Die IVH, Industriepark und Verwertungszentrum Harz GmbH mit Sitz in Hildesheim (Niedersachsen) hat über mehrere Jahre zusammen mit der Umweltdienste Kedenburg GmbH, beide Entsorgungs-/Recyclingunternehmen im Unternehmensverbund der Bettels-Gruppe, Hildesheim, und der Eisenmann Environmental Technologies GmbH, Holzgerlingen, deren NaRePAK-Verfahren zur großmaßstäblichen Umsetzung weiterentwickelt. Stoffkreisläufe zu schließen und somit die effiziente und nachhaltige Nutzung begrenzter Ressourcen zu verbessern ist die erklärte Philosophie der IVH, hier fügt sich das RiA-Verfahren nahtlos ein. In Deutschland fallen jährlich erhebliche Mengen teerhaltigen Straßenaufbruchs an. Dieser Abfallstrom besteht weit überwiegend aus mineralischen Komponenten (z.B. Gesteinskörnungen und Feinsand) und enthält neben Bitumen krebserregende polyzyklische aromatische Kohlenwasserstoffe (PAK). Letztere sind verantwortlich, dass dieser Massenstrom als gefährlicher Abfall eingestuft wird. PAK sind persistent und verbleiben ohne thermische Behandlung langfristig in der Umwelt. Die Abfallmengen sind dabei beträchtlich. Die Bundesregierung geht von einer Menge von etwa 600.000 Tonnen pro Jahr allein von Bundesautobahnen und -straßen aus, dazu kommt der Aufbruch von Landes- und Kreisstraßen, die mengenmäßig die Bundesautobahnen und -straßen weit übertreffen. Bisher wird teerhaltiger Straßenaufbruch überwiegend deponiert, wodurch die im Straßenaufbruch enthaltenen mineralischen Ressourcen dem Wertstoffkreislauf verloren gehen. Der in begrenztem Umfang alternativ mögliche Verwertungsweg: Kalteinbau in Tragschichten im Straßenbau, erfolgt ohne Entfernung der PAK und wird daher nur noch in geringem Umfang angewendet. Eine weitere Möglichkeit ist die thermische Behandlung in den Niederlanden. Dies ist nicht nur verbunden mit langen Transportwegen, auch arbeiten die niederländischen Anlagen in einem deutlich höheren Temperaturintervall – im Bereich der Kalzinierung (Kalkzersetzung) – was dazu führen kann, dass die mineralischen Bestandteile des Straßenaufbruchs nicht mehr die notwendige Festigkeit aufweisen, um für einen Einsatz als hochwertiger Baustoff für die ursprüngliche Nutzung des Primärrohstoffes in Frage zu kommen. Darüber hinaus wird beim Kalzinierungsprozess von Kalkgestein im Gestein gebundenes CO 2 freigesetzt. Mit dem Vorhaben RiA plant die IVH an ihrem Standort in Goslar / Bad Harzburg die Errichtung einer in Deutschland erstmaligen großtechnischen Anlage zur thermischen Behandlung von teerhaltigem Straßenaufbruch. Dabei soll eine möglichst vollständige Rückgewinnung der enthaltenen hochwertigen Mineralstoffe (Gesteinskörnungen)erfolgen. Gleichzeitig werden die enthaltenen organischen Bestandteile, die in Form von Teerstoffen und Bitumen vorliegen, als Energieträger genutzt. In der innovativen Anlage sollen pro Jahr bis zu 135.000 Tonnen teerhaltiger Straßenaufbruch mittels Drehrohr thermisch aufbereitet werden. Dabei werden im Teer enthaltene besonders schädliche Stoffe wie PAK bei Temperaturen zwischen 550 Grad und 630 Grad Celsius entfernt und in Kombination mit der separaten Nachverbrennung vollständig zerstört, ohne dass das Mineralstoffgemisch zu hohen thermischen Belastungen mit der Gefahr einer ungewollten Kalzinierung ausgesetzt ist. Zurück bleibt ein sauberes, naturfarbenes Gesteinsmaterial (ohne schwarze Restanhaftungen von Kohlenstoff), das für eine höherwertige Wiederverwendung in der Bauwirtschaft geeignet ist. Die mineralischen Bestandteile des Straßenaufbruchs können so nahezu vollständig hochwertig verwendet und analog Primärrohstoffen erneut bei der Asphaltherstellung oder Betonherstellung eingesetzt werden. Die organischen Anteile im Abgas werden mittels Nachverbrennung bei 850 Grad Celsius thermisch umgesetzt und vollständig zerstört. Die dabei entstehende Abwärme wird genutzt, um Thermalöl zu erhitzen, um damit Ammoniumsulfatlösungen einer benachbarten Bleibatterieaufbereitung der IVH einzudampfen, aufzukonzentrieren und so ein vermarktungsfähiges Düngemittel herzustellen. Das Thermalöl wird dazu mit 300 Grad Celsius zu der Batterierecyclinganlage geleitet. Die Wärme ersetzt dabei andere Brennstoffe wie z. B. Erdgas. Die verbleibende Abwärme aus der Nachverbrennung wird mittels drei ORC-Anlagen zur Niedertemperaturverstromung genutzt. Es werden ca. 300 Kilowatt elektrische Energie pro Stunde erzeugt. Die beim RiA-Verfahren entstehenden Abgase werden in einer mehrstufigen Rauchgasreinigung behandelt. Die Abgase der Drehrohr-Anlage werden dazu aufwendig mittels Zyklone und nachgeschaltetem Gewebefilter entstaubt. Schwefeldioxid und Chlorwasserstoff werden mittels trockener Rauchgasreinigung nach Additivzugabe abgeschieden. Die Umwandlung von Stickstoffoxiden erfolgt mittels selektiver katalytischer Reduktion mit Harnstoff als Reduktionsmittel. Die bereits genannte Nachverbrennung zerstört verbliebene organische Reste. Die wesentliche Umweltentlastung des Vorhabens besteht in der stofflichen Rückgewinnung des ursprünglichen hochwertigen Gesteins im teerhaltigen Straßenaufbruch, also durch Herstellung eines wiederverwendbaren PAK-freien Mineralstoffgemisches von gleicher Qualität wie die ursprünglichen Primärrohstoffe. Das heißt die besonders umweltschädlichen PAKs werden nachhaltig aus dem Stoffkreislauf entfernt. Mit der Anlage können von eingesetzten 135.000 Tonnen Straßenaufbruch rund 126.900 Tonnen als Mineralstoffgemisch in Form von Gesteinskörnungen und Füller zurückgewonnen und für die Wiederverwendung bereit gestellt werden. Die Gesamtmenge von 126.900 Tonnen pro Jahr reduziert den jährlichen Bedarf von Gesteinsabbauflächen bei einer Abbautiefe von 30 Meter um rund 1.460 Quadratmeter. Bezogen auf den angenommenen Lebenszyklus von 30 Jahren wird eine Fläche von ca. 4,4 Hektar Abbaugebiet allein durch diese Anlage nicht in Anspruch genommen. Zusätzlich wird in gleichem Maße wertvoller Deponieraum bei knappen Deponiekapazitäten eingespart. Bei erfolgreicher Demonstration der technischen und wirtschaftlichen Realisierbarkeit im industriellen Maßstab, lässt sich diese Technik dezentral auf verschiedene Standorte in Deutschland übertragen. Damit wird dem in der Kreislaufwirtschaft propagierten Näheprinzip entsprochen, das heißt die Transportwege und die damit verbundenen Umweltauswirkungen werden weiter reduziert. Auch der nach Region unterschiedlichen Gesteinsarten wird dabei Rechnung getragen. Branche: Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen Umweltbereich: Ressourcen Fördernehmer: IVH, Industriepark und Verwertungszentrum Harz GmbH Bundesland: Niedersachsen Laufzeit: seit 2024 Status: Laufend
Im Rahmen der Gewaessergueteueberwachung des Landes Mecklenburg-Vorpommern erfolgt seit 1994 eine jaehrliche Beprobung und Anlayse von Wildpopulationen der Miesmuschel (Mytilus edulis) an 6 Stationen des Kuestenbereiches. Die Beprobung erfolgt im Oktober/November. Es werden die Konzentrationen ausgewaehlter Spurenmetalle und organischer Stoffe im Weichkoerper der Muscheln analysiert. Spurenmetalle: Cr, Ni, Cu, Zn, As, Cd, Hg, Pb. Organische Schadstoffe: HCB, HCH (Alpha, Gamma), DDT und Metabolite (o,p- und p,p), PCBs (Nr. 28-52-101-118-138-153-180).
Es werden Fettgewebe, Leber, Niere und Gehirn aus Sektionsgut untersucht. Die qualitative und quantitative Bestimmung erfolgt gaschromatographisch. Die Ausarbeitung erfolgt im Hinblick darauf, ob und in welchem Umfang die chlorierten KW (DDT und Analoge, Aldrin, Dieldrin, Heptachlor, Heptachlorepoxid, Methoxychlor und Hexachlorcyclohexan-Isomere sowie Hexachlorbenzol) trotz Verbots bzw. starker Einschraenkung in der Bundesrepublik Deutschland in menschlichen Geweben wiederzufinden sind. Ausserdem soll untersucht werden, ob Beziehungen bestehen hinsichtlich Alter und Geschlecht und Konzentration der Stoffe und ob sich Korrelationen zwischen Krankheiten bzw. Todesursache und Hoehe der gefundenen Werte ergeben.
Die international operierende Wacker Chemie AG mit ihren vier Geschäftsbereichen Polysilicon, Silicones, Polymers und Biosolutions unterhält 27 Produktionsstätten in elf Ländern und beschäftigt rund 15.700 Mitarbeiter*innen. Der Geschäftsbereich Wacker Silicones betreibt am Standort Burghausen eine Methanolyseanlage zur Herstellung von Siloxanen. Die hergestellten Siloxane dienen als Ausgangspolymere für die Herstellung von Siliconen. Durch Umsetzung des innovativen Konzepts soll in Burghausen eine HCl (Chlorwasserstoff)-Wäsche entstehen und in die bestehende Anlage integriert werden. Bei der Herstellung von Siloxanen fallen wasserlösliche und schwer abbaubare, siliziumorganische Verbindungen als Nebenprodukte an und gelangen in die zentrale Abwasserreinigungsanlage des Werks. In einem patentierten, zweistufigen Verfahren der HCl-Wäsche wird der Chlorwasserstoff von den umweltbelastenden Verbindungen gereinigt und in einem Kreislauf dem Prozess wieder zugeführt. Damit werden künftig 90 Prozent der siliziumorganischen Verbindungen bereits in der Produktionsanlage entfernt, bevor sie ins Abwasser gelangen. Durch den Einsatz der HCl-Wäsche können jährlich rund 135 Tonnen siliziumorganische Verbindungen zurückgehalten werden und gelangen somit nicht ins Abwasser. Die TOC-Emissionen (Summe des gesamten organischen Kohlenstoffs in einer Probe) der betriebseigenen Kläranlage verringern sich um rund 20 Prozent. Die HCl-Wäscheanlage bildet den zentralen Bestandteil des Vorhabens und dient damit der Verbesserung der Wasserqualität.
Aus Untersuchungen einer amerikanischen Arbeitsgruppe geht hervor, dass Fluorchlorkohlenwasserstoffe die die Erde umgebende Ozonschicht abbauen. Ueber das Mass dieses Abbaus lassen sich keine exakten Angaben machen, da zu viele Konzentrationen beteiligter Reaktanden und Gleichgewichts bzw. Geschwindigkeitskonstanten nur ungenuegend bekannt sind. Eine sehr grosse Bedeutung kommt bei den Berechnungen der HCl-Konzentration in der Troposphaere und Stratospaere zu. Das analytische Problem HCl-Konzentrationen, die kleiner als 0,01 ppbv sind, in der Troposphaere zu bestimmen, laesst sich nur durch neue Methoden loesen. Zur Zeit sind wir deshalb mit der Ausarbeitung von zwei Methoden beschaeftigt. Bei der ersten Methode wird zunaechst traegerfreies CrO3 durch Kernreaktionen hergestellt. Anschliessend erfolgt mit dem zu bestimmenden HCl eine Umsetzung und das gebildete CrO2Cl2 wird verfluechtigt und durch Bestimmung der Aktivitaet eine HCl-Bestimmung durchgefuehrt. Bei dem zweiten Verfahren wird die Selektivitaet eines EC-Detektors fuer bestimmte Substanzen ausgenutzt. HCl wird entweder mit halogenierten Epoxiden umgesetzt oder perfluorierte organische Verbindungen werden gespalten. Die entstehenden Verbindungen werden gaschromatographisch abgetrennt und mit hoher Nachweisempfindlichkeit mit einem EC-Detektor nachgewiesen.
Ziele: Ermittlung der internen Belastung mit Schwermetallen (Blei, Cadmium, Arsen, Quecksilber) und organischen Schadstoffen (Hexachlorbenzol, Polychlorierte Biphenyle). Ermittlung der Haeufigkeit des Auftretens bzw. der Schwere von Atemwegserkrankungen und Allergien. Fragestellungen: Gibt es Unterschiede in der internen Belastung von Kindern aus unterschiedlich strukturierten Regionen? Unterscheiden sich Kinder aus Regionen mit unterschiedlicher Luftbelastung in Baden-Wuerttemberg hinsichtlich der Entwicklung der Atemwege? Besteht ein Zusammenhang zwischen der Immissionssituation und der Haeufigkeit des Auftretens bzw. der Schwere von Atemwegserkrankungen und Allergien? Bisherige Ergebnisse: Die Ergebnisse liegen insgesamt in einem Bereich, der bei vergleichbaren Untersuchungen im Bundesgebiet beobachtet wurde. Bei der Belastung mit Schadstoffen traten fuer einzelne Parameter Unterschiede zwischen den Orten auf, denen jedoch aufgrund der insgesamt geringen Konzentrationsunterschiede eine geringe Bedeutung zukommt. Fuer die Haeufigkeit von Atemwegserkrankungen und Allergien erwies sich die familiaere Veranlagung als Haupteinflussfaktor. Der Anteil der Kinder, die eine Sensibilisierung aufweisen, liegt im Ballungsgebiet Mannheim deutlich niedriger als in den eher laendlich strukturierten Regionen Kehl und Aulendorf/Bad Waldsee.
Hexachlorbenzol-Rueckstaende treten teilweise im Gemuese auf; diese sind durch Fungizidbehandlung nicht zu erklaeren; der Hexachlorbenzolgehalt von Gemueseanbauflaechen soll untersucht werden.
Die Dynamik der Feinsedimente stellt eine komplexe Komponente bei der ganzheitlichen Betrachtung von Fließgewässersystemen dar. Sowohl die reine Quantität der kohäsiven Sedimente wie auch ihre Qualität (Schadstoffbelastung) sind von Interesse. Fragestellungen wie Sedimentationsrisiken in strömungsberuhigten Bereichen oder die Erosionsstabilität von belasteten Sedimenten (z. B. HCB-Problematik im stauregulierten Oberrheinabschnitt) ziehen kostenintensive Maßnahmen nach sich. Sandanteile des Geschiebes und der Schwebstoffe stehen in einem dynamischen Austausch. Bei der Erfassung der jeweiligen Transportraten bestehen derzeit erhebliche Unsicherheiten, die kritisch zu bewerten sind, da der Sand einen Beitrag zur Sohlhöhenentwicklung der BWaStr liefert. Die Transportprozesse der Sandfraktionen sowie der kohäsiven Feinsedimente stellen innerhalb der Zuständigkeit der WSV bzw. der BfG im Hinblick auf Forschung und Entwicklung dringliche Aufgaben dar. Aufgrund der vielen und sehr unterschiedlich gearteten involvierten Teilprozesse gestaltet sich die Beschreibung der Feinsedimentdynamik auf der Mikro- wie der Makroskala komplex. Zur Erweiterung der Prozess- und Systemkenntnisse sowie für die Entwicklung von Szenarien und Prognosen für das Sedimentmanagement wird in der BfG eine numerische Modellierung auf verschiedenen Skalen aufgebaut.
In landw. Produkten kommen bisweilen erhoehte Gehalte an Chlorkohlenwasserstoff-Pestiziden (z.B. HCB) vor. Die dafuer infrage kommenden Kontaminationsquellen sind nicht genuegend bekannt. Zielsetzung ist die Auffindung der Kontaminationsquellen, um die Ursache fuer erhoehte Pestizidgehalte durch Beseitigung der Quellen vermeiden zu koennen. Als Untersuchungsmethoden dienen die Gaschromatographie und die GC-MS-Kopplung.
Fortsetzung der Freilandversuche mit Pentachlornitrobenzol-C-14 und Pentachlorphenol-C-14 (erneute Behandlung). Untersuchung der Aufnahme, der Verteilung und des Metabolismus von Hexachlorbenzol-C-14 nach Saatgutbehandlung an Weizen unter Freilandbedingungen. Untersuchung des Schicksals von Buturon-C-14 (Seitenketten-markiert) in Weizen und Boden unter Freilandbedingungen. Untersuchung von Chloralkylen-9-C-14 in Karotten und Boden unter Freilandbedingungen.
| Origin | Count |
|---|---|
| Bund | 471 |
| Kommune | 5 |
| Land | 878 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Chemische Verbindung | 27 |
| Daten und Messstellen | 912 |
| Ereignis | 2 |
| Förderprogramm | 276 |
| Gesetzestext | 18 |
| Hochwertiger Datensatz | 2 |
| Text | 22 |
| Umweltprüfung | 5 |
| unbekannt | 67 |
| License | Count |
|---|---|
| geschlossen | 691 |
| offen | 614 |
| unbekannt | 8 |
| Language | Count |
|---|---|
| Deutsch | 1292 |
| Englisch | 638 |
| Resource type | Count |
|---|---|
| Archiv | 264 |
| Bild | 27 |
| Datei | 352 |
| Dokument | 79 |
| Keine | 640 |
| Unbekannt | 1 |
| Webdienst | 11 |
| Webseite | 436 |
| Topic | Count |
|---|---|
| Boden | 1275 |
| Lebewesen und Lebensräume | 1288 |
| Luft | 1271 |
| Mensch und Umwelt | 1310 |
| Wasser | 1273 |
| Weitere | 1304 |