodplain forest, Leipzig, Germany

Leipzig is the only major German city in which extensive hardwood floodplain forests have been preserved. At present, drying out and a lack of hydrodynamics pose the greatest challenges for the conservation of the floodplain landscape. Restoring typical floodplain hydrological conditions and habitats can sustainably safeguard biodiversity and numerous ecosystem services in the medium term. To this end, the Lebendige Luppe project aim to reactivate typical floodplain hydrodynamics with inundation over large areas, the restoration of old river courses and the conversion of intensively farmed areas into typical floodplain habitats. The Lebendige Luppe project, itself is a joint project of cities of Leipzig and Schkeuditz and the NABU Saxony as implementation partner and the University of Leipzig and the UFZ-Helmholtz Centre (Partner for accompanying natural and social science) (Scholz et al. 2022). The implemented and planned restoration measures are accompanied by long-term scientific monitoring (UFZ and Leipzig University). For this purpose, 60 permanent observation plots were set up in the area of the measures according to the BACI design (Before-After / Control-Impact), on which the diversity of selected indicator groups (vegetation, molluscs, ground beetles) as well as groundwater dynamics, water and material balance in the soil, carbon storage and forest growth are recorded (Scholz et al. 2022). By integrating further landscape ecology and nature conservation data, a comprehensive analysis of the status quo and the changes in site conditions, biodiversity and ecosystem functions of the floodplain resulting from the expected floodplain dynamisation is possible, which goes beyond what has been available to date. The resulting simulation of hardwood forest responses to the changing abiotic environmental variables are already the basis for assessing the impact of the planned measures in the implementation process. This data publication contains the tree inventory data of the scientific accompanying research of the winters 2013/2014 and 2016/2017 (first inventory) and a repeat inventory from the winter of 2020/21. The Leipzig riparian forest distributed on old hardwood riparian forest (main tree population older than 90 years) of the forestry office of the city of Leipzig and Sachsenforst as state forest (Scholz et al. 2022). All stands were identified as Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, Fraxinus excelsior or Fraxinus angustifolia, along the great rivers (Ulmenion minoris) – Annex I habitat type (code 91F0).

Grundwasserdynamik an Küsten im Klimawandel (COASTGUARD)

Für Milliarden Menschen weltweit, vor allem aber für jene in Küstengebieten, ist Grundwasser die primäre Quelle für Trinkwasser. Weltweit sind die verfügbaren Grundwasserressourcen durch steigende Wasserentnahmen gefährdet, dies gilt vor allem für küstennahe Aquifere, da diese zusätzlich von Salzwasserintrusion bedroht sind. Gleichzeitig ist der Grundwasserabfluss in die Ozeane ein wichtiger Prozess für aquatische Ökosysteme. Das sich wandelnde Klima und die steigenden Meeresspiegel werden die Küstengrundwasserdynamiken weiter verändern.Kürzlich entwickelte globale Grundwassermodelle bieten die Möglichkeit, diese globalen Herausforderungen sichtbar werden zu lassen. COASTGUARD stellt sich zur Aufgabe die Parametrisierung dieser neuartigen Modelle an der Randbedingung Ozean genauer zu untersuchen und dabei Unsicherheiten zu quantifizieren. Die Projektergebnisse werden der Forschungsgemeinschaft weltweit helfen, großskalige Küstengrundwasserprozesse besser zu verstehen und diese mit lokalen Erkenntnissen in Zusammenhang zu setzen. COASTGUARD wird nicht nur zu einem besseren Verständnis der Dynamiken von Küstengrundwasserprozessen beitragen, sondern auch Implikationen für die zukünftige Frischwasserverfügbarkeit zulassen. Außerdem wird COASTGUARD weltweit Regionen aufzeigen, welche besonders durch ein sich änderndes Klima betroffen sind.COASTGUARD bietet damit die einmalige Gelegenheit: (1) Unsicherheiten der globalen Grundwassermodellierung zu untersuchen und deren Parametrisierung an der so wichtigen Schnittstelle Ozean zu verbessern, (2) neue Erkenntnisse darüber zu liefern, welche Prozesse bezüglich der Dynamik zwischen Grundwasser und Meer auf einer globalen Skala dominant sind sowie (3) die weltweite Quantifizierung von Salzwasserintrusion und Grundwasserabfluss im Kontext von Klimawandel und dem steigenden Meeresspiegel darzustellen.

Wasser- und Stoffflüsse an Rändern von Auengrundwasserleitern und ihre Kontrolle durch Untergrundstrukturen

In Flussauen von Flussmittelläufen in gemäßigten Klimazonen ist der Grundwasserstrom typischerweise vornehmlich talabwärts gerichtet. Die hydrologische Funktion der Auengrundwasserleiter hängt allerdings vom Vorhandensein hydrogeologisch relevanter Strukturen ab, und das Grundwassersystem wird stark durch Wasser- und Stoffflüsse über seine Ränder beeinflusst. Das beantragte Projekt zielt daher darauf ab, die hydrogeologischen Steuergrößen für diese Flüsse zu charakterisieren und die relative Bedeutung der Ränder für die Wasserbilanz und den Umsatz gelöster Stoffe in Auengrundwasserleitern zu ermitteln. Als Untersuchungsgebiet dient die Ammeraue bei Tübingen (Südwestdeutschland), die typisch für Auengebiete entlang von Flussmitteläufen in gemäßigten Klimazonen ist und bereits von den Antragstellern im Rahmen des SFB1253 CAMPOS untersucht wurde. Für die Modellierung und Vorhersage der hydrologischen Funktion des Auengrundwasserleiters und seiner Ränder ist es wichtig, die räumliche Lage, Geometrie und die Eigenschaften hydraulisch leitfähiger Strukturen an den Auenrändern zu erkunden. Unsere Untersuchungen zielen daher darauf ab, geologische Strukturelemente an den Auenrändern zu charakterisieren, die die Gesamtflüsse des Grundwassers und der darin gelösten Stoffe durch den Auengrundwasserleiter bestimmen. Hierfür entwickeln wir arbeits- und kosteneffiziente Methoden, mit denen sich die räumliche Ausdehnung und Geometrie der Ränder (mittels geophysikalischer Methoden) abbilden und die hydraulische Konnektivität zu den Auengrundwasserleitern (mittels hydraulischer Methoden) charakterisieren lassen. Mit besonderem Fokus auf die identifizierten hydrogeologisch relevanten Strukturelemente an den Auenrändern wollen wir die Wasserflüsse und die Stoffströme bestimmen, die die Ränder des Auengrundwasserleiters passieren, um ihre relativen Beiträge innerhalb des Auengrundwasserleiters zu quantifizieren. Wir untersuchen hierfür insbesondere die zeitliche Grundwasserdynamik, um zu bestimmen, unter welchen hydrologischen Bedingungen ein erhöhter Wasseraustausch stattfindet. Die experimentellen Projektergebnisse fließen in ein konsistentes numerisches Grundwassermodell ein, um hydrogeologische Messungen vorherzusagen und die Ergebnisse der dynamischen Austauschflüsse zu interpretieren. Schließlich werden wir die geologischen Informationen, die in den verschiedenen Untersuchungsschritten und in vorherigen Arbeiten gesammelt wurden, umfassend geologisch interpretieren. Dies ermöglichst es, die maßgeblichen geologischen Prozesse zu identifizieren, die das Vorkommen und die Wirkung durchlässiger Strukturen an den Rändern von Auengrundwasserleitern bestimmen sowie die Austauschprozesse über die Ränder kontrollieren. Dieser Ansatz erlaubt es, unsere Ergebnisse auf andere Standorte zu übertragen und zu verallgemeinern.

Entwicklungspfade urbaner Energiesysteme hin zu Klimaneutralität: Open-Source-Tool für die Charakterisierung und Analyse lokaler Wärmeversorgungssysteme in Quartieren, Teilvorhaben: Geothermisches Potential und Modellierung

1 2 3 4 58 9 10