Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Ludwigkai sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/a879dea4-b157-4cac-9144-ce3d3e65e862?locale=en), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/338fe900-beac-4406-bdb8-b32c0e058cdb?locale=en)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in Rottendorf sind mehrere Bäume der Art Robinia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/9b901002-a1fd-47b0-89d4-eb12f9117233?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 23.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/713101d0-8137-4da5-9010-8281fadd8bff?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
Die Starkregengefahrenkarte ist eine wasserwirtschaftliche Planungshilfe. Sie dient der Auffindung von Bereichen in Hamburg, die durch Starkregen besonders gefährdet sind. Die Karte basiert auf Ergebnissen einer Modellberechnung unter Einbeziehung von Regenbelastungen, der Kapazitäten der Kanalnetze (Siele) und des Oberflächenabflusses. Dargestellt sind die maximalen Wasserstände sowie Fließgeschwindigkeiten in Folge von 3 verschiedenen Starkregenszenarien (intensiver Starkregen, außergewöhnlicher Starkregen und extremer Starkregen). Wassertiefen unter 5 cm werden in der Karte nicht dargestellt. Weitere Informationen zur Karte stehen unter https://www.hamburg.de/go/starkregengefahrenkarte bereit. Der Fokus der Starkregengefahrenkarte liegt dabei auf der Analyse der Auswirkungen durch Starkregen in Siedlungsgebieten, welche aufgrund des Zusammenspiels der Oberflächenstrukturen und des Entwässerungssystems überflutet werden. Überschwemmungen durch ausufernde Gewässer werden in der Starkregengefahrenkarte nur näherungsweise dargestellt. Die Betroffenheit durch Binnenhochwasser an einigen Hamburger Gewässern hingegen wird detailliert in den Hochwassergefahrenkarten (https://www.hamburg.de/go/gefahren-risiko-karten) und in den ausgewiesenen Hamburger Überschwemmungsgebieten dargestellt: www.hamburg.de/go/ueberschwemmungsgebiete. Für weitere Informationen pro Grundstück gelangen Sie hier direkt zum Wegweiser Überflutungsvorsorge: https://geoportal-hamburg.de/ueberflutungsvorsorge/ . Trotz aller Sorgfalt sind Fehler im Bearbeitungsvorgang nicht auszuschließen. Deshalb kann für die Richtigkeit, Vollständigkeit und Konsistenz der Starkregengefahrenkarte keine Haftung und Gewährleistung übernommen werden. Eine Haftung entfällt auch für Folgen und mögliche Schäden, die aus der Anwendung oder Bearbeitung der Karte oder der von ihnen abgeleiteten oder erzeugten Zwischen- und Folgeprodukte entstehen können.
The Seismicity Catalog Collection is a compilation dataset on over four million earthquakes dating from 2150 BC to 1996 AD from NOAA's National Geophysical Data Center and U.S. Geological Survey's National Earthquake Information Center. The data include information on epicentral time of origin, location, magnitudes, depth and other earthquake-related parameters. This database is static and is no longer being updated. The CD collection was a compilation of all of the earthquake catalogs, both US and non-US, in the National Geophysical Data Center (NGDC) archive available in 1996. The purpose was to provide users with access to all the seismicity data in one place. Data can be accessed through the GeoVu data access and visualization software included on the CDs. This software allows visualization of pre-computed histograms as well as reformatting of data files to a format specified by the user. Many of the more popular data bases are available in several different formats so the user will not have to reformat large data bases. Files can be formatted for use on IBM PCs, Macs, or UNIX machines. Format information, data dictionary and statistical information are also included. A bibliography of earthquake-related materials at NCEI and the Summary of Earthquake Data Base (KGRD-21) are included on the CD-ROM. NOAA and NCEI make no warranty, expressed or implied, regarding these data, nor does the fact of distribution constitute such a warranty. NOAA and NCEI cannot assume liability for any damages caused by any errors or omissions in these data. If appropriate, NCEI can only certify that the data it distributes are an authentic copy of the records that were accepted for inclusion in the NCEI archives. This dataset has been archived in the framework of the PANGAEA US data rescue initiative 2025.
Es ist verboten, Hunde unangeleint laufen zu lassen in folgenden Schutzgebieten: - Landschaftsschutzgebiet "Dresdner Heide", ausgewiesen per Verordnung der Landeshauptstadt Dresden vom 19. Februar 2008, veröffentlicht im SächsGVBl. Nr. 4 vom 29. Februar 2008, S. 229; mit Ausnahme von Dienst- und Jagdhunden in Training oder Einsatz mit Genehmigung der Forstbehörde; - Naturschutzgebiet "Dresdner Elbtalhänge", ausgewiesen per Verordnung des Regierungspräsidiums Dresden vom 19. Januar 2007, veröffentlicht im SächsABl. Nr. 7 vom 15. Februar 2007, S. 258. Das Verbot gilt nicht für die ordnungsgemäße bzw. dem Schutzzweck untergeordnete Ausführung der Jagd. Dieser Datensatz kann gemäß den Nutzungsbestimmungen Datenlizenz Deutschland - Namensnennung - Version 2.0 (http://www.govdata.de/dl-de/by-2-0) genutzt werden. Eine Haftung für die Richtigkeit der Daten wird nicht übernommen, insbesondere übernimmt die Landeshauptstadt Dresden keine Haftung für mittels dieser Daten erhobene oder berechnete Ergebnisse Dritter.
Wichtige Hinweise zum Layer: Grundlage des spezifischen Grünvolumens pro Nettoteilblock bildet das spezifische Grünvolumen als Raster mit einer räumlichen Auflösung von 1m (beachte: Basisdatensatz in GK5 mit 0,5 m Auflösung). Dieses wurde im vorliegenden Layer für die einzelnen Nettoteilblöcke statistisch ausgewertet. Der ausgewiesene Wert entspricht hierbei dem Mittelwert aller im jeweiligen Block enthaltenen Rasterzellen. Ein Rückschluss auf deren Verteilung sowie der vegetativen Strukturelemente im Raum (zum Beispiel nur Wiese und am Flächenrand hohe Vegetation oder Wiese mit Baumbestand) lässt sich daraus nicht ableiten. Für konkretere Aussagen zur Verteilungsstruktur ist das Raster des spezifischen Grünvolumens heranzuziehen. Da Gewässerflächen (hier: Nettoteilblockflächen mit der Nutzungsart Gewässer) mit Ausnahme von Baumkronenüberhängen kein durch Fernerkundung erfassbares Grünvolumen enthalten, bleiben diese Flächen von der Darstellung des Grünvolumens unberücksichtigt. Allgemeine Hintergrundinformationen zum spezifischen Grünvolumen: Das spezifische Grünvolumen als Synonym für Grünvolumenzahl basiert auf dem durch das Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR) erstellten Gutachten "Grünvolumenbestimmung der Stadt Dresden auf der Grundlage von Laserscandaten" vom August 2014 (Beachte: Datenbasis 2009-2011). Dieses ist unter dem zugeordneten Dokument einsehbar. Einleitung: Städtisches Grün ist aus stadtökologischer und sozialer Sicht unverzichtbar und erfüllt wichtige Funktionen wie Staubbindung, Temperaturminderung, Winddämpfung oder Grundwasserneubildung. Darüber hinaus bilden öffentliche Grünanlagen Oasen der Ruhe, die der Erholung, Freizeitgestaltung und Kommunikation dienen und wichtige soziale Funktionen erfüllen. Je nach Kontext wird die Vegetation durch unterschiedliche Bestandsmerkmale beschrieben: - Forstwirtschaft (Baumart, Bestandsdichte, Brusthöhendurchmesser und Überschirmungsgrad) - Botanik (Blattflächenindex - LAI = Leaf Area Index - als Grundlage zur Bestimmung der Belaubungsdichte sowie der fotosynthetischen Aktivität bzw. der Produktionsleistung) - Landwirtschaft (pflanzliche Biomasse, als Maß der Ertragsbilanzierung). Im städtischen Kontext ist aufgrund der Artenvielfalt der Vegetation eine Erfassung von Blattflächenindex oder Biomasse schwierig. Aus diesem Grund spielen einfache, planerisch sinnvolle und vor allem praktikable Indikatoren eine wichtige Rolle. Für die Anwendung in der großmaßstäbigen Bauleit- und Landschaftsplanung wurde deshalb eine rechnerische Bestimmung des Grünvolumens durch die Planungsgemeinschaft GROSSMANN, SCHULZE, POHL entwickelt. Dabei wird das Grünvolumen mittels der flächenbezogenen Grünvolumenzahl (GVZ) beschrieben. Sie wurde als Pendant zu den planungsrelevanten Richtgrößen der baulichen Nutzung, wie der Grundflächenzahl (GRZ) oder der Geschossflächenzahl (GFZ) eingeführt. Es soll neben den vegetationsbezogenen Indikatoren Biotopflächenfaktor (BFF), Bodenfunktionszahl (BFZ) und dem Durchgrünungsgrad die Formulierung von Mindestanforderungen an die Grünausstattung bei der Planung ermöglichen, da sie eine hohe ökologische Aussagekraft besitzt. Was beschreibt die Grünvolumenzahl (GVZ)? Als Grünvolumen wird die Summe des oberirdischen Volumens aller Pflanzen verstanden. Es wird in m³ angegeben. Das Grünvolumen ist durch die äußere Hülle der Vegetation begrenzt, die in der praktischen Erfassung über idealisierte geometrisch primitive Formen beschrieben wird: - Quader: Rasen, Kräuter sowie Sträucher - Kugel: z. B. Eiche - Zylinder: z. B. Pappel - Kegel: z. B. Nadelbaum Aus der Grünvolumensumme aller Vegetationsobjekte in Bezug auf eine definierte Bezugsfläche (z. B. Baublock) ergibt sich die Grünvolumenzahl (GVZ), die alternativ auch als "spezifisches Grünvolumen" bezeichnet wird und die Einheit m³/m² besitzt. Das vorliegende generalisierte Raster (ursprüngliche Auflösung 0,5 m) weist für die einzelnen Zellen (Auflösung jetzt 1 m) bereits das spezifische Grünvolumen (m³/m²) auf, welches zugleich dem absoluten Grünvolumen entspricht. Datengrundlage/Methodik: Grundlage der Bestimmung des Grünvolumens sind Laserscandaten, RGBI-Bilddaten sowie Gebäudedaten. Eine detaillierte Beschreibung der Vorgehensweise ist dem zugeordneten Dokument zu entnehmen. Klassifizierung des spezifischen Grünvolumen: - 1. Klasse: vegetationslos (= 0 m³/m²) - 2. Klasse: bis einschließlich 0,1 m³/m² - 3. Klasse: bis einschließlich 0,5 m³/m² - 4. Klasse: bis einschließlich 0,75 m³/m² - 5. Klasse: bis einschließlich 1 m³/m² - 6. Klasse: bis einschließlich 3 m³/m² - 7. Klasse: bis einschließlich 8 m³/m² - 8. Klasse: bis einschließlich 14 m³/m² - 9. Klasse: bis einschließlich 20 m³/m² - 10. Klasse: bis einschließlich 25 m³/m² - 11. Klasse: größer als 25 m³/m² Die Klassifikation in der vorliegenden Abstufung erfolgt aufgrund der im Modell getroffenen Annahmen sowie zur besseren plastischen Darstellung der Vegetationsobjekte. Einschränkung: Entsprechend der vorgesehenen Nutzung für die Umwelt-, Landschafts- und Bauleitplanung ist trotz scheinbar detaillierter Darstellungsmöglichkeit der Anwendungsmaßstab auf 1:5.000 begrenzt. Die Karte soll Aufschluss über die Verteilung des Grünvolumens geben. Hieraus ergeben sich Rückschlüsse aus stadtökologischer und sozialer Sicht. Dieser Datensatz kann gemäß den Nutzungsbestimmungen Datenlizenz Deutschland - Namensnennung - Version 2.0 (http://www.govdata.de/dl-de/by-2-0) genutzt werden. Eine Haftung für die Richtigkeit der Daten wird nicht übernommen, insbesondere übernimmt die Landeshauptstadt Dresden keine Haftung für mittels dieser Daten erhobene oder berechnete Ergebnisse Dritter.
Alle unedlen Gebrauchsmetalle, wie Aluminium, Eisen und Zirkon, bilden bei der Reaktion mit Gasen oder waessrigen Medien mehr oder minder festhaftende Grenzschichten, welche den Angriff der korrodierenden Agenzien stark hemmen. Die Herabsetzung der Reaktionsgeschwindigkeit haengt von einer Reihe von Faktoren ab: Temperatur, Dicke und Haftung der Schicht, Diffusionsgeschwindigkeit der Agenzien, z.B. des Sauerstoffs, und der Metallkationen, etc. Die Haftung der Schicht und die Beweglichkeit der Reaktionspartner haengt wesentlich von der Konzentration von Fremdelementen in dem Matrixmetall und in der Schicht ab. Sowohl dieser Einfluss als auch die Abhaengigkeit des Konzentrationsverhaeltnisses der Fremdelemente in der Schicht und der Matrix von den Reaktionsbedingungen soll untersucht werden. Neben der allgemeinen, leicht erkennbaren technischen Bedeutung sind diese Arbeiten auch fuer die Wiederaufbereitung von Kernbrennstoffen von erheblichem Interesse. Wasserstoff bewirkt in vielen Metallen eine Versproedung, welche zu erhoehter Anfaelligkeit des Probestueckes gegen Korrosion und Bruch fuehrt. Generell sind zwei Wege fuer die Aufnahme des Wasserstoffs offen: a) Zersetzung von Wasser an der Oberflaeche und anschliessende Diffusion des Wasserstoffs durch die schuetzende Oxidschicht, b) Zersetzung des Wassers und Aufnahme des Wasserstoffs unmittelbar an der Metalloberflaeche, welche in Ritzen oder nicht festhaftenden Teilen der Schicht fuer einen direkten Kontakt mit der Loesung zugaenglich ist. Beide Wege sollen untersucht werden.
Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/74e7c788-0882-4ffe-b0dc-74cb0e0fb782), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/b976e56e-9fbf-42dd-86db-1677c2a5dc91?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
Die Starkregengefahrenkarte zeigt die räumliche Ausdehnung von Überflutungen, den Überflutungstiefen und die Fließgeschwindigkeit eines Hochwassers bei verschiedenen Starkregenszenarien (seltenes, außergewöhnliches und extremes Ereignis). In Berlin wird die Starkregengefahrenkarte auf Basis eines gekoppelten 1D-Kanalnetz- und eines 2D-Oberflächenabflussmodells (1D/2D gekoppeltes Modell) durchgeführt, wobei aktuelle Daten der Topographie, des Bodens, der Gebäude, der Versiegelung und des Kanalnetzes in der Berechnung berücksichtigt werden. Alle Informationen erfolgen ohne Gewähr für ihre Richtigkeit. In keinem Fall wird für Schäden, die sich aus der Verwendung abgerufener Informationen ergeben, Haftung übernommen.
Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station auf dem Landesgartenschaugelände sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 14.04.2025 12 Uhr](https://opendata.smartandpublic.eu/datasets/2525e376-990b-45cb-90b3-71a2e5ae3cbc?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 14.04.2025 13 Uhr](https://opendata.smartandpublic.eu/datasets/7507c65c-a1b2-446d-82e1-fcc14a793552?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
| Origin | Count |
|---|---|
| Bund | 309 |
| Kommune | 35 |
| Land | 97 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 4 |
| Förderprogramm | 197 |
| Gesetzestext | 3 |
| Hochwertiger Datensatz | 1 |
| Text | 84 |
| Umweltprüfung | 11 |
| unbekannt | 69 |
| License | Count |
|---|---|
| geschlossen | 90 |
| offen | 279 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 352 |
| Englisch | 33 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Bild | 2 |
| Datei | 22 |
| Dokument | 49 |
| Keine | 165 |
| Multimedia | 1 |
| Unbekannt | 8 |
| Webdienst | 28 |
| Webseite | 165 |
| Topic | Count |
|---|---|
| Boden | 213 |
| Lebewesen und Lebensräume | 269 |
| Luft | 182 |
| Mensch und Umwelt | 362 |
| Wasser | 163 |
| Weitere | 370 |