Salinity reduces the productivity of cucumber (Cucumis sativus L.) through osmotic and ionic effects. For given atmospheric conditions we hypothesize the existence of an optimal canopy structure at which water use efficiency is maximal and salt accumulation per unit of dry matter production is minimal. This canopy structure optimum can be predicted by integrating physiological processes over the canopy using a functional-structural plant model (FSPM). This model needs to represent the influence of osmotic stress on plant morphology and stomatal conductance, the accumulation of toxic ions and their dynamics in the different compartments of the system, and their toxic effects in the leaf. Experiments will be conducted to parameterize an extended cucumber FSPM. In in-silico experiments with the FSPM we attempt to identify which canopy structure could lead to maximum long-term water use efficiency with minimum ionic stress. The results from in-silico experiments will be evaluated by comparing different canopy structures in greenhouses. Finally, the FSPM will be used to investigate to which extent the improvement of individual mechanisms of salt tolerance like reduced sensitivity of stomatal conductance or leaf expansion can contribute to whole-plant salt tolerance.
Erfassung und Bearbeitung der hydrologischen, gewaessermorphologischen und naturschutzrechtlichen Gegebenheiten des Gewaessers bzw seines Einzugsgebietes. Darstellung der gegenwaertigen Situation der Wasserkraftnutzung und Absetzung des ausbauwuerdigen Potentials unter Beruecksichtigung der erhobenen Parameter.
Traditional Indonesian homegardens harbour often high crop diversity, which appears to be an important basis for a sustainable food-first strategy. Crop pollination by insects is a key ecosystem service but threatened by agricultural intensification and land conversion. Gaps in knowledge of actual benefits from pollination services limit effective management planning. Using an integrative and agronomic framework for the assessment of functional pollination services, we will conduct ecological experiments and surveys in Central Sulawesi, Indonesia. We propose to study pollination services and net revenues of the locally important crop species cucumber, carrot, and eggplant in traditional homegardens in a forest distance gradient, which is hypothesized to affect bee community structure and diversity. We will assess pollination services and interactions with environmental variables limiting fruit maturation, based on pollination experiments in a split-plot design of the following factors: drought, nutrient deficiency, weed pressure, and herbivory. The overall goal of this project is the development of 'biodiversity-friendly' land-use management, balancing human and ecological needs for local smallholders.
The provided dataset consists of double differential slant delays and absolute zenith wet delays in the region of the Upper Rhine Graben. Basis is the SLC data from Sentinel 1A+B satellites provided by the Copernicus program. 169 scenes were processed which had been acquired between April 2015 and July 2019, including data of four specific study events (11 – 22 Apr 2016, 13 – 24 Jul 2018, 16 – 31 Oct 2018, 06 – 21 Jan 2017). Interferometric processing was performed using the software SNAP, continued by a Persistent Scatterer Interferometric SAR (PS-InSAR) processing, using the program StaMPS. The first product are double differential slant delays which represent the phase delay in radiant in the satellites line of sight between the master acquisition (17 Mar 2012) and each acquisition-date respectively. Further processing uses ERA5 zenith wet delay (ZWD) and mean temperature to infer absolute zenith wet delays. A mean value is subtracted for each scene, resulting in an absolute value correction. In addition, long wavelength components are corrected by fitting the trend over the scene for each date to a 2D polynomial approximation from the ERA5 data, as those parts cannot reliably be estimated solely from the SAR data. The final product for every scene is the integrated water vapor (IWV) in kg/m² for each acquisition date at the distributed PS-points – on average about 50 points per square kilometer.
The collocation method was used to compute water vapor fields for the Upper Rhine Graben (URG) region from GNSS zenith total delays (ZTDs) and InSAR double difference slant delays (ddSTDs). Furthermore, mean temperature from ERA data was used for the conversion of GNSS ZTDs into IWV. The input data are hourly GNSS tropospheric parameters from the GURN (GNSS Upper Rhine Graben network) network for 4 different seasons in the period 2016-2018, as well as ddSTDs for 168 InSAR acquisition epochs of the Sentinel 1A+B satellites. In total, our dataset includes 2D fields of integrated water vapor (IWV) and zenith total delays (ZTDs) as well as 3D 'tomographic' products in form of refractivity fields. For 4 specific seasonal periods, also hourly water vapor density fields are provided by exploiting the relations between IWV and water vapor density in the collocation scheme. The tropospheric fields are provided for the horizontal WRF grid of data assimilation subset of this joint data collection, whereas the 3D fields are computed up to 8 km height for 16 equally distributed layers.
The ground-based global navigation satellite system (GNSS) technic was employed to retrieve the integrated water vapor (IWV) at 66 stations of the GNSS Upper Rhine Graben network (GURN). The GNSS IWV dataset is synchronous with the associated InSAR dataset, with 219 days available during the period March 2015 – July 2019. GNSS zenith total delay (ZTD) estimates are calculated every one hour and then converted to IWV with additional meteorological parameters from ERA5. The GNSS IWV of all the stations are saved in daily files in the second version of the Solution (Software/Technique) Independent Exchange (SINEX) format for TROpospheric parameters. GNSS station information is given in the file headers. In addition, the associated meteorological parameters from ERA5 are also provided, such as station pressure and weighted mean temperature.
Convection-permitting simulations with the Weather Research and Forecasting Modeling System (WRF) were carried out in order to provide improved water vapor fields for the Upper Rhine Valley in the border region of Germany, Switzerland and France. Hourly ERA5 reanalysis data served as input for three different simulations with (1) open loop, (2) assimilation of GNSS ZTD, InSAR ZTD and synoptic station data and (3) assimilation of tomography ZTD fields. The three-dimensional variation data assimilation (3D-VAR) configuration with hourly resolution was used. The simulations were performed for four events, one in each season (April 11-22, 2016, July 13-23, 2018, October 16-31, 2018, January 6-21, 2017). Surface pressure, temperature (2m) and integrated water vapor are provided in 2D as well as pressure, temperature and water vapor density for each of the 72 vertical levels (3D).
Different observation and modeling techniques were used to derive integrated water vapor (IWV) fields for the Upper Rhine Graben in the border region of Germany, Switzerland, and France. The dataset features 1) point-scale IWV and zenith total delay (ZTD) derived for 66 stations of the global navigation satellite system (GNSS) Upper Rhine Graben network (GURN), 2) area-distributed IWV and differential slant path delays from space-borne Interferometric synthetic aperture radar (InSAR) observations, 3) IWV, ZTD, refractivity (3D), and water vapor density (3D) from tomography, obtained by collocation of GNSS and InSAR products, and 4) IWV, precipitation and water vapor density (3D) simulated with the Weather Research and Forecasting Modeling system (WRF) with free run (open-loop) and three-dimensional variational data-assimilation (3D-VAR) configuration. All data products cover 4 seasonal epochs (11 – 22 Apr 2016, 13 – 24 Jul 2018, 16 – 31 Oct 2018, 06 – 21 Jan 2017). GNSS, InSAR, and tomography data are additionally available for the period Jan 2015 – Jun 2019.
Der Geologische Dienst SH erarbeitet als Ergebnis der geologischen Landesaufnahme Kartenwerke. Diese geologischen Karten stellen den geologischen Bau der Oberfläche und des oberflächennahen Untergrundes (obere zwei Meter) in verschiedenen Maßstäben dar. Aus Angaben zur Verbreitung von Gesteinen gleicher Eigenschaften können aus geologischen Karten weitere Themenkarten abgeleitet werden. Die Themenkarten dieses Dienstes umfassen die Geologische Übersichtskarte 1:250.000, die Gebietskulisse bekannter Potenziale zur Gewinnung oberflächennaher Rohstoffe sowie schutzwürdige Geotope und Geopotentiale.
Origin | Count |
---|---|
Bund | 24 |
Land | 2 |
Wissenschaft | 5 |
Type | Count |
---|---|
Förderprogramm | 24 |
Messwerte | 4 |
Strukturierter Datensatz | 5 |
Text | 1 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 30 |
Language | Count |
---|---|
Deutsch | 22 |
Englisch | 13 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 4 |
Keine | 24 |
Webdienst | 1 |
Webseite | 1 |
Topic | Count |
---|---|
Boden | 15 |
Lebewesen & Lebensräume | 24 |
Luft | 21 |
Mensch & Umwelt | 31 |
Wasser | 16 |
Weitere | 31 |