API src

Found 150 results.

Related terms

Heissentfluorierung von reduzierenden Gasen mit Absorbern auf Kalkbasis

In der Industrie, z.B. bei der Muellvergasung oder bei GuD-Kraftwerken, entsteht unter anderem Fluorwasserstoff (HF). Da HF extrem umweltschaedlich und giftig ist, muss es aus dem Gas entfernt werden. Im Gegensatz zu den konventionellen Nassgasreinigungen kann das Gas trocken bei moeglichst hohen Temperaturen gereinigt werden. Energieverluste infolge des Abkuehlens und Wiederaufheizens koennen vermieden und so der Wirkungsgrad um einige Prozentpunkte erhoeht werden. Zudem entfaellt die Aufbereitung der anfallenden Abwaesser bei der Nassgasreinigung. Die Entwicklung derartiger Verfahren ist Gegenstand dieses Projektes.

Entwicklung eines Referenzkonzeptes für eine hocheffiziente Energieanlage auf Basis eines neuartigen, integrierten Gas-Dampf-Prozesses

Vorhabensziel ist die Entwicklung und Bewertung eines Referenzkonzeptes für eine hocheffiziente Energieanlage auf Basis eines integrierten Gas-Dampf-Prozesses. Der Prozess verfügt über eine hohe Wärmelastvariabilität und bietet die Möglichkeit zur Nutzung industrieller Abwärme. Zugleich ist er wirtschaftlicher gegenüber heutigen ausgeführten KWK-Anlagen. Der Prozess nutzt die Möglichkeit, Wasserdampf, der im Abhitzekessel erzeugt wird oder in einem externen Prozess anfällt, an geeigneten Stellen vor dem Turbineneintritt zu injizieren. Die Möglichkeit, zwischen Wärmeauskopplung und innerer Wiedereinspeisung zu wechseln, ist ein wesentlicher Vorteil des Prozesses. Prozessanalyse und -simulation sollen effektive Schaltungen und Variationsmöglichkeiten aufzeigen. Es werden für einzelne Komponenten technische Lösungen erarbeitet, wobei der Schwerpunkt auf der Gasturbine liegt. Die energiewirtschaftliche Bewertung vergleicht Konkurrenztechnologien und bewertet die ökonomische Einsatzfähigkeit. Die Ergebnisse sollen bei dezentralen und hybriden Energieanlagen umgesetzt werden. Zwischenschritte sind eine Versuchsanlage an der TUD (kleiner als 1 MW) und eine Demoanlage größerer Leistung.

Entwicklung flexibel operierender Pumpensysteme für hohe Druckverhältnisse, Temperatur- und Mengenschwankungen, Teilvorhaben: Thermo-mechanische Lebensdauerüberwachung im lastflexiblen Betrieb

Im Hinblick auf den Umbau der Energiewirtschaft werden flexible Dampfkraft- und GuD-Prozesse mit unterschiedlichen Wärmequellen weiterhin ein zentraler Technologiepfad sein, da die volatilen erneuerbaren Energien, wie Wind- und Sonnenenergie, nicht synchron zum Bedarf an Elektroenergie zur Verfügung stehen. Für darin integrierte Pumpensysteme bedeutet dies, hohen Anforderungen an Flexibilität, hohe Druckverhältnisse und starke Temperatur- und Mengenschwankungen gerecht zu werden. Dafür sind entsprechende Entwicklungsschritte notwendig, um die Verfügbarkeit der benötigten instationär zu betreibenden Pumpensysteme zu gewährleisten. Ziel des Verbundprojektes ist daher die Entwicklung flexibel operierender Pumpensysteme für hohe Druckverhältnisse, Temperatur- und Mengenschwankungen für unterschiedliche Medienkreisläufe in flexiblen thermischen Kraftwerken sowie unterschiedlichen chemischen und verfahrenstechnischen Prozessen. Dieses Teilprojekt adressiert die Entwicklung und Validierung eines neuartigen Lebensdauer-Überwachungskonzepts für Gliederpumpen unter der beschriebenen stark instationärer Fahrweise. Dafür wird ein Verfahren entwickelt, um regelbasiert erzeugte parametrischen Finite-Elemente-Pumpenmodellen mit eingebundener Lastfalldatenbank mit einem Monitoring-System zur Überwachung des Lebensdauerverbrauchs zu verbinden. Im ersten Schwerpunkt dient es der individuellen Definition der Überwachungspunkte, im zweiten Schwerpunkt wird es zur Bestimmung des Lebensdauerverbrauchs im Monitoringsystem genutzt.

Entwicklung flexibel operierender Pumpensysteme für hohe Druckverhältnisse, Temperatur- und Mengenschwankungen, Teilvorhaben: Grundlagenuntersuchungen zu flexibel operierenden Pumpensystemen für hohe Druckverhältnisse, Temperatur- und Mengenschwankungen

Ziel der Entwicklung stark flexibel operierender Pumpensysteme für hohe Druckverhältnisse, Temperatur- und Mengenschwankungen ist es, die Anforderungen an Pumpensysteme für stark schwankende Betriebs-bedingungen - wie z.B. in Dampfkraftwerken sowie in chemischen und verfahrentechnischen Prozessen mit hydraulischen Kreisläufen - hinsichtlich der Erhöhung ihrer Flexibilität bei gleichzeitiger Steigerung des Teillastwirkungsgrades und unter Beibehalt oder Erhöhung ihrer Lebensdauer abzuleiten. Diese Anforderungen sind durch die Entwicklung hochflexibel betreibbarer Pumpensysteme umzusetzen. Solche Pumpensysteme werden u.a. in flexiblen GuD-Kraftwerken und solar betriebenen Dampfkraftwerken, aber auch in vielen industriellen Prozessanwendungen benötigt für die Erweiterung des Teillast-Betriebsbereichs, für höhere Lastgradienten und für höhere Wirkungsgradanforderungen im Teillast-Betriebsbereich. Dazu müssen entsprechende Entwicklungsschritte durchgeführt werden, um die Verfügbarkeit der benötigten instationär zu betreibenden Pumpensysteme zu gewährleisten. Dies gilt für alle chemischen und verfahrenstechnischen Prozesse mit hydraulischen Kreisläufen sowie (unabhängig von der Art der eingebrachten Primärenergie) vor allem für alle Dampfkraft-Prozesse (Wasser-Dampf-Kreislauf, Kühlwasserkreislauf, Schmier- und Hydrauliköl-Kreislauf) und ihre vor- und nachgeschalteten Prozesskreisläufe (Salzschmelze-Kreislauf im Solarturmkraftwerk, Entschwefelungskreislauf im kohlegefeuerten Dampfkraftwerk, CO2-Abscheide/Transport/Einspeicher-Prozesse im CCS-Kraftwerk), die ebenfalls teillastflexibel zu betreiben sind. Dazu sind alle Komponenten der hydraulischen Systeme, v.a. die Pumpen und ihre elektrischen Antriebe, aber auch Pumpen-Überwachungs- und Regelungssysteme, gemäß den definierten Vorgaben dieser hydraulischen Anwendungsprozesse hinsichtlich betrieblicher Flexibilität, Effizienz- und Lebensdauer-Optimierung zu entwickeln.

Entwicklung flexibel operierender Pumpensysteme für hohe Druckverhältnisse, Temperatur- und Mengenschwankungen

Ziel der Entwicklung stark flexibel operierender Pumpensysteme für hohe Druckverhältnisse, Temperatur- und Mengenschwankungen ist es, die Anforderungen an Pumpensysteme für stark schwankende Betriebs-bedingungen - wie z.B. in Dampfkraftwerken sowie in chemischen und verfahrentechnischen Prozessen mit hydraulischen Kreisläufen - hinsichtlich der Erhöhung ihrer Flexibilität bei gleichzeitiger Steigerung des Teillastwirkungsgrades und unter Beibehalt oder Erhöhung ihrer Lebensdauer abzuleiten. Diese Anforderungen sind durch die Entwicklung hochflexibel betreibbarer Pumpensysteme umzusetzen. Solche Pumpensysteme werden u.a. in flexiblen GuD-Kraftwerken und solar betriebenen Dampfkraftwerken, aber auch in vielen industriellen Prozessanwendungen benötigt für die Erweiterung des Teillast-Betriebsbereichs, für höhere Lastgradienten und für höhere Wirkungsgradanforderungen im Teillast-Betriebsbereich. Dazu müssen entsprechende Entwicklungsschritte durchgeführt werden, um die Verfügbarkeit der benötigten instationär zu betreibenden Pumpensysteme zu gewährleisten. Dies gilt für alle chemischen und verfahrenstechnischen Prozesse mit hydraulischen Kreisläufen sowie (unabhängig von der Art der eingebrachten Primärenergie) vor allem für alle Dampfkraft-Prozesse (Wasser-Dampf-Kreislauf, Kühlwasserkreislauf, Schmier- und Hydrauliköl-Kreislauf) und ihre vor- und nachgeschalteten Prozesskreisläufe (Salzschmelze-Kreislauf im Solarturmkraftwerk, Entschwefelungskreislauf im kohlegefeuerten Dampfkraftwerk, CO2-Abscheide/Transport/Einspeicher-Prozesse im CCS-Kraftwerk), die ebenfalls teillastflexibel zu betreiben sind. Dazu sind alle Komponenten der hydraulischen Systeme, v.a. die Pumpen und ihre elektrischen Antriebe, aber auch Pumpen-Überwachungs- und Regelungssysteme, gemäß den definierten Vorgaben dieser hydraulischen Anwendungsprozesse hinsichtlich betrieblicher Flexibilität, Effizienz- und Lebensdauer-Optimierung zu entwickeln.

Untersuchungen zur Struktur der Gestehungskosten Waerme und Elektroenergie im liberalisierten Energiemarkt

Im Projekt werden die Gestehungskosten fuer die in einer GuD - Anlage parallel erzeugte Waerme und Elektroenergie unter den Randbedingungen sich liberalisierender Energiemaerkte fuer die Landeshauptstadt Erfurt grundsaetzlich analysiert und Vorschlaege fuer eine thermodynamisch korrekte und betriebswirtschaftlich sinnvolle Aufteilung der Kosten auf die beiden Koppelprodukte abgeleitet.

Errichtung und Betrieb von zwei Gasanschlussleitungen zum Gas- und Dampfturbinenkraftwerk Lippendorf (Gz.: 32-0522/1759)

Die LEAG Clean Power GmbH, hat mit Schreiben vom 15. Mai 2025 für das Vorhaben „Errichtung und Betrieb von zwei Gasanschlussleitungen zum Gas- und Dampfturbinen-kraftwerk Lippendorf“ einen Antrag auf standortbezogene Vorprüfung nach § 7 Absatz 2 des Gesetzes über die Umweltverträglichkeitsprüfung gestellt. Das Vorhaben liegt im Landkreis Leipzig in der Gemeinde Neukieritzsch.

Errichtung und Betrieb eines Gas- und Dampfturbinenkraftwerks sowie einer Heißwasserkesselanlage (Fuel-Switch-Anlage) der EnBW Energie Baden-Württemberg AG am Standort Altbach/Deizisau

Die EnBW Energie Baden-Württemberg AG (EnBW) plant am Kraftwerksstandort Altbach/Deizisau, Industriestraße 11, 73776 Altbach, infolge des beschlossenen Kohleausstiegs die Errichtung und den Betrieb eines erdgasbefeuerten Gas- und Dampfturbinenkraftwerks (GuD-Kraftwerk, Bezeichnung: HKW 3) zur Erzeugung von Strom und Fernwärme in Kraft-Wärme-Kopplung sowie eine mit Erdgas befeuerte Heißwasserkesselanlage (HWKA) bestehend aus drei Heißwasserkesseln (Projektname: „Fuel-Switch Altbach“). Ziel des Projekts ist es, die Fernwärmeversorgung CO2-ärmer und zukunftssicher zu gestalten sowie weiterhin zur Netzstabilität beizutragen. Die Inbetriebnahme ist für 2026 vorgesehen. Das GuD-Kraftwerk hat eine Feuerungswärmeleistung (FWL) von max. 1.140 MW und wird primär mit Erdgas der öffentlichen Gasversorgung betrieben, wobei es bereits perspektivisch für die Mitverbrennung von Wasserstoff ausgelegt ist. Die Heißwasserkesselanlage hat eine FWL von insgesamt 135 MW (je 45 MW) und wird ebenfalls primär mit Erdgas der öffentlichen Gasversorgung betrieben.

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Kraftwerke: konventionelle und erneuerbare Energieträger</p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand Januar 2025.<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand Januar 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Karte Kraftwerke und Windleistung in Deutschland, Stand Dezember 2024<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Dezember 2024<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p></p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der<strong>Photovoltaik</strong>(PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei<strong>Windenergie</strong>zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der<a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>

Willingmann fordert Planungssicherheit für Gaskraftwerke

Wo heute noch Braunkohle zum Einsatz kommt, soll künftig ein neues Gaskraftwerk für verlässliche Energie sorgen: Sachsen-Anhalts Energieminister Prof. Dr. Armin Willingmann hat bei seiner Sommertour das Kraftwerk Schkopau besucht und sich mit der Geschäftsleitung über die Zukunftsperspektiven des Standortes ausgetauscht. „Keine Frage: Wir brauchen in Deutschland steuerbare Kraftwerkskapazitäten, insbesondere wenn Windkraft und Photovoltaik witterungsbedingt nicht im ausreichenden Maße zur Verfügung stehen. Die Kraftwerke sollen zudem dort stehen, wo vorhandene Infrastruktur weitergenutzt werden kann und die Energie benötigt wird: Schkopau ist so ein Ort“, betonte Willingmann. „Daher ist es dringend, dass die Bundesregierung die in der letzten Legislatur verstolperte, langjährig geplante Kraftwerksstrategie vorlegt und sie in die Umsetzung bringt. Unsere Energieunternehmen brauchen Planungssicherheit.“ Schkopau ist einer der bedeutendsten Energiestandorte Mitteldeutschlands und das Kohlekraftwerk ist das leistungsstärkste Kraftwerk Sachsen-Anhalts. Damit der Standort auch nach dem Ende der Kohleverstromung seine bisherige Schlüsselrolle in der Energieversorgung und für die Netzstabilität im energieintensiven Industriedreieck Leipzig–Halle–Leuna behält, stellte die MIBRAG Energy Group mit ihrer Tochter Saale Energie GmbH dem Minister ihre Planungen für den Neubau eines hocheffiziente Gas- und Dampfturbinenkraftwerks (GuD) mit einer Nettoleistung von bis zu 900 Megawatt vor. Bei seinem Besuch konnte sich Willingmann vor Ort über den Planungsstand informieren und erforderliche Rahmenbedingungen für die noch ausstehende Investitionsentscheidung mit dem Unternehmen besprechen. Geschäftsführer Björn Bauerfeind erklärte: „Gerade im Zuge der fortschreitenden Energiewende mit einem stetig steigenden Anteil volatiler Energien und dem sich parallel vollziehenden Kohleausstieg sind witterungsunabhängige, flexible Gaskraftwerke essenziell für die sichere Versorgung von Industrie und Öffentlichkeit.“ Aktuell plant die Bundesregierung im Zuge der Kraftwerksstrategie, den Zubau von bis zu 20 Gigawatt Gaskraftwerkskapazität zu fördern. Die Notwendigkeit eines gesetzlichen Fördersystems für den Zubau von gesicherter Leistung besteht gleich in zweifacher Hinsicht: Erstens sinkt im Zuge des gesetzlich geregelten Kohleausstiegs die gesicherte Kraftwerksleistung schrittweise, zweitens besteht bei den meisten Gaskraftwerksprojekten eine Wirtschaftlichkeitslücke, die eine Realisierung ohne staatliche Förderung nicht erlaubt. „Insofern ist die zeitnahe Überarbeitung wie Umsetzung der Kraftwerksstrategie eine energiepolitische Kernaufgabe in Deutschland“, erklärte Willingmann weiter. „Bei der Ausgestaltung des Anreizsystems sollten pragmatische Ansätze gewählt und bestehende Kraftwerksstandorte in Ostdeutschland unbedingt berücksichtigt werden.“ Wichtige Vorarbeiten und -leistungen für den Neubau des GuD-Kraftwerks wurden nach Unternehmensangaben bereits erbracht. Das erforderliche Genehmigungsverfahren wurde mit der Einreichung des Antrags auf die erste Teilgenehmigung beim Landesverwaltungsamt im Juli 2024 gestartet. Die Umsetzung des Projekts würde nicht nur eine effiziente Weiternutzung bestehender Infrastruktur und Anlagenkomponenten ermöglichen, sondern auch eine belastbare Perspektive für das Betriebspersonal für die Zeit nach dem Ende der Kohleverstromung bieten. Gemäß Kohleverstromungsbeendigungsgesetz ist die Laufzeit des Braunkohlenkraftwerks Schkopau bis Ende 2034 begrenzt. Energieminister Willingmann wird im Rahmen seiner Energie-Sommertour noch bis Freitag weiter durch Sachsen-Anhalt reisen und sich mit Unternehmen und Kommunen zu Fragen der Energie- und Wärmewende austauschen. Aktuelle Informationen zu interessanten Themen aus Wissenschaft, Energie, Klimaschutz und Umwelt gibt es auch auf den Social-Media-Kanälen des Ministeriums bei Facebook , Instagram , LinkedIn , Threads , Bluesky , Mastodon und X (ehemals Twitter ). Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Threads , Bluesky , Mastodon und X

1 2 3 4 513 14 15