Im Fokus des Projektes steht der Einfluss des organischen Stoffkreislaufs auf den biogeochemischen Kreislauf der (Ultra-)Spurenmetalle Thallium (Tl) und die Gruppe der Seltenen Erden Elemente (SEE) im Küstenbereich. Bisher wird davon ausgegangen, dass diese Metalle nicht von bio-assoziierten Prozessen beeinflusst werden. Aktuelle Studien weisen jedoch darauf hin, dass diese Metalle in hochproduktiven Küstengebieten in Verbindung mit organischen Stoffkreisläufen stehen und im organischen Stoffpool akkumuliert werden. Ein Umstand, welcher ihr Potenzial zur Schädigung von Küstenökosystemen deutlich macht. Bislang ist jedoch wenig darüber bekannt, wie diese Metalle mit welcher Fraktion des organischen Stoffpools in Verbindung stehen und welchen Einfluss organische Stoffkreisläufe auf deren biogeochemische Kreisläufe haben, und umgekehrt. Außerdem ist bislang nicht geklärt, welche Prozesse für die beobachteten räumlichen und zeitlichen Änderungen in den Konzentrationsmustern von Tl und SEE, insbesondere in den Küstengebieten, verantwortlich sind. In Anbetracht der Toxizität dieser Metalle, der anthropogenen Veränderung ihres Vorkommens im Küstenbereich, sowie ihrer Verwendung als Tracer für ozeanische Prozesse, sind Kenntnisse über ihre biogeochemischen Kreisläufe unerlässlich. Zentrale Aspekte, die im Rahmen dieses Projekts untersucht werden sollen, sind: (1) Das Verhalten und der Verbleib von natürlich und anthropogen eingetragenem Tl und SEE in den verschiedenen Kompartimenten des Küstenozeans, und (2) Der Einfluss von organischen Stoffkreisläufen, in Bezug auf die lebende und nicht lebende Fraktion des Stoffpools, auf die Konzentrationsmuster von Tl und SEE und umgekehrt.Diese Aspekte werden mittels eines höchst interdisziplinären Multiparameter-Ansatzes untersucht, in welchem labor- und feldbasierte Ansätze von unterschiedlicher ökologischer Komplexität und zeitlicher Auflösung kombiniert werden. Auf Basis eines Mikrokosmen-Ansatzes, in welchem eine für die Nordsee typische Phytoplanktongemeinschaft und repräsentative Einzelarten unter umgebungs- und erhöhten Tl- und SEE-Bedingungen inkubiert werden, werden die artspezifischen Auswirkungen auf das Verhalten von Tl und SEE und umgekehrt die Reaktion des Phytoplanktons auf anthropogenen Stress ermittelt. Der Einfluss einer Phytoplanktonblüte und den damit verbundenen biogeochemischen Prozessen auf die Metallkonzentrationen im intertidalen Küstenbereich sowie potenzielle Schlüsselfaktoren, werden im Rahmen eines Mesokosmen-Ansatzes untersucht. Die saisonale und interannuelle Variabilität der Tl- und SEE-Dynamik im Küstenbereich sowie die verantwortlichen Hauptfaktoren, werden anhand von Multiparameter-Zeitseriendaten, welche im Küstenbereich der deutschen Nordsee erhoben werden, untersucht. Anhand der Ergebnisse werden außerdem die Erkenntnisse aus den Mikro- und Mesokosmenkonzepten validiert und deren Übertragbarkeit auf ein natürliches System bewertet.
Niedertemperatursynthesen anorganischer Materialien in ionischen Flüssigkeiten (ILs) führten in den letzten Jahren zu bemerkenswerten Ergebnissen. So konnten z. B. ein neues Germanium-Allotrop, ein supraleitendes Material auf der Basis von aromatischen Tellurringen sowie auch große Cluster und Heteropolykationen in ionischen Flüssigkeiten synthetisiert werden. Ein Projektziel ist die Suche nach neuen metastabilen bzw. Niedertemperaturverbindungen auf der Basis von Elementen der Gruppen 13 bis 16, von denen wir außergewöhnliche chemische und physikalische Eigenschaften erwarten. Um dieses zu erreichen, sollen komplex aufgebaute, heteropolare Vorläuferverbindungen unter milden Bedingungen in ionischen Flüssigkeiten so umgesetzt werden, dass Baugruppen als Ganzes herausgelöst werden, die dann in Lösung modifiziert und in neuen Verbindungen rekristallisiert werden können. Auf diese Weise können die typischen thermodynamischen und kinetischen Einschränkungen der Festkörperchemie überwunden werden. Alle Produkte sollen mit modernen Methoden vollständig charakterisiert werden. Da wenig über die Grundlagen dieser Chemie in ionischen Flüssigkeiten bekannt ist, werden wir auch verschiedene Parameter untersuchen, die Einfluss auf die Löslichkeit, Reaktivität und das Kristallisationsverhalten ausüben. Neben Temperatur, Konzentration und der Lewis-Säurestärke soll insbesondere der Einfluss der ionischen Flüssigkeit untersucht werden, indem gezielt synthetisierte ILs eingesetzt werden. Diese sollen es ermöglichen, die Synthesevorschriften zu optimieren und die Luft- und Feuchtigkeitsempfindlichkeit des Reaktionsmediums zu reduzieren. Mittels zeitaufgelöster NMR-Spektroskopie wird der Reaktionsfortschritt in der IL (Lösungs-NMR) ebenso wie der Beginn der Strukturbildung (Festkörper-NMR) verfolgt werden.
Dieses Projekt beschäftigt sich mit dem Einsatz von Ionischen Flüssigkeiten, die reaktive Anionen bzw. Kation enthalten, um neue Pseudohalogenborate, -silikate und -phosphate zu synthetisieren. Als reaktive Anion werden entweder zersetzbare Ionen wie Carbonate ((CO2(OMe))-), Borates ((B(OMe)3A)-, (B(OMe)4)-; mit A = Pseudohalogen, z. B. CN, SCN, N3), Silikate ((Si(OMe)4A)-) und Phosphate ((OP(OMe)3A)-) oder die stark-nucleophilen (Pseudo)halogenide, welche auch ILs mit entsprechenden organischen Kationen bilden, eingesetzt. Das Ziel dieses Projektes ist es, neue (oft hoch labile) Pseudohalogen-Spezies wie z. B. (CO2A)-, (A...H...A)-, (B(OMe)3A)-, (B(OMe)2E1A)- (E1 = Halogen), (B(OMe)E2A)- (E2 = Chalkogen), (A-B-E3)- (E3 = Pnictogen) und Salze mit (SiF6-n(CN)n)2- und (PF6-n(CN)n)- mittels funktionalisierter ILs zu quenchen bzw. zu stabilisieren. Reaktive Kationen bzw. Anionen in den ILs bedeutet, dass die ILs sowohl Reaktionsmedium als auch Reaktant sind. Das Projekt lässt sich in fünf Teile gliedern, die miteinander verknüpft sind: (i) Synthese reiner Pseudohalogenid ILs ausgehend von ILs mit zersetzbaren Anionen. Die Darstellung der reinen Pseudohalogenid ILs, (Cat)+A- (A = e.g. CN, SCN, N3) ist bereits gut ausgearbeitet. Darüber hinaus soll besonderes Augenmerk auf die Isolierung bzw. Beobachtung der intermediären (CO2A)- Ionen gelegt werden.(ii) Reaktionen der reinen Pseudohalogenid ILs mit Nichtmetallen (z. B. P4, S8) und deren Oxide und Sulfide. Hier sollen Löslichkeiten der Ionen als auch die Bindungsaktivierungen durch die in den ILs vorhandenen nackten, hoch-nukleophilen Pseudohalogenidionen im Fokus stehen. (iii) Reaktionen der reinen Pseudohalogenid ILs mit reinen Pseudohalogensäuren (HA). Da diese ILs nackte Pseudohalogenidionen enthalten, sollte die Bildung von (A...H...A)- Ionen bei Zugabe reiner HA Säure beobachtet werden. Die Isolation von Salzen mit den (A...H...A)- Ionen wird angestrebt.(iv) Synthese von Pseudohalogenborat, -silikat und -phosphat-Spezies in Pseudohalogenid ILs und deren Reaktion mit persilylaten Verbindungen der Gruppen 15-17.(v) Synthese von Koordinationspolymeren unter Verwendung von Cyanido(fluorido)-phosphaten, -arsenaten und -silikaten durch Verwendung von ILs, die ein zersetzbares Kation enthalten wie z. B. (nPr3NH)+.
In diesem Projekt werden signifikante Beiträge zur physiko-chemischen Untersuchung von Reaktionen in ionischen Flüssigkeiten wie auch zur Bestimmung thermischer Stabilitäten von Reaktionsgemischen und Produkten der Tieftemperatursynthesen erbracht. Es werden methodische Untersuchungen zu Modellsystemen wie auch Entwicklungen neuer Materialsynthesen in Systemen mit Elementen der Gruppen 15 und 16 angestrebt. Dabei wird der chemische Fokus auf die Differenzierung von Elementallotropen bei der Niedertemperatursynthese, die gerichtete Synthese von Verbindungen der Gruppen 15 und 16 mit definierter Zusammensetzung im Homogenitätsgebiet sowie die Herstellung von Bismut-basierten Schichtverbindungen gesetzt. Weiteres Ziel ist die Bildung von homoatomaren und heteroatomaren polykationischen Verbindungen mit dem Einbau von Komponenten des IL-haltigen Flussmittels. Untersuchungen der Mechanismen der Auflösung, Phasenbildung und Abscheidung werden mittels Reaktionskalorimetrie, Spektroskopie und DSC (Dynamic Scanning Calorimetry) durchgeführt. Zum Verständnis von Reaktionswegen für Synthesen oberhalb von Raumtemperatur sollen das thermische Verhalten und die Reaktivität von Produkten der thermischen Zersetzung ionischer Flüssigkeiten und deren Flussmittelsysteme in unsere Untersuchungen einbezogen werden. Die Bestimmung thermodynamischer Standarddaten ermöglicht die Modellierung mittels CalPhaD-Methoden und ermöglicht so eine umfassende thermodynamische Beschreibung von Reaktionswegen und Phasenbeziehungen der jeweiligen chemischen Systeme.
Hintergrund: Brennstoffzellen sind Energiewandler, die sich derzeit in der Markteinführung befinden. Zu den wichtigsten Anwendungen zählen die Stromversorgung für mobile, portable und stationäre Anwendungen. Brennstoffzellen zeichnen sich durch einen hohen elektrischen Wirkungsgrad, geringe Emissionen und einen flexiblen bzw. modularen Aufbau aus. Als Nachteile sind die hohen Kosten und die noch unzureichende Lebensdauer zu nennen. Weltweit werden erhebliche Anstrengungen unternommen, um Brennstoffzellensysteme zu optimieren. Motivation / Strategie: Vor dem Hintergrund der angestrebten stärkeren Nutzung regenerativer Energiequellen für die Stromerzeugung kommt der energieeffizienten Gewinnung von elektrischem Strom aus Biogas auch im kleinen Leistungsbereich daher eine große Bedeutung zu. Im Gegensatz zu Wind- und Solarenergie steht Biogas rund um die Uhr zur Verfügung, wenn auch mit saisonalen Schwankungen. Brennstoffzellen erreichen höhere Wirkungsgrade als Gasmotoren, vor allem bei kleiner Leistung, da sie anders als thermodynamische Kreisprozesse keiner Beschränkung durch den Carnot-Wirkungsgrad unterliegen. Die oxidkeramische Brennstoffzelle (SOFC) eignet sich besonders für die Nutzung von Erdgas und Biogas als Brennstoff: zum einen, da sie die höchsten elektrischen Wirkungsgrade verspricht, etwa 45-60%, und zum anderen, weil sie prinzipiell auch Kohlenwasserstoffe direkt umsetzen kann und CO2 toleriert. Stand der Technik: SOFCs heutiger Bauart sind in der Regel mit einer keramisch-metallischen Anode (Cermet) ausgestattet, die Ni als Elektronen leitende, metallische Komponente und Yttriumstabilisiertes Zirkondioxid (YSZ) als Ionen leitende, keramische Komponente enthält. In kohlenstoffhaltiger Atmosphäre ist Ni allerdings sehr anfällig gegenüber Verkokung. Eine Minderung der Verkokung wurde durch Zusatz von Elementen der Gruppe IV (z. B. Sn und Pb) und Gruppe V (z.B. Sb und Bi) an Ni beobachtet (I. Ul-Haque and D.L. Trimm, Catalyst for steam reforming of hydrocarbons, DK/09.08.09/DK 1898/90 (1991). Padeste et al. (C. Padeste, D. L. Trimm, Characterization of Sn doped Ni/Al2O3 steam reforming catalysts by XPS, Catalysis. Letters 17, (1993), 333-339) untersuchten die Aktivität vom Sn-dotierten Ni/Al2O3-Katalysator für Biogas und stellten fest, dass kleine Beimengen an Sn (kleiner als 1%) eine selektive Vergiftung der Kohlenstoffbildung bewirken. Als mögliche Ursache für die Inhibierung der Verkokung wurde eine geringere Löslichkeit des Kohlenstoffs in das mit Sn modifizierte Ni-Material postuliert. Durch intensive Untersuchungen der mechanistischen Ursachen von 'metal dusting' am DECHEMA Forschungsinstitut (DFI) wird auch die Änderung der Gitterparameter von Nickel durch die Legierung mit Zinn als inhibierender Faktor angenommen (D. J. Young, J. Zhang, C. Geers, M. Schütze,Materials and Corrosion 62 (2011) 7-28).
Ziel des geplanten Forschungsvorhabens ist das systematische Design und Herstellung innovativer makrozyklischer Verbindungen (Calixarene) mit maximal 3 Synthesestufen. Diese Käfigverbindungen sollen mittels funktioneller organischer Gruppen zur selektiven Abtrennung radioaktiver Elemente (Th, U) als auch zur Separation einzelner Seltener Erden (SE) voneinander eingesetzt werden. Das ist neu, da bisherige Trennungsmethoden zu unselektiv waren und die Gewinnung einzelner SE nur mit sehr vielen Trennschritten erreicht wurde. Die Entstrahlungseffizienzen bei der Wechselwirkung der Calixarene mit U und Th werden mit klassischer Analytik bestimmt. Um die Abtrennung einzelner Lanthanoiden und Actinoiden zu unterscheiden, kommt die Radiotracertechnik zur Quantifizierung zum Einsatz. Dafür sollen im Projekt aus Modellsystemen und aus realen Proben mit den neu entwickelten Calixarenen mit Tracerverfahren effektive Abtrennungsverfahren von U und Th und anschließender elementselektive Separation der SE entwickelt werden, zunächst im Labormaßstab. Es folgen verfahrenstechnische Untersuchungen mit Mixer-Settlern im halbtechnischen und industriellen Maßstab. Eine Machbarkeitsstudie soll die wirtschaftlichen und technischen Erfolgsaussichten herausarbeiten. Das Marktpotenzial für SE wird als sehr groß angesehen, da sie für die Hochtechnologie weiterhin unentbehrlich sind. Die steigende Nachfrage für reine SE ergibt ein hohes Marktpotenzial für die hochselektiven Calixarene als Extraktionsmittel. Dazu kommt ein potenziell entstehender Wettbewerbsvorteil, der im Falle der Produktion und des Vertriebs eines neuen Extraktionsmittels auf Calixaren-Basis durch den Partner BASF SE sowie den u.a. auf SE-spezialisierten Anlagenbauer CMI UVK GmbH zu einem verbesserten Marktzugang zu Herstellern von SE-Konzentraten inner- und außerhalb Chinas führt und über Multiplikatoren wie die Rohstoffallianz an die deutsche Industrie weitergegeben werden könnte.
Ziel des geplanten Forschungsvorhabens ist das systematische Design und Herstellung innovativer makrocyclischer Verbindungen mit maximal 3 Synthesestufen. Diese Käfigverbindungen sollen mittels funktioneller organischer Gruppen zur selektiven Abtrennung radioaktiver Elemente (Th, U) als auch zur Separation einzelner Seltener Erden voneinander eingesetzt werden. Da bisherige Trennungsmethoden zu unselektiv waren und die Gewinnung einzelner Seltener Erden nur mit sehr vielen Trennschritten erreicht wurde. Die Entstrahlungseffizienzen bei der Wechselwirkung der Calixarene mit U/Th werden mit klassischer Analytik bestimmt. Um die Abtrennung einzelner Lanthanoiden und Actinoiden zu unterscheiden, kommt die Radiotracertechnik zur Quantifizierung zum Einsatz. Dafür sollen im Projekt aus Modellsystemen und aus realen Proben mit den neu entwickelten Calixarenen mit Tracerverfahren effektive Abtrennungsverfahren von U und Th und anschließender elementselektive Separation der Seltenen Erden entwickelt werden, zunächst im Labormaßstab. Es folgen verfahrenstechnische Untersuchungen mit Mixer-Settlern im halbtechnischen und industriellen Maßstab. Eine Machbarkeitsstudie soll die wirtschaftlichen und technischen Erfolgsaussichten herausarbeiten. Das Marktpotenzial für Seltene Erden wird als groß angesehen, da sie für die Hochtechnologie weiterhin unentbehrlich sind. Die steigende Nachfrage für reine Seltene Erden ergibt ein hohes Marktpotenzial für die hochselektiven Calixarene als Extraktionsmittel. Dazu kommt ein potenziell entstehender Wettbewerbsvorteil, der im Falle der Produktion und des Vertriebs eines neuen Extraktionsmittels auf Calixaren-Basis durch den Partner BASF SE sowie den u.a. auf SE-spezialisierten Anlagenbauer CMI UVK GmbH zu einem verbesserten Marktzugang zu Herstellern von SE-Konzentraten inner- und außerhalb Chinas führt und über Multiplikatoren wie die Rohstoffallianz an die deutsche Industrie weitergegeben werden kann.
| Origin | Count |
|---|---|
| Bund | 28 |
| Type | Count |
|---|---|
| Förderprogramm | 28 |
| License | Count |
|---|---|
| offen | 28 |
| Language | Count |
|---|---|
| Deutsch | 28 |
| Englisch | 6 |
| Resource type | Count |
|---|---|
| Keine | 6 |
| Webseite | 22 |
| Topic | Count |
|---|---|
| Boden | 18 |
| Lebewesen und Lebensräume | 10 |
| Luft | 8 |
| Mensch und Umwelt | 28 |
| Wasser | 10 |
| Weitere | 28 |