Die Hydrogeologische Übersichtskarte von Niedersachsen 1 : 500 000 - Grundwasserbeschaffenheit: Eisengehalt zeigt die Auswertung einer repräsentativen Auswahl von Eisenkonzentrationen aus der Labordatenbank des LBEG. Die über einen Zeitraum von 1967 bis 2000 erhobenen Daten wurden zweifach gemittelt. Bei Grundwasser-Messstellen mit Mehrfachanalysen wurden Mittelwerte der jeweils vorliegenden Untersuchungsergebnisse gebildet. Zusätzlich wurden die Werte aller Probenahmestellen in einem Radius von 2000 m einer weiteren Mittelwertbildung unterzogen. Die Einteilung der Klassen erfolgt unter Berücksichtigung des Grenzwertes der Trinkwasserverordnung (TVO) von 0,2 mg/l. Erhöhte Konzentrationen, die eindeutig auf punktförmige anthropogene Einträge (z.B. Altdeponien) zurückzuführen sind, werden im Rahmen dieser Übersichtskarte nicht wiedergegeben. Die Eisengehalte sind in Tiefenstufen ohne Bezug zur lokalen hydrogeologischen Situation dargestellt. Die Stabdiagramme im rechts gezeigten Beispiel spiegeln Ergebnisse für die Tiefenstufen bis 20 Meter, über 20 bis 50 Meter, über 50 bis 100 Meter und über 100 bis 200 Meter wieder. Ein Vergleich von Werten ist daher ohne Berücksichtigung der jeweiligen hydrogeologischen Situation (z.B. hydrogeologischer Stockwerksbau) ebenso wie die Heranziehung der Daten für Detailuntersuchungen nicht zulässig. Die Konzentration von Eisen im Grundwasser wird stark durch den pH-Wert und die Redoxverhältnisse beeinflusst. Die höchsten Eisengehalte Niedersachsens werden in saurem und/oder stark reduziertem Wasser erreicht. Andererseits bewirken hohe Konzentrationen von Karbonat- und Sulfid-Ionen die Ausfällung von Siderit bzw. Eisensulfiden und damit eine Begrenzung der Löslichkeit von Eisen. Bei hohen Konzentrationen von gelöstem organischen Kohlenstoff sind zudem große Anteile des Eisens an Organokomplexe gebunden. Generell sind die Eisengehalte in den Festgesteinsaquiferen des niedersächsischen Berglandes deutlich niedriger als in quartären Lockergesteinen. In mesozoischen Kalksteinen finden sich die niedrigsten Eisenkonzentrationen von 0,01 bis maximal 0,1 mg/l. Höhere Werte werden in mesozoischem Sandstein beobachtet. In den paläozoischen Gesteinen des Harzes gibt es Werte im Bereich von 0,1 – 0,5 mg/l. Das sauerstoffhaltige Grundwasser im nördlichen Niedersachsen (z.B. Lüneburger Heide) zeigt Eisenkonzentrationen, die im Bereich von 0,1 – 1 mg/l liegen. In seltenen Fällen werden bis zu 2 mg/l erreicht. In den Niederungsgebieten im nördlichen Niedersachsen wird der Grenzwert der TVO von 0,2 mg/l häufig überschritten. Eisenkonzentrationen von 2 – 10 mg/l sind im aufsteigenden Grundwasser mit längeren Fließwegen oft zu beobachten. Ebenfalls sehr hohe Eisengehalte zwischen 10 und 40 mg/l finden sich im Grundwasser, das durch Moore beeinflusst wird (z.B. Vehnemoor südwestlich von Oldenburg und Teufelsmoor nördlich von Bremen). Dagegen sind eisenhaltige Grundwässer im Norden von Hannover (Isernhagen, Langenhagen) mit Konzentrationen bis zu 40 mg/l wahrscheinlich auf die Oxidation von Pyrit aus Unterkreide-Tonstein zurück zu führen.
Die Hydrogeologische Übersichtskarte von Niedersachsen 1 : 500 000 - Grundwasserbeschaffenheit: Chloridgehalt zeigt die Auswertung einer repräsentativen Auswahl von Chloridkonzentrationen aus der Labordatenbank des LBEG. Die über einen Zeitraum von 1967 bis 2000 erhobenen Daten wurden zweifach gemittelt. Bei Grundwasser-Messstellen mit Mehrfachanalysen wurden Mittelwerte der jeweils vorliegenden Untersuchungsergebnisse gebildet. Zusätzlich wurden die Werte aller Probenahmestellen in einem Radius von 2000 m einer weiteren Mittelwertbildung unterzogen. Die Einteilung der Klassen erfolgt unter Berücksichtigung des Geringfügigkeitsschwellenwertes (GFS) bzw. des Grenzwertes der Trinkwasserverordnung (TVO) von 250 mg/l. Erhöhte Konzentrationen, die eindeutig auf punktförmige anthropogene Einträge (z.B. Altdeponien, Bergbauhalden) zurückzuführen sind, werden im Rahmen dieser Übersichtskarte nicht wiedergegeben. Die Chloridgehalte sind in Tiefenstufen ohne Bezug zur lokalen hydrogeologischen Situation dargestellt. Die Stabdiagramme im rechts gezeigten Beispiel spiegeln Ergebnisse für die Tiefenstufen bis 20 Meter, über 20 bis 50 Meter, über 50 bis 100 Meter und über 100 bis 200 Meter wieder. Ein Vergleich von Werten ist daher ohne Berücksichtigung der jeweiligen hydrogeologischen Situation (z.B. hydrogeologischer Stockwerksbau) ebenso wie die Heranziehung der Daten für Detailuntersuchungen nicht zulässig. Die niedrigsten Chlorid-Konzentrationen Niedersachsens finden sich im Harz und im Solling mit 5 – 10 mg/l und in der Lüneburger Heide mit 10 – 30 mg/l. Gehalte über 50 mg/l lassen sich durch den Eintrag aus der Atmosphäre und die Anreicherung durch Evapotranspiration im Allgemeinen nicht erklären und sind in der Regel auf eine geogene oder anthropogene Versalzung des Grundwassers zurückzuführen. Sehr starke geogen bedingte chloridische Versalzung des Grundwassers findet sich in Niedersachsen vor allem an der Küste und im Mündungsbereich von Elbe, Weser und Ems (Küstenversalzung durch Meerwasser) mit Konzentrationen von 15.000 – 16.000 mg/l. Außerhalb der Bereiche der Meerwasserversalzung liegen die Chloridgehalte nahe der Küste zwischen 30 und 50 mg/l. Eine weitere Ursache für geogen bedingte Versalzung des Grundwassers ist die Ablaugung von Salzgesteinen im Untergrund. Ein Beispiel dafür sind erhöhte Chlorid-Konzentrationen, die häufig in Niederungsbereichen von Flüssen (z.B. Elbe bei Lauenburg und Gorleben, Jeetzel, Wümme) auftreten und die auf aufsteigende Ablaugungswässer von Salzstrukturen zurückzuführen sind. Auch bei Hannover (Ronnenberg, Sarstedt), Salzgitter, Braunschweig (Wolfenbüttel; Asse) und im Niedersächsischen Bergland sind kleinräumige Versalzungen häufig in der Nähe von Salzstöcken anzutreffen. Erhöhte Chlorid-Konzentrationen befinden sich darüber hinaus in Bereichen des niedersächsischen Berglandes, in denen Salinarfolgen (Zechstein, Oberer Buntsandstein, Mittlerer Muschelkalk, Mittlerer Keuper, Münder-Mergel des Oberen-Jura) oberflächennah vorkommen. Nördlich von Hannover führt der Einfluss von marinen Tonsteinablagerungen der Unterkreide zur Erhöhung des Chloridgehaltes auf 50 – 100 mg/l in den geringmächtigen quartären Ablagerungen.
Die Grundwasser-Messstelle mit Messstellen-ID 39441115 wird vom Landesamt für Umwelt Brandenburg betrieben, in Zuständigkeit des Standorts LfU Potsdam_S. Sie befindet sich in Grüna, ca. 3 km nordwestl. (im ehem. Truppenübungsgelände, MST eingezäunt). Die Messstation gehört zum Beschaffenheitsmessnetz. Die Messstellenart ist Beobachtungsrohr. Nummer des Bohrloches: Hy Jb 1/2006. Der Grundwasserleiter wird beschrieben als: GWLK 1 (weitgehend unbedeckt). Der Zustand des Grundwassers wird beschrieben als: frei. Der zugehörige Grundwasserkörper ist: DEGB_DEBB_HAV_NU_2. Der Messzyklus ist 4 x monatlich. Die Anlage wurde im Jahr 2006 erbaut. Ein Schichtverzeichnis liegt vor. Das Höhenprofil in diesem System ist: Messpunkthöhe: 67.07 m Geländehöhe: 66.30 m Filteroberkante: 57.8 m Filterunterkante: 55.8 m Sohle (letzte Einmessung): 54.71 m Sohle bei Ausbau: 54.8 m Die Messstelle wurde im Höhensystem NHN92 eingemessen.
Die Grundwasser-Messstelle mit Messstellen-ID 36500580 wird vom Landesamt für Umwelt Brandenburg betrieben, in Zuständigkeit des Standorts LfU Cottbus. Sie befindet sich in Fürstenwalde. Die Messstellenart ist Beobachtungsrohr. Nummer des Bohrloches: R Rauensche Ziegelei. Der Grundwasserleiter wird beschrieben als: GWLK 1 (weitgehend unbedeckt). Der Zustand des Grundwassers wird beschrieben als: keine Angabe. Der zugehörige Grundwasserkörper ist: DEGB_DEBB_HAV_US_2. Der Messzyklus ist 4 x monatlich. Die Anlage wurde im Jahr 1955 erbaut. Ein Schichtverzeichnis liegt vor. Das Höhenprofil in diesem System ist: Messpunkthöhe: 42.82 m Geländehöhe: 42.85 m Filteroberkante: 38.7 m Filterunterkante: 37.7 m Sohle (letzte Einmessung): 37.42 m Sohle bei Ausbau: 37.18 m Die Messstelle wurde im Höhensystem NN eingemessen.
Zielsetzung: Das Vorhaben hat das Ziel, ein innovatives, dezentrales IoT-System zu entwickeln, das die Bewässerung und Agrarprozesse im Weinbau sowie in anderen landwirtschaftlichen Betrieben revolutionieren soll. Mithilfe hochmoderner Sensorik und Künstlicher Intelligenz (KI) soll der Trockenstress von Pflanzen in Echtzeit überwacht werden , um datenbasierte, intelligente Bewässerungsentscheidungen zu treffen. Dadurch soll der Wasserverbrauch signifikant reduziert werden - Schätzungen zufolge um bis zu 30 %, was Millionen von Litern Wasser jährlich entspricht. Dies trägt nicht nur zur Schonung wertvoller Süßwasserressourcen bei, sondern schützt auch die Grundwasserqualität und unterstützt die nachhaltige Nutzung von Ressourcen. Der Anlass für das Projekt liegt in den zunehmenden Herausforderungen, vor denen die Landwirtschaft angesichts des Klimawandels steht. Längere Trockenperioden, steigende Temperaturen und die globale Wasserknappheit setzen traditionelle Bewässerungsmethoden unter Druck, die oft ineffizient und verschwenderisch sind. Laut dem Weltwasserbericht der Vereinten Nationen von 2021 werden etwa 69 % des weltweit verfügbaren Süßwassers in der Landwirtschaft genutzt, wobei ineffiziente Praktiken wie Großflächenberegnung erhebliche Verluste verursachen. Besonders in Weinbauregionen führt die übermäßige Nutzung von Wasser zu ökologischen und wirtschaftlichen Problemen. Das Vorhaben möchte diese Problematik adressieren, indem es innovative Technologien einsetzt, die den Wasserverbrauch optimieren und die landwirtschaftliche Produktivität erhöhen. Darüber hinaus verfolgt das Projekt einen umfassenden Ansatz: Neben der Entwicklung und Erprobung von Sensorik und Hardware wird eine KI-basierte Bewässerungssteuerung entwickelt , die in realen landwirtschaftlichen Betrieben getestet wird. Das IoT-System ermöglicht eine präzise und ressourcenschonende Bewässerung in der Landwirtschaft. Dazu werden Sensoren zur Messung von Bodenfeuchtigkeit, Temperatur, Luftfeuchtigkeit und Pflanzenzustand in einer Pilotanlage installiert. Die erfassten Daten werden über eine drahtlose Infrastruktur in eine Cloud übertragen, wo sie verarbeitet und analysiert werden. Eine KI wertet die Daten aus, erkennt Zusammenhänge zwischen den Messwerten und dem Trockenstress der Pflanzen und steuert die Bewässerung automatisch.
Teil 2: Sensitivitätsanalyse [Redaktioneller Hinweis: Die folgende Beschreibung ist eine unstrukturierte Extraktion aus dem originalem PDF] WASSERVERSORGUNGSPLAN RHEINLAND-PFALZ 2022 Teil 2 Sensitivitätsanalyse Diese Veröffentlichung wird im Rahmen der Öffentlichkeitsarbeit der Landesregierung Rheinland- Pfalz herausgegeben. Sie darf weder von Parteien, noch Wahlbewerbern oder Wahlhelfern im Zeit- raum von sechs Monaten vor einer Wahl zum Zwecke der Wahlwerbung verwendet werden. Dies gilt für Landtags-, Bundestags-, Kommunal- und Europawahlen. Missbräuchlich ist während dieser Zeit insbesondere die Verteilung auf Wahlveranstaltungen, an Informationsständen der Parteien sowie das Einlegen, Aufdrucken und Aufkleben parteipolitischer Informationen der Werbemittel. Untersagt ist gleichfalls die Weitergabe an Dritte zum Zwecke der Wahlwerbung. Auch ohne zeitlichen Bezug zu einer bevorstehenden Wahl darf die Druckschrift nicht in einer Weise verwendet werden, die als Par- teinahme der Landesregierung zugunsten einzelner politischer Gruppen verstanden werden könnte. Impressum Herausgeber: Ministerium für Klimaschutz, Umwelt, Energie und Mobilität (MKUEM) Kaiser-Friedrich-Straße 1, 55116 Mainz www.mkuem.rlp.de Twitter: http://twitter.com/Umwelt.RLP Facebook: http://Facebook.com/UmweltRLP Bearbeitung: Christof Baumeister (LfU) Jochen Kampf (LfU) Martin Schykowski (LfU) Marie Kirsch (MKUEM) Karten: Copyright LfU auf Basis GeoBasis-DE / LVermGeoRP 2022 Layout:Tatjana Schollmayer (Landesamt für Umwelt Rheinland-Pfalz) Titelfoto:Neubornquelle Wörrstadt (Rheinhessen) © Tatjana Schollmayer Stand: Januar 2025 © 2025 Nachdruck und Wiedergabe nur mit Genehmigung des Herausgebers INHALT 1EINLEITUNG UND ZIELSETZUNG4 2ZUSAMMENFASSUNG DER UNTERSUCHTEN SZENARIEN6 3SONDERFORMEN DER ÖFFENTLICHEN WASSERVERSORGUNG8 4ERGEBNISSE DER UNTERSUCHTEN SZENARIEN10 4.1Ist-Zustand 2018 (Szenario 0 – Karte 1)10 4.2Anstieg des Pro-Kopf-Verbrauchs (Szenario 1 – Karte 2)12 4.3Anstieg des Wasserbedarfs durch Bevölkerungsentwicklung (Szenario 2 – Karte 3)14 4.4Reduzierung des Grundwasserdargebots (Szenario 3 – Karte 4)16 4.5Worst Case-Szenario (Szenario 4 – Karte 5)19 5TABELLARISCHE DARSTELLUNG DER DARGEBOTSRESERVEN21 6FAZIT UND HANDLUNGSBEDARF29 Wasserversorgungsplan Rheinland-Pfalz 2022 – Sensitivitätsanalyse 3 1 EINLEITUNG UND ZIELSETZUNG In den letzten Jahren wurde die öffentliche Was- serversorgung in Rheinland-Pfalz zunehmend vor Herausforderungen gestellt. Insbesondere heiße, trockene Sommer wie in den Jahren 2018, 2020 und 2022 mit überdurchschnittlichen Entnahmespitzen aber auch die Auswirkungen struktureller Änderungen in der Bevölkerung auf den Gesamtverbrauch sind auf Dauer regional bzw. lokal nicht ohne Weiteres zu handhaben. Die Struktur der Wasserversorgung wird in Rheinland-Pfalz über den Wasserversorgungs- plan beschrieben und dargestellt. Der Plan ist in § 53 Landeswassergesetz verankert und verfolgt die beiden folgenden wesentlichen Ziele: ■■ Die Darstellung der Versorgungsgebiete mit ihrer wesentlichen Versorgungsstruktur und ihrem nutzbaren Grundwasserdargebot. ■■ Das Aufweisen von Möglichkeiten und Maß- nahmen zur Sicherstellung der öffentlichen Wasserversorgung. Insbesondere auch sol- chen, die dem Zweck dienen, einen Ausgleich zwischen Wasserüberschuss- und Wasser- mangelgebieten herbeizuführen. Der Wasserversorgungsplan ist daher eine orientierende Einschätzung der Versorgungs situation auf regionaler Ebene. Auf lokaler Ebene kann er im Bedarfsfall keine detaillier ten Untersuchungen der Dargebotsreserven und des damit verbundenen individuellen Handlungsbedarfs ersetzen. 4 Zur Beschreibung der Versorgungsinfrastruktur wurde für den im Jahr 2022 veröffentlichten Wasserversorgungsplan Teil 1 eine systematische Bestandsaufnahme der rheinland-pfälzischen Wasserversorgung durchgeführt. Der Plan beschreibt hierfür einige für die Was- serversorgung relevante Hintergründe, wie die Hydrologie im Land, Grundsätze bezüglich der Grundwasserqualität sowie klimatische Faktoren. Im Fokus stehen jedoch die von den Wasser- versorgungsbetreibern bereitgestellten Daten zu Bedarf, Deckung und Dargebotsreserven für das Jahr 2018. Das Basisjahr 2018 wurde gewählt, weil es mit seiner reduzierten Grundwasserneu- bildung und seiner sommerlichen Trockenheit, die zukünftig zu erwartenden Verhältnisse bei fortschreitendem Klimawandel gut repräsentiert. Basierend auf den Daten der Bestandaufnahme wurde für den hier vorliegenden Teil 2 des Was- serversorgungsplans eine Sensitivitätsanalyse in Form mehrerer fiktiver Szenarien durchgeführt. Da in Rheinland-Pfalz der allergrößte Teil (97 %) des Trinkwassers aus Grundwasser gewonnen wird, ist für die zukünftige Sicherstellung der Trinkwasserversorgung im Land insbesondere das Dargebot an Grundwasser entscheidend. Dieses wird durch die mittlere jährliche Grund- wasserneubildungsrate beschrieben. Wasserversorgungsplan Rheinland-Pfalz 2022 – Sensitivitätsanalyse Die lokale Bestimmung der Grundwasserneubil- dung in den Gewinnungsgebieten der 189 Was- serversorgungsbetreiber im Land wäre mit einem sehr großen Aufwand verbunden gewesen, da sie eine genaue standortspezifische Erhebung und Auswertung hydrogeologischer Parameter und Prozesse erfordert. Daher wurden in der Regel näherungsweise die erteilten Entnahmegeneh- migungen der Wasserversorger als Grundlage für die Bestimmung verwendet. Dem verfügbaren Dargebot steht als zweiter entscheidender Faktor der Wasserbedarf für die öffentliche Wasserversorgung gegenüber. Dieser hängt in hohem Maß vom Pro-Kopf-Verbrauch und von der Bevölkerungszahl ab. Um die Sensitivität der rheinland-pfälzischen Trinkwasserversorgung zu untersuchen, wurden vier verschiedene, fiktive Szenarien gewählt, die zukünftig mögliche Entwicklungen bei Wasser- bedarf und Wasserdargebot simulieren. Die Ergebnisse sind in einer Tabelle mit den Dar- gebotsreserven der Wasserversorgungsbetreiber sowie in fünf Karten, die die Versorgungssicher heit der Versorgungsgebiete unter den v. g. Be- dingungen zeigen, dargestellt. Wasserversorgungsplan Rheinland-Pfalz 2022 – Sensitivitätsanalyse 5
Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) sowie der Grundwasserverordnung (GrwV) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte für gelöstes Lithium im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Lithium umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters einstellen. Die Karte zeigt farblich differenziert die Lithium-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Die Klassifizierung orientiert sich an den gültigen Geringfügigkeitsschwellenwerten (GFS) der Länderarbeitsgemeinschaft Wasser (LAWA), den Grenzwerten der Trinkwasserverordnung (TrinkwV) und den Richtwerten der Weltgesundheitsorganisation (WHO). Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016 WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.
Roh- und Grundwassermessstellen in Hessen aus dem Fachinformationssystem Grundwasserdatenbank Hessen (Gruwah) 1) Messstellen nach der Rohwasseruntersuchungsverordnung (RUV) und 2) Messstellen des Landesgrundwasserdienstes (LGD)
<p>Das Trinkwasser in Deutschland hat eine hervorragende Qualität. Seine Hauptquelle, das Grundwasser, genießt einen hohen Schutz und sollte möglichst frei von Chemikalienrückständen sein. Der geltende Rechtsrahmen der Pflanzenschutzmittelzulassung gefährdet die Grund- und Trinkwasserqualität aber langfristig, da Stoffeinträge ins Grundwasser derzeit nur bedingt eingeschränkt werden können.</p><p><p><strong>Update vom 30.04.2025</strong>: Die im Artikel beispielhaft genannten Wirkstoffe S-Metolachlor und Flufenacet wurden auf der EU-Ebene nicht wiedergenehmigt. Die Zulassungen für S-Metolachlor-haltige Mittel in Deutschland hat das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (<a href="https://www.bvl.bund.de/SharedDocs/Fachmeldungen/04_pflanzenschutzmittel/2024/2024_01_22_Fa_Widerruf_S-Metolachlor.html">BVL</a>) zum 23. April 2024 widerrufen. Auch die Zulassungen für Flufenacet-haltige Produkte in Deutschland werden voraussichtlich in 2026 auslaufen. Über die genauen Abverkauf- und Aufbrauchfristen wird das BVL demnächst informieren.</p></p><p><strong>Update vom 30.04.2025</strong>: Die im Artikel beispielhaft genannten Wirkstoffe S-Metolachlor und Flufenacet wurden auf der EU-Ebene nicht wiedergenehmigt. Die Zulassungen für S-Metolachlor-haltige Mittel in Deutschland hat das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (<a href="https://www.bvl.bund.de/SharedDocs/Fachmeldungen/04_pflanzenschutzmittel/2024/2024_01_22_Fa_Widerruf_S-Metolachlor.html">BVL</a>) zum 23. April 2024 widerrufen. Auch die Zulassungen für Flufenacet-haltige Produkte in Deutschland werden voraussichtlich in 2026 auslaufen. Über die genauen Abverkauf- und Aufbrauchfristen wird das BVL demnächst informieren.</p><p>Die meisten <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pflanzenschutzmittel#alphabar">Pflanzenschutzmittel</a> werden direkt in die Umwelt ausgebracht. Ein Teil von ihnen gelangt in den Boden und wird dort zersetzt. Dadurch entstehen neue Stoffe, die teils weniger wirksam und giftig sind als der eigentliche Wirkstoff, aber mit erheblichen Problemen für Umwelt und Trinkwassergewinnung einhergehen: Viele dieser Abbauprodukte sind sehr mobil und versickern leicht in das Grundwasser. In den deutschen Grundwasserkörpern findet sich schon ein Sammelsurium solcher Substanzen – deutlich mehr und in höheren Konzentrationen als ihre Ausgangsstoffe. Weil viele dieser Stoffe schwer zu entfernen sind, finden sie sich in unserem Trinkwasser wieder. Denn Grundwasser ist die wichtigste Trinkwasserquelle in Deutschland (<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/umid_01-2022-pflanzenschutzmittel.pdf">UMID-Artike</a>l).</p><p><strong>Einträge von einigen Abbauprodukten ins Grundwasser dürfen nicht mehr reguliert werden</strong></p><p>Die Einträge dieser Abbauprodukte werden über die Pflanzenschutzmittelzulassung begrenzt: Wenn Einträge in das Grundwasser oberhalb von 10 Mikrogramm je Liter (µg/L) erwartet werden, wurde das Mittel in Deutschland bisher nicht zugelassen. In zwei Fällen wurde nun gerichtlich festgestellt, dass die Zulassung nach geltender Rechtslage trotzdem erteilt werden muss. Damit droht aber eine Herabsetzung des Schutzniveaus für unser Grund- und Trinkwasser – wenn der Gesetzgeber nicht gegensteuert.</p><p>Das Maisherbizid S-Metolachlor zerfällt im Boden in verschiedene Abbauprodukte, einige davon versickern in Konzentrationen weit über 10 µg/L in das Grundwasser. Dass sich das <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> gegen die Zulassung eines Produkts mit S-Metolachlor in Deutschland ausgesprochen hat, wurde vom Gericht als rechtswidrig befunden. Begründet wurde dies mit dem arbeitsteiligen Zulassungsverfahren zwischen den EU-Staaten: Demnach ist zunächst ein Staat - den die Pflanzenschutzmittelhersteller selbst auswählen - federführend für die Bewertung des Produktes verantwortlich. Schätzt er die Risiken der Anwendung des Mittels als ausreichend gering ein, kann es danach in anderen Staaten ohne gesonderte Prüfung zugelassen werden (siehe Infokasten). Doch wirken sich S-Metolachlor-Anwendungen gerade in Deutschland problematisch aus, weil hier die Niederschläge relativ hoch sind und der Boden stellenweise sehr durchlässig. Einige Abbauprodukte werden bereits häufig im Grundwasser gefunden, teils oberhalb des Gesundheitlichen Orientierungswertes (GOW) von 3 µg/L. Der GOW ist eine fachliche Empfehlung des Umweltbundesamtes (<a href="https://www.umweltbundesamt.de/themen/wasser/trinkwasser/trinkwasserqualitaet/toxikologie-des-trinkwassers/gesundheitlicher-orientierungswert-gow">mehr über GOW</a>), den die meisten Gesundheitsämter als verbindliche Grenze festsetzen: Wird der GOW überschritten, kann der Wasserversorger zu kostenintensiver Aufbereitung gezwungen sein. Wegen der Belastungen mit Abbauprodukten von S-Metolachlor ordneten einige Bundesländer einzelne Grundwasserkörper in den „chemisch schlechten Zustand“ ein – ein EU-Kriterium zur Bewertung der Grundwasserqualität.</p><p>Der Unkrautvernichter Flufenacet baut im Boden zu Trifluoracetat (TFA) ab, das ebenfalls in großen Mengen in das Grundwasser einsickert und sich dort nicht weiter abbauen kann (<a href="https://www.umweltbundesamt.de/publikationen/chemikalieneintrag-in-gewaesser-vermindern">TFA Hintergrundpapier</a>). Verbindliche Auflagen, die die Anwendungsmengen und -zeitpunkte des Stoffes einschränken, können die Einträge auf unter 10 µg/L begrenzen. Doch seien diese Auflagen laut Gericht nicht mit dem EU-Zulassungsverfahren vereinbar – weil der federführend bewertende EU-Staat ältere Daten verwendete und das Abbauprodukt TFA gar nicht berücksichtigt hatte (siehe Infokasten). Das UBA hatte die hohen erwarteten Grundwassereinträge, nachgewiesenen Gewässerbelastungen und bereits bestehende Konflikte mit der Trinkwassergewinnung in seine Entscheidung über die Zulassungsfähigkeit einbezogen. Doch analog zu S-Metolachlor fokussierte sich das Gericht auf die EU-weite Arbeitsteilung, die den Handlungsspielraum der einzelnen EU-Staaten stark einschränkt – und bewertete die Auflagen als rechtswidrig (<a href="https://www.umweltbundesamt.de/themen/pestizidzulassungen-hebeln-umweltschutz-aus">siehe UBA-Artikel „Pestizidzulassungen hebeln Umweltschutz aus“</a>). Was das Gericht für ein einzelnes Produkt entschieden hatte, wurde danach auf alle anderen elf Flufenacet-haltigen Pflanzenschutzmittel übertragen. TFA-Einträge aus Flufenacet in das Grundwasser – für die meisten Anwendungen deutlich über 10 µg/L – werden damit nicht mehr eingeschränkt. Bereits jetzt wird TFA an 81 % aller Grundwassermessstellen nachgewiesen, mit lokalen Gehalten über 10 µg/L. Die Konzentrationen dürften in Zukunft steigen – nicht nur weil TFA sich im Grundwasser nicht abbaut, sondern auch weil in jedem Jahr mehr Flufenacet angewendet wird (<a href="https://www.bvl.bund.de/DE/Arbeitsbereiche/04_Pflanzenschutzmittel/01_Aufgaben/02_ZulassungPSM/03_PSMInlandsabsatzAusfuhr/psm_PSMInlandsabsatzAusfuhr_node.html%20">Referenz BVL-Absatzzahlen</a>). </p><p><strong>Weniger toxisch heißt nicht unproblematisch</strong></p><p>Wenn die Abbauprodukte deutlich weniger wirksam und toxisch sind – wo ist dann das Problem? Deutlich weniger bedeutet nicht, dass Risiken gänzlich ausgeschlossen werden können, zumal die Einträge in das Grundwasser teils ungleich höher sind als die von Wirkstoffen. Da Abbauprodukte seit jeher in der Bewertung recht stiefmütterlich behandelt werden, wissen wir zu wenig über sie. Für sie müssen deutlich weniger Studien – etwa zu Verhalten in der Umwelt, Effekte auf Ökosysteme und gesundheitliche Auswirkungen – vorgelegt werden als für Wirkstoffe. Nicht selten werden sie als unbedenklich klassifiziert, und ein paar Jahre später wird doch eine Wirkung auf Menschen und Tiere entdeckt. Erst kürzlich wurde etwa bekannt, dass ein weiteres Abbauprodukt des genannten S-Metolachlor noch eine hohe Restwirksamkeit besitzt. Für ihn gilt nun ein strengerer Grenzwert, der bereits häufig im Grund- und Trinkwasser überschritten wird.</p><p>Wirkstoffe werden so entwickelt, dass sie im Boden schnell zu gesundheitlich unbedenklichen Stoffen abbauen – grundsätzlich eine gute Idee. Daraus folgt jedoch oft, dass sich solche Stoffe selbst sehr schlecht weiter zersetzen und zudem als kleinere Moleküle sehr mobil sind. Einige tendieren dazu, sich im Grundwasser anzureichern. Was wäre, wenn für einzelne Substanzen – oder für deren Mischung im Grundwasser – doch gesundheitliche Risiken ausgemacht werden? Die meisten dieser Stoffe können mit den gängigen Methoden der Trinkwasseraufbereitung nicht entfernt werden. Da bliebe nur die teure Aufbereitung bei den Wasserversorgern. Im Falle von TFA müsste hierzu eine Umkehrosmoseanlage installiert werden, die allerdings auch essenzielle Mikronährstoffe entfernt. Aber auch wenn die Stoffe als gesundheitlich unkritisch gelten: Rückstände von Chemikalien sollten in engen Grenzen gehalten werden, um die Trinkwasserqualität langfristig hoch zu halten. So fordert es das Minimierungsgebot als Grundsatz des Trinkwasserrechts (Trinkwasserverordnung, § 6, Abs. 3). Verschiedene Wasserversorger und Wasserverbände schlagen bereits Alarm und fordern die Politik auf, Anwendungen von Pflanzenschutzmitteln in Trinkwassergewinnungsgebieten einzuschränken (<a href="https://www.sueddeutsche.de/politik/trinkwasser-eu-agrarpolitik-wasserversorger-1.5336848">Online-Artikel 2021</a>). </p><p><strong>Das Problem dürfte sich verschärfen</strong></p><p>Wasser wird auch in Deutschland immer kostbarer: Schon jetzt leiden einige Gemeinden unter Wasserknappheit im Sommer, was sich mit den erwarteten Auswirkungen der Klimakrise noch verschärfen dürfte. Statt immer höhere Konzentrationen im Grund- und Trinkwasser – und die damit einhergehenden Risiken – zu dulden oder teure Methoden zu ihrer Entfernung zu errichten, sollten die Einträge so gering wie möglich gehalten werden. Hier muss auch die Pflanzenschutzmittelzulassung ihren Beitrag leisten. Doch haben die Fälle S-Metolachlor und Flufenacet gezeigt, dass auf Basis des geltenden Rechts das Schutzniveau des Grund- und Trinkwassers zu niedrig ist. Zu befürchten ist, dass weitere Stoffe folgen. Ausgehend von den in Deutschland zugelassenen Pflanzenschutzmitteln gibt es ungefähr 300 Abbauprodukte, die in signifikanten Mengen in das Grundwasser eingetragen werden können. An 58 % der Grundwassermessstellen in Deutschland wurden solche Stoffe nachgewiesen. Das ist erst die Spitze des Eisbergs, denn die meisten Abbauprodukte sind bisher noch nicht Teil der Messprogramme (<a href="https://www.umweltbundesamt.de/sites/default/files/medien/362/dokumente/uba_factsheet_nrm.pdf">Factsheet nrM</a>).</p><p>Die Abbauprodukte werden vor allem deshalb vernachlässigt, weil gesetzlich verbindliche Grenzwerte fehlen. Diese Inkonsistenz liefert eine Angriffsfläche für Klagen von Unternehmen. Das Umweltbundesamt rät dringend dazu, die betroffenen und veralteten Regelwerke auf nationaler und europäischer Ebene zu modernisieren – mit dem Ziel, eine konsistente und verbindliche rechtliche Regelung zu schaffen. Der wirksamste Hebel ist die Regulierung an der Eintragsquelle, bei der Zulassung von Pflanzenschutzmitteln. Ein verbindlicher Grenzwert für alle Abbauprodukte in der Pflanzenschutzmittelverordnung (VO (EG) 1107/2009) könnte die Einträge EU-weit einheitlich managen. Dieser Grenzwert sollte nicht nur toxikologische Wirkungen, sondern auch umweltkritische Eigenschaften wie <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Persistenz#alphabar">Persistenz</a>, Mobilität und Risiken für die Trinkwassergewinnung einbeziehen. Um das Ausmaß der Belastung realistisch einzuschätzen, müssten deutlich mehr Abbauprodukte in den Grundwasserleitern untersucht werden. In der <a href="https://www.umweltbundesamt.de/www.umweltbundesamt.de/empfehlungsliste%20">Empfehlungsliste</a> macht das Umweltbundesamt hierfür konkrete Vorschläge.</p><p>Laut EU-Kommission soll der Pestizideinsatz in Europa insgesamt deutlich reduziert werden. Kürzlich hatte sie einen Vorschlag für eine neue EU-Verordnung veröffentlicht, die die Verringerung des Pestizideinsatzes um die Hälfte bis 2030 vorschreibt. Die derzeitige Zulassung von Pflanzenschutzmitteln wirkt diesen Zielen offensichtlich entgegen. Daher sollte die EU-weite Arbeitsteilung bei der Zulassung neu geregelt werden, um den Umweltschutz europaweit zu stärken. Mehr zu der neuen EU-Verordnung <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/neue-eu-verordnung-weniger-pestizide-geht-nur">hier</a>. </p><p><p><br><strong>Genehmigung und Zulassung von Pflanzenschutzmitteln</strong></p><p>Damit Pflanzenschutzmittel verkauft und verwendet werden dürfen, müssen sie ein zweistufiges Prüfverfahren bestehen. Zunächst wird der Wirkstoff gründlich untersucht – auf Wirksamkeit, Umweltverhalten, ökologische und gesundheitliche Risiken – und kann schließlich für 7-15 Jahre auf EU-Ebene genehmigt werden.</p><p>Eine Genehmigung ist notwendig, damit der Wirkstoff in Produkten eingesetzt werden kann, die die Landwirte und Landwirtinnen dann auf die Felder ausbringen. Die Produkte - meist bestehend aus mehreren Wirkstoffen und Beistoffen - durchlaufen selbst einen Zulassungsprozess, in dem die Zusammensetzung, die Anwendungsmenge und -art bewertet werden. Die Zulassung vergibt formal jeder EU-Staat für sich, doch wird eine umfassende Bewertung einzig von einem Staat durchgeführt, der sich die anderen Länder – mit ganz wenigen Ausnahmen – anschließen müssen. Ziele dieser Regelung sind eine effiziente Arbeitsteilung sowie eine harmonisierte Produktzulassung in der EU zur Sicherung des freien Warenverkehrs. Doch können sich die Herstellerfirmen den bewertenden Staat selbst aussuchen und so die unterschiedlichen Rahmenbedingungen in den Prüfbehörden der einzelnen Länder sowie Lücken in der harmonisierten Bewertungsmethodik für sich nutzen. Dadurch sinkt der Umweltschutzstandard in der gesamten EU - <a href="https://www.umweltbundesamt.de/themen/pestizidzulassungen-hebeln-umweltschutz-aus%20">mehr im UBA-Artikel „Pestizidzulassungen hebeln Umweltschutz aus“</a>.</p><p>Die Produktbewertung basiert wiederum zu einem großen Teil auf den Ergebnissen der EU-Wirkstoffgenehmigung. Da diese theoretisch alle 7-15 Jahre erneuert wird, ist auch die Datenbasis für die Zulassung entsprechend aktuell. Doch bemerken wir in der Praxis eine Verschleppung der Wiedergenehmigungen bei vielen Wirkstoffen. Der Wirkstoff Flufenacet etwa wurde in 2004 zuletzt genehmigt. Diese Überprüfung wurde immer wieder verschoben und bis heute nicht beendet, wir erwarten einen offiziellen Abschluss frühestens in 2023. Für ein Produkt hatte das Gericht untersagt, neuere Daten als die von 2004 zu verwenden, obwohl sie verschiedene Risiken für die Umwelt gezeigt hatten. Produktzulassungen mit Flufenacet sind also weit entfernt vom „aktuellen Stand von Wissenschaft und Technik“, den die Pflanzenschutzmittelverordnung der EU eigentlich fordert (Verordnung (EG) 1107/2009, Art. 29 (1)e).</p></p><p><br><strong>Genehmigung und Zulassung von Pflanzenschutzmitteln</strong></p><p>Damit Pflanzenschutzmittel verkauft und verwendet werden dürfen, müssen sie ein zweistufiges Prüfverfahren bestehen. Zunächst wird der Wirkstoff gründlich untersucht – auf Wirksamkeit, Umweltverhalten, ökologische und gesundheitliche Risiken – und kann schließlich für 7-15 Jahre auf EU-Ebene genehmigt werden.</p><p>Eine Genehmigung ist notwendig, damit der Wirkstoff in Produkten eingesetzt werden kann, die die Landwirte und Landwirtinnen dann auf die Felder ausbringen. Die Produkte - meist bestehend aus mehreren Wirkstoffen und Beistoffen - durchlaufen selbst einen Zulassungsprozess, in dem die Zusammensetzung, die Anwendungsmenge und -art bewertet werden. Die Zulassung vergibt formal jeder EU-Staat für sich, doch wird eine umfassende Bewertung einzig von einem Staat durchgeführt, der sich die anderen Länder – mit ganz wenigen Ausnahmen – anschließen müssen. Ziele dieser Regelung sind eine effiziente Arbeitsteilung sowie eine harmonisierte Produktzulassung in der EU zur Sicherung des freien Warenverkehrs. Doch können sich die Herstellerfirmen den bewertenden Staat selbst aussuchen und so die unterschiedlichen Rahmenbedingungen in den Prüfbehörden der einzelnen Länder sowie Lücken in der harmonisierten Bewertungsmethodik für sich nutzen. Dadurch sinkt der Umweltschutzstandard in der gesamten EU - <a href="https://www.umweltbundesamt.de/themen/pestizidzulassungen-hebeln-umweltschutz-aus%20">mehr im UBA-Artikel „Pestizidzulassungen hebeln Umweltschutz aus“</a>.</p><p>Die Produktbewertung basiert wiederum zu einem großen Teil auf den Ergebnissen der EU-Wirkstoffgenehmigung. Da diese theoretisch alle 7-15 Jahre erneuert wird, ist auch die Datenbasis für die Zulassung entsprechend aktuell. Doch bemerken wir in der Praxis eine Verschleppung der Wiedergenehmigungen bei vielen Wirkstoffen. Der Wirkstoff Flufenacet etwa wurde in 2004 zuletzt genehmigt. Diese Überprüfung wurde immer wieder verschoben und bis heute nicht beendet, wir erwarten einen offiziellen Abschluss frühestens in 2023. Für ein Produkt hatte das Gericht untersagt, neuere Daten als die von 2004 zu verwenden, obwohl sie verschiedene Risiken für die Umwelt gezeigt hatten. Produktzulassungen mit Flufenacet sind also weit entfernt vom „aktuellen Stand von Wissenschaft und Technik“, den die Pflanzenschutzmittelverordnung der EU eigentlich fordert (Verordnung (EG) 1107/2009, Art. 29 (1)e).</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p>
Landesmeßnetz zur Überwachung der Grundwasserbeschaffenheit im Hauptgrundwasserleiter gemäß der Kriterien der Wasserrahmenrichtlinie (WRRL).
| Origin | Count |
|---|---|
| Bund | 681 |
| Kommune | 2 |
| Land | 2799 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2217 |
| Ereignis | 5 |
| Förderprogramm | 499 |
| Gesetzestext | 1 |
| Kartendienst | 9 |
| Software | 1 |
| Text | 429 |
| Umweltprüfung | 14 |
| unbekannt | 215 |
| License | Count |
|---|---|
| geschlossen | 434 |
| offen | 2906 |
| unbekannt | 49 |
| Language | Count |
|---|---|
| Deutsch | 3333 |
| Englisch | 123 |
| Resource type | Count |
|---|---|
| Archiv | 13 |
| Bild | 54 |
| Datei | 191 |
| Dokument | 471 |
| Keine | 521 |
| Multimedia | 1 |
| Unbekannt | 16 |
| Webdienst | 90 |
| Webseite | 2743 |
| Topic | Count |
|---|---|
| Boden | 999 |
| Lebewesen und Lebensräume | 1182 |
| Luft | 679 |
| Mensch und Umwelt | 1628 |
| Wasser | 3389 |
| Weitere | 3380 |