API src

Found 6 results.

Permafrost thaw and the changing arctic coast: science for socio-economic adaptation (Nunataryuk)

Das Projekt "Permafrost thaw and the changing arctic coast: science for socio-economic adaptation (Nunataryuk)" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung durchgeführt. Most human activity in the Arctic takes place along permafrost coasts, making them a key interface. They have become one of the most dynamic ecosystems on Earth because permafrost thaw is now exposing these coasts to rapid change: change that threatens the rich biodiversity, puts pressure on communities that live there and contributes to the vulnerability of the global climate system. NUNATARYUK will determine the impacts of thawing coastal and subsea permafrost on the global climate, and will develop targeted and co-designed adaptation and mitigation strategies for the Arctic coastal population. NUNATARYUK brings together world-leading specialists in natural science and socio-economics to: (1) Develop quantitative understanding of the fluxes and fates of organic matter released from thawing coastal and subsea permafrost; (2) Assess what risks are posed by thawing coastal permafrost, to infrastructure, indigenous and local communities and people's health, and from pollution; (3) Use this understanding to estimate the long-term impacts of permafrost thaw on global climate and the economy. NUNATARYUK will be guided by a Stakeholders' Forum of representatives from Arctic coastal communities and indigenous societies, creating a legacy of collaborative community involvement and a mechanism for developing and applying innovative evidence-based interventions to enable the sustainable development of the Arctic.

Advanced Prediction in Polar regions and beyond: Modelling, observing system design and LInkages associated with ArctiC ClimATE change (APPLICATE)

Das Projekt "Advanced Prediction in Polar regions and beyond: Modelling, observing system design and LInkages associated with ArctiC ClimATE change (APPLICATE)" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung durchgeführt. Arctic climate change increases the need of a growing number of stakeholders for trustworthy weather and climate predictions, both within the Arctic and beyond. APPLICATE will address this challenge and develop enhanced predictive capacity by bringing together scientists from academia, research institutions and operational prediction centres, including experts in weather and climate prediction and forecast dissemination. APPLICATE will develop a comprehensive framework for observationally constraining and assessing weather and climate models using advanced metrics and diagnostics. This framework will be used to establish the performance of existing models and measure the progress made within the project. APPLICATE will make significant model improvements, focusing on aspects that are known to play pivotal roles in both weather and climate prediction, namely: the atmospheric boundary layer including clouds; sea ice; snow; atmosphere-sea ice-ocean coupling; and oceanic transports. In addition to model developments, APPLICATE will enhance predictive capacity by contributing to the design of the future Arctic observing system and through improved forecast initialization techniques. The impact of Arctic climate change on the weather and climate of the Northern Hemisphere through atmospheric and oceanic linkages will be determined by a comprehensive set of novel multi-model numerical experiments using both coupled and uncoupled ocean and atmosphere models. APPLICATE will develop strong user-engagement and dissemination activities, including pro-active engagement of end-users and the exploitation of modern methods for communication and dissemination. Knowledge-transfer will also benefit from the direct engagement of operational prediction centres in APPLICATE. The educational component of APPLICATE will be developed and implemented in collaboration with the Association of Early Career Polar Scientists (APECS).

Arctic Impact on Weather and Climate (Blue-Action)

Das Projekt "Arctic Impact on Weather and Climate (Blue-Action)" wird vom Umweltbundesamt gefördert und von Danmarks Meteorologiske Institut durchgeführt. Blue-Action will provide fundamental and empirically-grounded, executable science that quantifies and explains the role of a changing Arctic in increasing predictive capability of weather and climate of the Northern Hemisphere.To achieve this Blue-Action will take a transdisciplinary approach, bridging scientific understanding within Arctic climate, weather and risk management research, with key stakeholder knowledge of the impacts of climatic weather extremes and hazardous events; leading to the co-design of better services.This bridge will build on innovative statistical and dynamical approaches to predict weather and climate extremes. In dialogue with users, Blue-Arctic will take stock in existing knowledge about cross-sectoral impacts and vulnerabilities with respect to the occurrence of these events when associated to weather and climate predictions. Modeling and prediction capabilities will be enhanced by targeting firstly, lower latitude oceanic and atmospheric drivers of regional Arctic changes and secondly, Arctic impacts on Northern Hemisphere climate and weather extremes. Coordinated multi-model experiments will be key to test new higher resolution model configurations, innovative methods to reduce forecast error, and advanced methods to improve uptake of new Earth observations assets are planned. Blue-Action thereby demonstrates how such an uptake may assist in creating better optimized observation system for various modelling applications. The improved robust and reliable forecasting can help meteorological and climate services to better deliver tailored predictions and advice, including sub-seasonal to seasonal time scales, will take Arctic climate prediction beyond seasons and to teleconnections over the Northern Hemisphere. Blue-Action will through its concerted efforts therefore contribute to the improvement of climate models to represent Arctic warming realistically and address its impact on regional and global atmospheric and oceanic circulation.

Cleaning Litter by developing and Applying Innovative Methods in european seas (CLAIM)

Das Projekt "Cleaning Litter by developing and Applying Innovative Methods in european seas (CLAIM)" wird vom Umweltbundesamt gefördert und von Hellenic Centre for Marine Research durchgeführt. CLAIM focuses on the development of innovative cleaning technologies and approaches, targeting the prevention and in situ management of visible and invisible marine litter in the Mediterranean and Baltic Sea. Two innovative technological methods will be developed, a photocatalytic nanocoating device for cleaning microplastics in wastewater treatment plants and a small-scale thermal treatment device for energy recovery from collected litter on board ships and ports. An innovative floating boom for collecting visible litter and a method to measure microlitter on board ships (Ferrybox) will be developed. The proposed cleaning technologies and approaches prevent litter from entering the sea at two main source points, i.e. wastewater treatment plants and river mouths. Effectiveness of developed devices and methods will be demonstrated under real conditions. Additionally, CLAIM will develop innovative modeling tools to assess the marine visible and invisible plastic pollution at basin and regional scales (Saronikos Gulf, Gulf of Lyon, Ligurian Sea and Belt Sea). An ecosystems approach will be followed to evaluate the potential benefit from proposed litter cleaning methods to ecosystem services. New business models will be developed to enhance the economic feasibility for upscaling the innovative cleaning technologies, taking into account the existing legal and policy frameworks in the CLAIM countries, as well as acceptance of the new technologies by their end-users and relevant stakeholders. The data and information produced will be made available to policymakers, stakeholders and end-users in a user-friendly format, both meaningful and tailored to each stakeholder group. CLAIM aims at the same time to raise public awareness with respect to having healthy oceans and seas, clean of litter and pollutants, and hence the importance of reducing marine (macro, micro and nano) pollution in European seas and beyond towards restoring marine ecosystems based on a circular economy.

Operating a Network of Integrated Observatory Systems In The Mediterranean Sea (ODYSSEA)

Das Projekt "Operating a Network of Integrated Observatory Systems In The Mediterranean Sea (ODYSSEA)" wird vom Umweltbundesamt gefördert und von Democritus University of Thrace durchgeführt. ODYSSEA will develop, operate and demonstrate an interoperable and cost-effective platform that fully integrates networks of observing and forecasting systems across the Mediterranean basin, addressing both the open sea and the coastal zone. The platform will collect its data from the many databases maintained by agencies, public authorities, and institutions of Mediterranean EU and non-EU countries, integrating existing earth observation facilities and networks in the Mediterranean Sea building on key initiatives such as Copernicus, GEOSS, GOOS, EMODNet, ESFRI, Lifewatch, Med-OBIS, GBIF, AquaMaps, Marine IBA e-atlas, MAPAMED and others with marine and maritime links. Through ODYSSEA's end-user centred approach, in which the various groups of end-users and stakeholders, within and external to the Consortium, will be involved from Day 1 of the project in the design, development and operation of the platform, including identification of gaps in data collection and accessibility. High priority gaps will be filled through multiple approaches that include developing a network of coastal observatories, deploying novel in-situ sensors at sea (a.o. microplastic sensors), oceanographic modelling and integrating existing mobile apps for citizen scientist networks. Applying advanced algorithms to organise, homogenise and fuse the large quantities of data in common standard type and format as well as other types of formats, the ODYSSEA platform will provide both primary data and on-demand derived data services, including forecasts, from ALL Mediterranean countries through a SINGLE PUBLIC PORTAL to various end-user groups and stakeholders. End-user requirements will drive the creation of secondary data sets which the platform will provide as new and packaged services matching the specialised information needs of users. ODYSSEA will improve accessibility to existing data as well as increase the temporal and geographic coverage of observational data in the Mediterranean.

Integrated Arctic observation system (INTAROS)

Das Projekt "Integrated Arctic observation system (INTAROS)" wird vom Umweltbundesamt gefördert und von Stiftelsen Nansen Senter for Fjernmaaling durchgeführt. The overall objective of INTAROS is to develop an integrated Arctic Observation System (iAOS) by extending, improving and unifying existing systems in the different regions of the Arctic. INTAROS will have a strong multidisciplinary focus, with tools for integration of data from atmosphere, ocean, cryosphere and terrestrial sciences, provided by institutions in Europe, North America and Asia. Satellite earth observation data plays an increasingly important role in such observing systems, because the amount of EO data for observing the global climate and environment grows year by year. In situ observing systems are much more limited due to logistical constraints and cost limitations. The sparseness of in situ data is therefore the largest gap in the overall observing system. INTAROS will assess strengths and weaknesses of existing observing systems and contribute with innovative solutions to fill some of the critical gaps in the in situ observing network. INTAROS will develop a platform, iAOS, to search for and access data from distributed databases. The evolution into a sustainable Arctic observing system requires coordination, mobilization and cooperation between the existing European and international infrastructures (in-situ and remote including space-based), the modeling communities and relevant stakeholder groups. INTAROS will include development of community-based observing systems, where local knowledge is merged with scientific data. An integrated Arctic Observation System will enable better-informed decisions and better-documented processes within key sectors (e.g. local communities, shipping, tourism, fisheries), in order to strengthen the societal and economic role of the Arctic region and support the EU strategy for the Arctic and related maritime and environmental policies.

1