API src

Found 1059 results.

Related terms

Grundwasser in Nordafrika

Da die Grundwasservorraete der Nordsahara besonders in Libyen verstaerkt als Nutzwasser herangezogen werden, muss die Frage der Ausschoepfbarkeit dieser Vorraete und die eventuelle derzeitige Ergaenzung geprueft werden. Es wird die hydrogeologische Struktur dieses Gebiets untersucht und Altersbestimmungen des Wassers mit Hilfe des Kohlenstoff-14 vorgenommen.

LURCH - StressRes: Monitoring- und Modellsystem zur Beurteilung von Stress auf Grundwasserressourcen und Trinkwassermanagement, Teilprojekt 3

Grundwasserdynamik an Küsten im Klimawandel (COASTGUARD)

Für Milliarden Menschen weltweit, vor allem aber für jene in Küstengebieten, ist Grundwasser die primäre Quelle für Trinkwasser. Weltweit sind die verfügbaren Grundwasserressourcen durch steigende Wasserentnahmen gefährdet, dies gilt vor allem für küstennahe Aquifere, da diese zusätzlich von Salzwasserintrusion bedroht sind. Gleichzeitig ist der Grundwasserabfluss in die Ozeane ein wichtiger Prozess für aquatische Ökosysteme. Das sich wandelnde Klima und die steigenden Meeresspiegel werden die Küstengrundwasserdynamiken weiter verändern.Kürzlich entwickelte globale Grundwassermodelle bieten die Möglichkeit, diese globalen Herausforderungen sichtbar werden zu lassen. COASTGUARD stellt sich zur Aufgabe die Parametrisierung dieser neuartigen Modelle an der Randbedingung Ozean genauer zu untersuchen und dabei Unsicherheiten zu quantifizieren. Die Projektergebnisse werden der Forschungsgemeinschaft weltweit helfen, großskalige Küstengrundwasserprozesse besser zu verstehen und diese mit lokalen Erkenntnissen in Zusammenhang zu setzen. COASTGUARD wird nicht nur zu einem besseren Verständnis der Dynamiken von Küstengrundwasserprozessen beitragen, sondern auch Implikationen für die zukünftige Frischwasserverfügbarkeit zulassen. Außerdem wird COASTGUARD weltweit Regionen aufzeigen, welche besonders durch ein sich änderndes Klima betroffen sind.COASTGUARD bietet damit die einmalige Gelegenheit: (1) Unsicherheiten der globalen Grundwassermodellierung zu untersuchen und deren Parametrisierung an der so wichtigen Schnittstelle Ozean zu verbessern, (2) neue Erkenntnisse darüber zu liefern, welche Prozesse bezüglich der Dynamik zwischen Grundwasser und Meer auf einer globalen Skala dominant sind sowie (3) die weltweite Quantifizierung von Salzwasserintrusion und Grundwasserabfluss im Kontext von Klimawandel und dem steigenden Meeresspiegel darzustellen.

AsFeP0 - A model concept for in situ investigation or arsenic and phosphate adsorption to predefined iron minerals and to characterize transformation processes of iron minerals

Shallow groundwater of the huge deltaic systems of Asia like the Red River Delta in Vietnam is often enriched in inorganic arsenic (As), threatening the health of millions of residents. The massive abstraction of groundwater in these areas locally causes an irreversible mixing of arsenic-free groundwater resources with arsenic-rich groundwater. Increased concentrations of competitive anions, especially phosphate (PO43-), decrease the immobilization capacity of the sediments. During transport, the mobility of dissolved As in local aquifers is strongly influenced by adsorption to sedimentary and ubiquitously occurring iron(oxyhydr)oxides. Additionally, arsenic-rich groundwater is often enriched in reduced iron (Fe2+) as well, which is capable to react with iron(oxyhydr)oxides, thereby inducing mineral transformations. Such transformations permanently affect the arsenic adsorption and immobilization capacity of the sediments.Within the scope of this research project, the underlying mechanisms related to As transport and the resulting threat to arsenic-free groundwater resources will be characterized in cooperation with the Swiss Federal Institute of Aquatic Science and Technology (Eawag). The research concept aims at assessing the complex interactions within the arsenic-iron-phosphate-system under field conditions at a study site next to the Red River. First, filtration experiments using local groundwater enriched in As and PO43- will be used to determine the As adsorption capacity of different and previously geochemically characterized iron(oxyhydr)oxides. In a second step, sample carrier containing As loaded iron(oxyhydr)oxides will be introduced into surface near aquifer parts of the study site (via existing groundwater monitoring wells). These samples will be exposed to local groundwater characterized by increased As, Fe2+ and PO43- concentrations for the following nine months. Using the in situ exposition of predefined iron(oxyhydr)oxides, it will be possible to distinguish potential mineral transformations and their influences on the As immobilization capacity of the respective iron(oxyhydr)oxides. By combining the results and outcomes of the field experiments, new and important conclusions regarding the mobility of As can be drawn. The data can be used to create a hydrochemical transport model describing reactive As transport within the investigation area. In addition, the results of the in situ exposition experiments will allow to draw conclusions in respective to the long term As immobilization capacity of different iron(oxyhydr)oxides, which is an essential information regarding in situ decontamination techniques.

Grundwasserhöhen 2002

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Der Hauptgrundwasserleiter wird überwiegend aus Sanden und Kiesen der Saale-Kaltzeit aufgebaut. Im Urstromtal liegt die Grundwasseroberfläche weitgehend ungespannt vor, während sie auf den Hochflächen unter dem Geschiebemergel gespannt vorkommen kann. Schraffiert wird das Panketal dargestellt, in dem ein eigenständiges größeres Grundwasservorkommen vorliegt. 02.12 Grundwasserhöhen Weitere Informationen

Sicherung des Wasserwerks Johannisthal

Die Wasserläufe Spree und Dahme sowie der Britzer Zweigkanal und der Teltowkanal umrahmen das Einzugsgebiet des Wasserwerkes Johannisthal. Im Jahre 1901 wurde das Wasserwerk mit 26 Förderbrunnen und zwei Heberleitungen schrittweise in Betrieb genommen. In den 1970er Jahren förderten mehr als 100 Rohwasserbrunnen. Für das Wasserwerk wurde ein Grundwasservorrat (Q365) von 65.000 m³ pro Tag bilanziert. Diese Wassermenge ist ausreichend, um über 300.000 Einwohner Berlins mit Trinkwasser zu versorgen. Auf Grund des sinkenden Wasserbedarfs verringerte sich die Grundwasserförderung der Wasserwerksgalerien in den Nachwendejahren deutlich. 2001 wurde die Trinkwassergewinnung vorübergehend eingestellt. Der Zeitpunkt der Wiederaufnahme der Trinkwassergewinnung ist gegenwärtig nicht vorhersehbar, wird jedoch mittel- bis langfristig angestrebt. Bis zum Wasserwerksneubau, einschließlich der technischen Infrastruktur (Brunnen, Leitungen), erfolgt die Grundwasserförderung unter der Zielsetzung der Altlastensanierung und der Gewährleistung eines umweltverträglichen Grundwasserstandes. Dabei werden bis zu 25.000 m³ Grundwasser pro Tag durch derzeit 19 eigenbewirtschaftete Förderbrunnen der Fördergalerien „Neue Königsheide“ (FG NKH) und „Teltowkanal“ (FG TK) sowie sieben Abwehrbrunnen der Abwehrbrunnengalerien „Neue Königsheide Nord“ (NKHN) und „Alte Königsheide Süd“ (AKHS) gefördert und das gereinigte Wasser in die Vorflut abgeleitet (Stand 2023). Gesetzliche Grundlage hierfür ist das Wasserhaushaltsgesetz, das Bundes-Bodenschutzgesetz und die „Grundwassersteuerungsverordnung” des Landes Berlin. Im Einzugsgebiet des Wasserwerks stellen im Wesentlichen die Einträge von Arsen, Cyaniden sowie leichtflüchtigen chlorierten Kohlenwasserstoffen (LCKW) aus Altlastengrundstücken sowie Pflanzenschutzmitteln aus dem Uferfiltrat des Teltowkanals eine akute Gefahr für die Rohwassergüte der Förderbrunnen dar. Erstmals wurde 1991 im Reinwasser des Wasserwerks eine erhebliche Verunreinigung mit LCKW festgestellt. Der Schadstofftransfer aus nördlicher Richtung zur FG NKH erfolgt ausgehend von einem Standort ehemaliger Farbenproduktion sowie einem Standort zur Herstellung technischer Gase, dem sog. Teilsanierungsgebiet 4 (TSG 4). Der nördliche Zustrom zur FG NKH wird durch die Barrierewirkung der Abwehrbrunnen der Grundwasserreinigungsanlage 3 (GWRA 3) in der Abwehrbrunnengalerie NKHN verhindert. Die Belastungen erstrecken sich ausgehend von den Quellgrundstücken auf dem Transferpfad zur Abwehrbrunnengalerie NKHN im Hauptgrundwasserleiter über eine Mächtigkeit von bis zu 40 m. Quelle für die Schadstofffahne zum nördlichen Teil der Galerie „Alte Königsheide“ (AKH) sind primär Betriebe der metallverarbeitenden Industrie. Nutzungstypisch gelangten LCKW ins Grundwasser und strömten den Förderbrunnen der GWRA 2 lateral zu. Der östliche Anstrom zum Wasserwerk Johannisthal bzw. Abwehrbrunnengalerie AKHS ist ebenfalls durch das Auftreten chlorierter Lösemittelverbindungen im Grundwasserleiter geprägt. Verantwortlich für die LCKW-Einträge sind drei Hauptemittenten: ein Bahnreparaturwerk, ein ehemaliger Standort des Motoren- und Kühlaggregatebaus sowie ein früherer Standort zur Herstellung medizinischer Geräte. Das östliche Transfer- bzw. Teilsanierungsgebiet 7 (TSG 7) weist das mit Abstand höchste Schadstoffpotential auf. Das in der horizontalen Ausdehnung deutlich größere kontaminierte Transfergebiet weist in Wasserwerksnähe fast ausschließlich die biotischen Abbauprodukte cis-1,2-Dichlorethen und Vinylchlorid (VC) auf. Zur Sicherung des Wasserwerksstandortes in der NKHS wird die GWRA 1 betrieben. Der Teltowkanal ist hydraulisch an den genutzten Aquifer des Wasserwerks angebunden. Im Sediment lagernde Organochlorpestizide und ihre Metabolite wurden sukzessive mit dem Uferfiltrat in Richtung der FG TK transportiert. Zur Unterbindung des Zustroms wird dazu im Südwesten der FG NKH die FG TK mit drei Förderbrunnen bewirtschaftet. Westlich des Wasserwerkes, ca. 300 m südlich des Zusammenflusses von Teltowkanal und Britzer Zweigkanal befindet sich ein LCKW-Schaden (Bodenfilter, BAB 113), der sich jedoch nur mit geringen Konzentrationen an VC dem Transfergebiet des Wasserwerkes mitteilt. Eine weitere hydraulische Sicherungsmaßnahme befindet sich südöstlich des Wasserwerkes auf dem Gebiet des Bezirkes Neukölln, Bereich Kanalstraße/Teltowkanal. Hier werden organische Schadstoffkomponenten der teerverarbeitenden Industrie und LCKW/BTEX-Verbindungen gefasst und in einer Grundwasserreinigungsanlage gereinigt. Seit 1993 werden am Standort seitens der für die Umwelt zuständigen Senatsverwaltung Gefahrenabwehrmaßnahmen durchgeführt mit dem Ziel der Minimierung der Schadstoffpotentiale, die sich im direkten Anstrom auf das Wasserwerk Johannisthal befinden. 1991 stellte die Galerie „Alte Königsheide“ (ca. 30 Förderbrunnen) die Rohwasserförderung zur Trinkwassergewinnung ein. Abwehrbrunnen wurden daraufhin in der AKHS errichtet und fördern seit 1993 das kontaminierte Grundwasser, das in der GWRA 1 über zwei Stripkolonnen gereinigt wird. Die Prozessluft wird über Luftaktivkohlefilter und seit 2006 nach der 1. Füllkörperkolonne aufgrund hoher Gehalte an VC durch eine zusätzliche Stufe gereinigt: zunächst bis 2018 über eine katalytische Oxidation und seit Ende 2018 durch eine UV-Oxidationsanlage. Die Reinigungszielwerte des Wassers konnten stets eingehalten werden. Das Förderregime wurde im Laufe der Jahre mehrfach dem Schadstoffanstrom angepasst. Die maximale Durchsatzleistung der GWRA 1 betrug zu Beginn der Grundwassersanierungsmaßnahme ca. 250 m³/h. Seit dem 4. Quartal 2018 fördern die insgesamt vier Abwehrbrunnen rd. 145 m³/h Grundwasser. Die Quellensanierung und die Grundstückssicherung im östlichen Wasserwerksanstrom erfolgte bzw. erfolgt durch den Betrieb von sechs Grundwasser- und sieben Bodenluftreinigungsanlagen auf den drei Eintragsgrundstücken. Seit Dezember 2008 wird zusätzlich im Transferbereich des Bahnbetriebswerkes in Richtung des Wasserwerkes eine weitere GWRA betrieben. Im Zuge halbjährlicher Grundwassermodellierungen werden dabei durch den Modellierer auch regelmäßig Vorschläge zur Anpassung der Betriebsweise der noch bestehenden GWRA erarbeitet. Da sich die Fahnengeometrie seit Beginn der hydraulischen Maßnahmen verändert hat, wurde nunmehr eine Optimierung der Brunnenstandorte im Transferbereich vorgeschlagen. In 2022 wurden in diesem Zusammenhang weitere fünf Sanierungsbrunnen sowie eine neue GWRA errichtet, welche sich seit Mai 2023 in Betrieb befinden. Dies wird als zielführende Maßnahme zur weiteren Reduzierung der auf das Wasserwerk Johannisthal zuströmenden LCKW-Fracht erachtet. Die Betreiberpflichten obliegen seit 01/2009 der Deutschen Bahn AG als einer der Hauptschadensverursacher mit einem Eigenanteil der Kosten von 95 % für die Gefahrenabwehrmaßnahmen. Seit dem Jahr 2014 finanziert die DB AG zu 100% die Kosten für Maßnahmen der Gefahrenabwehr. Nach erfolgreicher Reinigung des nördlichen Wasserwerksanstroms der Galerie „Alte Königsheide Nord“ im Zeitraum 1995 bis 1999 und der Teildekontamination der Eintragsherde konnte die GWRA 2 im Jahre 2000 zum Schutz der nördlichen FG TK umgesetzt werden. Hierzu wurden zwei neue Abwehrbrunnen errichtet und an die Anlage angeschlossen. Aufgrund der sich reduzierenden Schadstoffsituation reinigte die GWRA 2 bis 2013 noch ca. 80 m3/h Grundwasser und wurde dann im Januar 2014 vollständig außer Betrieb genommen. Der nördliche Abschnitt der FG NKH wird seit 1995 durch die GWRA 3 gesichert. Die GWRA 3 bestand aus Reinigungsstufen zur Reinigung von Cyaniden, LCKW und Arsen und hat einen Durchsatz von max. 200 m³/h. Auf Grund einer veränderten Schadstoffzusammensetzung im Zulauf der GWRA 3 wurde die Verfahrenstechnik der GWRA 3 optimiert und wird seit 2012 nur noch mit einer Reinigungsstufe (drei parallel geschaltete Sandfilter mit Belüftung) betrieben. Derzeit fördern drei Abwehrbrunnen in der NKHN insgesamt rd. 140 m³/h kontaminiertes Grundwasser. Die Abwehrbrunnen müssen dabei aufgrund von Brunnenalterungsprozessen (Verockerung) und sinkenden Ergiebigkeiten in ca. dreijährlichem Turnus regeneriert bzw. in unregelmäßigen Abständen ersetzt werden. Die letzte Neuerrichtung eines Ersatzbrunnens erfolgte in 2022. Zusätzlich zur Fassung der Schadstofffahne in Richtung Wasserwerk Johannisthal erfolgt die Quellensanierung sowie Grundstückssicherung im nördlichen Wasserwerksanstrom. Dabei wird das Grundwasser aus zurzeit 21 aktiven Sanierungsbrunnen in einer GWRA gereinigt. In den Jahren 2019-2022 erfolgte eine Optimierung der hydraulischen Sicherung im 1. und 2. Grundwasserleiter. Als Planungsgrundlage für die Gesamtsicherung des Wasserwerkes Johannisthal wurde in den Jahren 1993/94 der Aufbau eines ortdiskreten dreidimensionalen Mengen- / Beschaffenheitssimulationsmodells gemeinsam mit den Berliner Wasserbetrieben beschlossen. Dieses Modell wurde kontinuierlich aktualisiert und die beschriebenen Sicherungsmaßnahmen angepasst. Im Zeitraum von 1994 bis 2002/2004 wurde als unterstützende Maßnahme das gereinigte Grundwasser aus den drei GWRA auf einer Fläche von 25.000 m² in der Königsheide reinfiltriert. Die Reinfiltration war integraler Bestandteil des umfassenden hydraulischen Sicherungskonzeptes des Wasserwerkes. Seit dem Jahr 2010 werden die Sicherungs- und Sanierungsmaßnahmen zusätzlich durch ein Stofftransportmodell kontrolliert und ggf. modifiziert. Die Schadstoffverteilung im Einzugsgebiet wird mittels halbjährlicher Monitoringkampagnen auf Basis eines engmaschigen Messstellennetzes überwacht. In Verbindung mit der Herausnahme des Wasserwerkes aus der Trinkwasserversorgung waren Optimierungen der bestehenden Sicherungsstrategie erforderlich. Diese beinhaltete die Beendigung der Infiltration des Reinwassers der GWRA 1 und 3 in den Versickerungsbecken, um die Fließgeschwindigkeiten im Anstrom weiter zu erhöhen. Zudem wurde die Lage der Abwehrbrunnen im Bereich des nördlichen Anstroms der FG NKH durch neuerrichtete Sicherungsbrunnen optimiert und das Förderregime der Abwehrbrunnen angepasst. Zur weiteren Entlastung der Schadstoffsituation durch LCKW im westlichen Einzugsgebiet des Wasserwerkes wird seit 2010 eine weitere GWRA im Bereich der Bundesautobahn BAB 113 (Bodenfilter) mit einem Durchsatz von ca. 20 m3/h betrieben. Über vier aktiven Entnahmebrunnen und fünf Infiltrationsbrunnen mit kombinierter Einleitung in eine Rigole bzw. in den Teltowkanal wird das hydraulische Sanierungskonzept umgesetzt. Die GWRA im Bereich der Kanalstraße wird seit 2013 zum Schutz des Teltowkanalwassers und des Wasswerks Johannisthal betrieben. Im Sicherungszeitraum 1993 bis 2023 reinigten die Grundwasserreinigungsanlagen am Wasserwerk bisher ca. 140 Mio. m³ kontaminiertes Grundwasser. Dabei konnten ca. 7.200 kg LCKW, 750 kg Cyanide und 372 kg Arsen entfernt werden (Stand 04/2023). Die Weiterführung der Maßnahmen zur Sicherung der Trinkwasserressourcen ist weiterhin notwendig. Das Schadstoffpotential im Sediment des Teltowkanals konnte durch eine Entschlammung in den Jahren 1993 bis 1999 dauerhaft um > 99% reduziert werden. Es wurden etwa 150.000 m³ pestizidhaltiger Schlamm entsorgt. Seitdem dienen gezielte Pestiziduntersuchungen des Teltowkanalwassers und des Uferfiltrates bis hin zu den Förderbrunnen der FG TK einerseits der Erfolgskontrolle der Entschlammung und zur Bewertung des Restpotentials, anderseits der Erarbeitung von Prognosen durch ein Stofftransportmodell zum Schadstoffabbau und Stoffausbreitung im Grundwasserleiter. Auch Forschungsvorhaben mit universitären Einrichtungen zum biotischen Schadstoffabbau dieser Stoffverbindungen wurden durchgeführt. Für die Sicherungsmaßnahmen direkt am Wasserwerk Johannisthal wurden im Zeitraum von 1994 bis 2022 ca. 15,60 Mio. € aufgewendet. Hinzu kamen Kosten in Höhe von 11,2 Mio. € für die Beseitigung kontaminierter Gewässersedimente im Teltowkanal. Pro Jahr werden gegenwärtig für die Sicherungsmaßnahmen am Wasserwerk (u.a. Betrieb der GWRA 3 und Sicherungsbrunnen, Brunnenregenerierungsarbeiten, Ingenieur- und Analytikleistungen) etwa 280.000 € veranschlagt (Stand 2023). Zur Gewährleistung der Gefahrenabwehrmaßnahmen wurden von 2014 bis 2017 jährlich rd. fünf neue Brunnen als Ersatz der Altbrunnen der FG NKH errichtet. Die Errichtung der Ersatzbrunnen war notwendig, da die Ergiebigkeit der Altbrunnen deutlich sank. Für die erfolgreiche Fahnensanierung durch die Grundwasserreinigungsanlagen sowie die Minimierung der Schadstoffpotentiale im direkten Anstrom auf das Wasserwerk Johannisthal ist es notwendig, die Förderbrunnen der FG NKH entsprechend der modellierten Förderraten zu betreiben. Für den Neubau der insgesamt 14 Ersatzbrunnen der FG NKH und eines neuen Abwehrbrunnens im Bereich der GWRA 3 wurden insgesamt ca. 1,1 Mio. € (Brutto) finanziert. Für den Ersatzneubau von zwei weiteren Abwehrbrunnen der GWRA 3 in 2019/2020 sowie 2021/2022 wurden rd. 350.000 € aufgewendet. Die Altbrunnen wurden rückgebaut. Zur Aufrechterhaltung der Förderleistung der FG NKH (vertraglich vereinbarte Soll-Förderung: 20.000 m³/d) sind kurz- bis mittelfristig weitere Maßnahmen (Reaktivierung von Altbrunnen, Regenerierungen und Brunnenersatzbaumaßnahmen) im Bereich der FG NKH notwendig. Die gegenwärtige Funktion des Wasserwerks Johannisthal und seiner Fördergalerien ist die Gewährleistung der Altlastensanierung und damit einhergehend die Einhaltung eines umweltverträglichen Grundwasserstandes. Weiterhin weist das Wasserversorgungskonzept 2040 bzw. der in Bearbeitung befindliche Masterplan Wasser für Berlin und das von den Berliner Wasserbetrieben versorgte Umland das Wasserwerk Johannisthal als Standort der Trinkwasserversorgung aus. Das Wasserversorgungskonzept wurde vom Senat und den Berliner Wasserbetrieben (BWB) im Jahr 2008 einvernehmlich verabschiedet. Der Betrieb und die Laufzeit der Grundwasserreinigungsanlagen am Wasserwerk sind abhängig vom Sanierungs- und Sicherungserfolg auf den Einzelgrundstücken und in den großflächigen Transfergebieten. Perspektivisch ist in Verbindung mit der „wachsenden Stadt“ wie auch durch den starken Bevölkerungszuwachs im nahen Berliner Umland und dem damit einhergehenden steigenden Wasserbedarf die Wiederinbetriebnahme der Trinkwasserproduktion am Standort des Wasserwerks Johannisthal mit einer Fördermenge von 3 – 10 Mio. m³/a vorgesehen.

Entsiegelungspotenziale 2024

Die Inanspruchnahme von Böden durch Überbauung und Versiegelung führt zum Verlust der Bodenfunktionen mit dauerhaft negativen Folgen für die Leistungsfähigkeit des Naturhaushaltes. Böden weisen vielfältige und schützenswerte Funktionen auf: Als Lebensraum für Pflanzen und Tiere, als Speicher und Filter für das Grundwasser, als Puffer gegenüber Schadstoffen, als Basis für die Landwirtschaft und gesundes Wohnen sowie als Archiv der Natur- und Kulturgeschichte (§ 2 BBodSchG). Diese grundlegenden Funktionen des Bodens sind durch eine adäquate Berücksichtigung der Bodenschutzbelange in der Planung für die Zukunft zu sichern. Die Bedeutung des Bodens erlangt zunehmende gesellschaftliche und umweltpolitische Beachtung insbesondere mit Blick auf die Anpassung an die Folgen des Klimawandels, die Kohlenstoff- und Wasserspeicherfähigkeit des Bodens und die Biodiversität. Dies mündet in bundesweite Maßnahmen und Regelungen zur Reduzierung der Flächenneuinanspruchnahme und der Versiegelung und in die Notwendigkeit eines nachhaltigen Flächenmanagement in Städten und Gemeinden. „Die Siedlungs- und Verkehrsfläche (SuV) in Deutschland ist im vierjährigen Mittel der Jahre 2019 bis 2022 durchschnittlich um rund 52 Hektar pro Tag gewachsen. Der tägliche Anstieg nahm damit gegenüber dem Vorjahresindikatorwert ab (55 Hektar pro Tag in den Jahren 2018 bis 2021).“ (Destatis, 2024a, 2024b, 2024c, vgl. UBA, 2024). International und national greifen ambitionierte Zielsetzungen und Maßnahmen die Reduzierung der Flächenneuinanspruchnahme auf. Sowohl das globale Nachhaltigkeitsziel 15 der Vereinten Nationen als auch die daran angelehnte Deutsche Nachhaltigkeitsstrategie greifen den Schutz und die nachhaltige Nutzung der Ressource Boden auf und weisen die Degradationsneutralität als wichtiges Ziel aus (UN, 2015; Bundesregierung, 2021). Mit der Deutschen Nachhaltigkeitsstrategie 2016 hat die Bundesregierung das 30 Hektar-Ziel des Jahres 2020 auf das Jahr 2030 auf „unter 30 Hektar pro Tag“ festgeschrieben (Bundesregierung, 2017; Destatis, 2018). In der Weiterentwicklung der Nachhaltigkeitsstrategie der Bundesregierung 2021 wird ergänzend bis zum Jahr 2050 eine Flächenkreislaufwirtschaft angestrebt, das heißt, es sollen netto keine weiteren Flächen für Siedlungs- und Verkehrszwecke beansprucht werden (Bundesregierung, 2021). Der Unterschied zwischen Flächenneuinanspruchnahme und Versiegelung: Unter Flächenneuinanspruchnahme wird die Netto-Zunahme der Siedlungs- und Verkehrsfläche verstanden. Der Indikator „Anstieg der Siedlungs- und Verkehrsfläche“ bezieht sich auf die Umwandlung land- und forstwirtschaftlich genutzter Fläche in Siedlungs- und Verkehrsfläche und umfasst damit auch nicht versiegelte Areale wie Stadtparks, Hofflächen, Verkehrsbegleitgrün, Friedhöfe, Kleingärten etc. Insbesondere in urbanen Räumen ist der Indikator oft unzureichend, um den tatsächlichen Zustand der Böden sowie den nachhaltigen Umgang mit dieser Ressource bewerten zu können. Die Flächenversiegelung einer Stadt kann auch bei gleichbleibender Flächenneuinanspruchnahme ansteigen (z. B. durch Innenentwicklung und bauliche Nachverdichtung). Der Grad der Versiegelung und seine Entwicklung gibt daher i.d.R. den. detaillierteren Aufschluss über die Inanspruchnahme der natürlichen Ressource Boden im urbanen Raum (LABO, 2020). Einer von 16 Kernindikatoren, an denen die nachhaltige Entwicklung im Land Berlin gemessen wird, ist daher die Flächenversiegelung (AfS Berlin-Brandenburg, 2021). Dieser Indikator ermöglicht im Land Berlin, auf der Grundlage gesetzlich verankerter Regelungsmöglichkeiten, die Einbeziehung der begrenzten Ressource Boden in das Spannungsfeld von Bau- und Planungsprozessen und die Stärkung des Schutzes und der Wiederherstellung wertvoller Bodenfunktionen. Das Anliegen der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt und der Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen besteht somit darin, Instrumente für ein aktives, praxisorientiertes Flächenmanagement zur Verfügung zu stellen. Diese erleichtern es insbesondere den Bodenschutzbehörden, ihre Aufgaben als Träger öffentlicher Belange z. B. im Rahmen der Bauleitplanung wahrzunehmen sowie im Rahmen von Umweltprüfungen eine qualifizierte Integration bodenschutzfachlicher Aspekte im Prüfungsprozess vornehmen zu können. Ein regelmäßig in der Planungspraxis auftretendes Problem besteht darin, dass sich die bei einer baulichen Entwicklung eines Gebietes notwendigen Versiegelungen materiell kaum ausgleichen lassen. Der fachlich beste Ausgleich besteht prinzipiell in der Entsiegelung anderer Flächen. Das Auffinden versiegelter Flächen, die tatsächlich entsiegelt werden können, gestaltet sich in Berlin aufgrund der eingeschränkten Verfügbarkeit der meisten Flächen als schwierig und lässt sich im Rahmen der Umweltprüfung mangels eines adäquaten Flächenangebots vielfach nicht realisieren. Entsiegelungsvorschläge haben jedoch meist dann eine Realisierungschance, wenn Entsiegelungsflächen bereits bekannt sind und als geeignet geprüft in einem Verzeichnis vorliegen. In einem ersten Schritt wurde mit der Umweltatlaskarte Planungshinweise zum Bodenschutz ein wichtiges planerisches Instrument für die bodenschutzfachliche Bewertung erarbeitet. Die Wichtung der unterschiedlichen Funktionen und Empfindlichkeiten der Berliner Böden ermöglicht eine differenzierte Bewertung im Rahmen der Bauleitplanung. So wird z. B. für Böden, die aus bodenschutzfachlicher Sicht als besonders wertvoll eingestuft wurden, die Suche von Standortalternativen für bauplanungsrelevante Vorhaben empfohlen (vgl. SenStadt, 2020). Um eine verbesserte Verfügbarkeit von Entsiegelungsflächen zu erreichen, wurde in einem zweiten Schritt das Projekt „Entsiegelungspotenziale in Berlin“ ins Leben gerufen. Das Projekt hat die Erfassung und Bewertung von Flächen mit Entsiegelungspotenzial zum Inhalt und soll dazu dienen, Flächen im Land Berlin aufzufinden, die in absehbarer Zukunft dauerhaft entsiegelt werden können. Soweit möglich, sollen die Funktionsfähigkeit des Bodens wiederhergestellt und naturschutzfachlich wertvolle Lebensräume für Pflanzen und Tiere entwickelt werden. Außerdem soll es gelingen, eine räumliche Entkopplung zwischen den Orten der Beeinträchtigung und der Aufwertung durch eine gesamtstädtische Erfassung und einheitliche Systematik bei der Bewertung der erfassten Flächen zu unterstützen. Hierfür kommt im Einzelfall das Instrument der Eingriffsregelung (nach Baurecht und Naturschutzrecht) in Betracht. Die erfassten Flächen dienen grundsätzlich als Flächenangebot für die Kompensation von Eingriffen in den Boden und bei dauerhaftem Verlust von Bodenfunktionen sowie für Entsiegelungsmaßnahmen im Rahmen von Fördermaßnahmen. Im Rahmen mehrerer Projektphasen werden seit 2010 Recherchen in allen Berliner Bezirken, in den vier Berliner Forstämtern, in den Senatsverwaltungen für Stadtentwicklung, Bauen und Wohnen (SenStadt) und Bildung, Jugend und Familie (SenBJF) sowie bei privaten Eigentümern durchgeführt. Die letzte Aktualisierung erfolgte im Zeitraum von Januar 2024 bis November 2024. Die bei diesen Recherchen gewonnenen Daten werden in einer Datenbank zusammengeführt. Im Rahmen des in der Entwicklung befindlichen Berliner Entsiegelungsprogramms wird perspektivisch eine Zusammenführung vorhandener Potenzialerfassungen angestrebt. Hierbei sind partizipative Möglichkeiten zur Einbringung bisher unbekannter Entsiegelungspotenziale durch verschiedenste Akteure in der Stadt denkbar. Um die Umsetzung von Entsiegelungsmaßnahmen zu unterstützen, wurde zudem eine Arbeitshilfe zur Ableitung vereinfachter Kostenansätze für die zu erwartenden Rückbaukosten erstellt (inklusive Excel-Eingabedatei für vereinfachte Kostenschätzung von Entsiegelungsmaßnahmen). Außerdem wird die Arbeitshilfe zur Wiederherstellung von Bodenfunktionen nach einer Entsiegelung online bereitgestellt. Darüber hinaus wird in Form regelmäßiger Newsletter über aktuelle Geschehnisse zum Thema Entsiegelung berichtet. In 2021 wurde eine Dokumentation einer Entsiegelungsmaßnahme veröffentlicht, die überblickshaft den Projektablauf, die Finanzierung sowie die Beteiligten aufzeigt. Im Jahr 2025 soll mit einem Bericht über die Entsiegelung der ehemaligen Bezirksgärtnerei Marienfelde eine weitere Dokumentation eines aktuellen Entsiegelungsprojekts veröffentlicht werden. Für den Newsletter, die Dokumentation, sowie die genannten Arbeitshilfen siehe Entsiegelungspotenziale in Berlin – Berlin.de .

IS HÜK 500 DS - Informationssystem Hydrogeologische Übersichtskarte von Nordrhein-Westfalen 1:500.000 - Datensatz

Der Datensatz zum Informationssystem Hydrogeologische Übersichtskarte von Nordrhein-Westfalen 1:500.000 [IS HÜK 500] gibt einen generalisierten Überblick über die Verteilung der Grundwasservorkommen in Nordrhein-Westfalen. Verfügbare Kartenthemen: Ergiebigkeit der Grundwasserleiter, vorherrschende Gesteinstypen, Schutzfunktion der Deckschichten, Vorkommen von Mineral- und Heilquellen, Bergbaugebiete, Tektonik sowie Gliederung in hydrogeologische Teilräume.

Hydrogeologische Übersichtskarte HÜK200

Hydrogeologische Übersichtskarte 1 : 200.000 Das Kartenwerk Hydrogeologische Übersichtskarte (HÜK200) beschreibt die hydrogeologischen Eigenschaften der oberen, großräumig zusammenhängenden Grundwasserleiter im Maßstab 1:200.000 mit den Attributen Durchlässigkeit, Geochemischer Gesteinstyp, Gesteinsart, Hohlraumart und Verfestigung. Die Grundlage der für MV erarbeiteten Karten bildet die Hydrogeologische Übersichtskarte HK50 der DDR. Kartenportal-Thema Grundwasserressourcen (t4_huek200) im Dienst a7_hydrogeologie

Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere monatliche Grundwasserneubildung 1991 - 2020 im September, Methode mGROWA22

Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat September im 30-jährigen Zeitraum 1991-2020. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.

1 2 3 4 5104 105 106