<p>Gegen die Hitze: Das können Sie im Sommer für kühle Räume tun</p><p>Wie Sie Ihr Zuhause kühl halten und der Hitze trotzen</p><p><ul><li>Halten Sie mit dem richtigen Verhalten die Hitze draußen.</li><li>Bauliche Maßnahmen tragen dazu bei, dass Räume kühl bleiben.</li><li>Wenn nichts mehr hilft: klimafreundliches und geräuscharmes Klimagerät anschaffen und sparsam betreiben.</li></ul></p><p>Gewusst wie</p><p>Heiße Sommertage bringen oft Innentemperaturen über 30 °C mit sich. Dafür gibt es verschiedene Ursachen: Die dichte Bebauung in Städten führt tags und nachts zu höheren Temperaturen. Aber auch Mängel am Gebäude und das Nutzerverhalten tragen ihren Teil zur Überhitzung von Räumen bei.</p><p><strong>Mit ihrem Alltagsverhalten</strong>beeinflussen Sie, wie stark sich Ihre Wohnung erwärmt. Ist die Temperatur in der Wohnung erst einmal hoch, ist es schwer, die Raumtemperatur wieder zu senken. Deshalb ist es wichtig, dass sich die Wohnung erst gar nicht aufheizt.</p><p><strong>Bauliche Maßnahmen</strong>begrenzen die Wärmeströme nach innen und sind die Voraussetzung für das richtige Verhalten im Alltag. Sie sollten deshalb bereits bei der Planung eines Neubaus oder einer Sanierung mit den beteiligten Planer*innen besprochen und durchgerechnet werden. Gute Voraussetzungen für angenehme Sommertemperaturen bieten Wohnungen mit folgenden Eigenschaften:</p><p><strong>Wenn sich ein Raum immer noch überhitzt,</strong>sollten Sie ein klimafreundliches Klimagerät auswählen und es möglichst sparsam nutzen:</p><p><strong>Bewegliche Klimageräte vermeiden:</strong>Sie sind ineffizient und sollten, wenn überhaupt, nur ausnahmsweise genutzt werden.1Sie kühlen nicht effektiv, da die warme Abluft nach draußen gefördert wird und die nachströmende Luft den Aufstellraum sogar noch mehr aufheizt. Seit 2020 sind für solche Geräte nur noch Kältemittel mit Treibhauspotenzial (GWP) < 150 zulässig, i.d.R. wird das umweltfreundliche Kältemittel Propan genutzt.</p><p>Hintergrund</p><p><strong>Umweltsituation:</strong></p><p>Die Klimawirkungs- und Risikoanalyse für Deutschland zeigt, dass die Außentemperaturen infolge des Klimawandels auch in Deutschland zunehmen. Trotz aller Bemühungen beim <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a> ist damit zu rechnen, dass beispielsweise die Sommertage (ab 25 °C) um 40 % häufiger werden und die Hitzetage (ab 30 °C) sich verdoppeln können.2Deswegen werden Lösungen für Gebäudekühlung bereits stärker nachgefragt. Statt aktiver Klimaanlagen, die Energie verbrauchen und Treibhausgasemissionen verursachen, sollten vor allem passive Kühlmaßnahmen wie Sonnenschutz oder Nachtlüftung genutzt werden, die fast ohne Energie auskommen.</p><p>2023 verbrauchten die Klimageräte in Haushalten laut Arbeitsgemeinschaft Energiebilanzen 1,3 <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a> Strom. Das entspricht einem Prozent des Stromverbrauchs aller Haushalte.3Nicht-Wohngebäude zu kühlen verbrauchte 12,6 TWh Strom. Insgesamt entfielen 2023 in Deutschland 2,8 Prozent des Stromverbrauchs auf die Klimatisierung von Gebäuden.</p><p>Klimaanlagen tragen nicht nur durch den Stromverbrauch, sondern auch durch freigesetzte Kältemittel (mittlerweile bei Neugeräten im Wesentlichen R‑32, GWP=675 gemäß viertem <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a> Assessment Report) zur Erderwärmung bei. Das GWP (<em>Global Warming Potential</em>) ist ein Maß für die Treibhauswirksamkeit eines Stoffes. Der GWP für CO2beträgt 1, sodass im Falle von R-32 die Treibhauswirksamkeit 675mal so groß ist wie die von CO2. Daher haben auch relativ kleine Mengen, die in die <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> entweichen, eine hohe klimaschädliche Wirkung. Der Blaue Engel für Raumklimageräte zeigt für Klimageräte, wie es besser geht.</p><p><strong>Gesetzeslage:</strong></p><p>Das<a href="https://www.gesetze-im-internet.de/geg/__14.html">Gebäudeenergiegesetz</a>schreibt vor, dass der Sonneneintrag in Neubauten durch einen ausreichenden sommerlichen Wärmeschutz begrenzt werden muss. Allerdings bezieht sich dieses Kriterium auf das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a> der Vergangenheit. Damit blendet es die seither eingetretene und in den nächsten Jahrzehnten noch zu erwartende Klimaerwärmung aus. Für bestehende Gebäude oder für Gebäudesanierungen gelten keine Anforderungen. Es ist daher ratsam, bei Neubau und Sanierung das zukünftige Klima zu berücksichtigen, um Überhitzung auch in den nächsten Jahrzehnten vorzubeugen.</p><p>Die<a href="http://data.europa.eu/eli/reg/2012/206">Verordnung (EU) Nr. 206/2012</a>bewirkt mit den Ökodesign-Anforderungen, dass die ineffizientesten und lautesten Klimageräte bis 12 kW Nennkälteleistung in der EU nicht mehr verkauft werden dürfen. Die Energieverbrauchskennzeichnung nach<a href="http://data.europa.eu/eli/reg_del/2011/626">Verordnung (EU) Nr. 626/2011</a>macht Energieeffizienz und Lautstärke der Klimageräte beim Kauf erkennbar.</p><p>Bestimmte Klimageräte dürfen gemäß Anhang IV der F-Gas-Verordnung (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32024R0573&qid=1706009169366">Verordnung (EU) Nr. 2024/573</a>) nicht mehr auf den europäischen Markt gebracht werden. Seit 2020 zählen hierzu bereits bewegliche Klimageräte mit einem GWP des Kältemittels ≥ 150. Ab dem Jahr 2029 gilt dieser GWP-Grenzwert auch für Split-Klimageräte ("Luft-Luft-Splitsysteme") bis 12 kW Nennkälteleistung. Außerdem wird gemäß Anhang VII die Menge an HFKW (teilfluorierte Kohlenwasserstoffe, z.B. R-32), die auf den europäischen Markt kommt, schrittweise reduziert und bis 2050 auf null gesenkt.</p><p><strong>Marktbeobachtung:</strong></p><p>Die<strong>Wirkung von Sonnenschutz</strong>beschreibt der so genannte Abminderungsfaktor FCgemäß DIN 4108-2. Um effektiv vor Überhitzung zu schützen, sollte er, je nach Bauart des Raums und Größe des Fensters, bei höchstens 0,2-0,1 liegen, also 80 bis 90 Prozent der Sonneneinstrahlung abhalten. Außenliegender Sonnenschutz wie Jalousien, Rollläden, Fensterläden oder durchscheinende Textilscreens erreichen solche Werte problemlos. Zum Vergleich: Innenliegende Rollos halten nur 5 bis 45 Prozent der Sonneneinstrahlung ab – ein entscheidender Unterschied!</p><p>Zwei Arten von Klimageräten sind besonders häufig:</p><p><strong>Split-Klimageräte</strong>bestehen aus zwei Teilen: Das Außengerät mit Kompressor und Kondensator verflüssigt ein Kältemittel, das zum Innengerät geleitet wird, dort verdampft und so dem zu kühlenden Raum Wärme entzieht. Der erwärmte Dampf strömt zurück zum Außengerät, wo die Raumwärme an die Umgebung abgeleitet wird. Die am Innengerät kondensierende Raumfeuchte muss entweder aufgefangen oder mit neu zu verlegenden Kondensatleitungen abgeleitet werden können. Die Kühlwirkung von Split-Geräten ist im Allgemeinen gut. Die Stiftung Warentest rechnet für den Betrieb eines Klimageräts mit Stromkosten über 10 Jahre von 400-560 Euro (1.000-1.400 kWh mit 40 Cent/kWh).</p><p>In Deutschland werden seit dem Jahr 2019 etwa 200.000 Monosplit-Klimageräte jährlich verkauft. Installiert sind fast 1,6 Millionen Geräte, ein Teil davon auch in privaten Haushalten. Diese Zahlen werden im Rahmen der Treibhausgasberichterstattung zur Klimarahmenkonvention (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNFCCC#alphabar">UNFCCC</a>) ermittelt und stützen sich auf Erhebungen der japanischen Kälte/Klima-Fachzeitschriften JARN (<em>Japan Air Conditioning, Heating and Refrigeration News</em>) und des Verbandes JRAIA (<em>Japan Refrigeration and Air Conditioning Industry Association</em>) sowie Expertenschätzungen.</p><p>Bei<strong>beweglichen Klima-</strong><strong>oder Mono(block)geräten</strong>sind alle Bauteile in einen Apparat integriert. Die Geräte können daher ohne Installationsaufwand nahezu überall eingesetzt werden. Weil sie aber die heiße Abluft über einen Luftschlauch durch ein geöffnetes Fenster ausblasen, strömt im Gegenzug warme Luft von außen in den Raum. Die Folge: Der restliche Raum kann noch wärmer werden, die Kühlwirkung ist vergleichsweise gering, der Stromverbrauch relativ hoch.</p><p>In Deutschland werden jährlich ca. 90.000 mobile Klimageräte verkauft. Der Bestand in allen Sektoren beläuft sich auf etwa 840.000 Geräte.</p><p>Weitere Informationen finden Sie unter:</p><p></p><p><strong>Quellen:</strong></p><p>1<a href="https://www.test.de/Klimageraete-im-Test-4722766-0/">Klimageräte im Test</a>, Stiftung Warentest, 2023</p><p>2<a href="https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/cc_14-2023_kuehle_gebaeude_im_sommer.pdf">Kühle Gebäude im Sommer</a>, Umweltbundesamt, 2023</p><p>3<a href="https://ag-energiebilanzen.de/daten-und-fakten/anwendungsbilanzen/">Endenergieverbrauch nach Energieträgern und Anwendungszwecken</a>, Arbeitsgemeinschaft Energiebilanzen</p>
In Deutschland ist die Landwirtschaft für über 59 % der Methan- und 95 % der Ammoniakemissionen verantwortlich. Dabei hat Methan ein etwa 84-mal höheres kurzfristiges Treibhauspotenzial als CO2 (IPPC), weshalb der schnellen Reduzierung von Methanemissionen zur Verlangsamung des Klimawandels Priotität eingeräumt werden muss. Zusätzlich ist es eine Vorläufersubstanz bei der Bildung von bodennahem Ozon, das Pflanzen schädigt, indirekt zum Klimawandel beitragen kann und zusätzlich zu Beeinträchtigungen der menschlichen Gesundheit führt. Die wichtigsten Quellen von Methan sind Emissionen während des tierischen Verdauungsprozesses von Wiederkäuern und Emissionen durch die Lagerung von Festmist und Gülle. Zielsetzung des Vorhabens ist die Entwicklung einer digitalisierten Biogasanlage zur Vergärung von Flüssigmist für landwirtschaftliche Betriebe mit einem Tierbestand ab ca. 170 Großvieheinheiten (GV). Diese Güllekleinanlagen verwenden eine einstufige Güllevergärung und basieren auf einem kostengünstigen, vollständig recyclierbaren Rührkesselreaktor. Diese Anlagen bieten ein sehr großes Übertragungspotenzial auf eine Vielzahl von landwirtschaftlichen Betrieben, nicht nur in Deutschland. Sie können dezentral Strom und Wärme mit hohen Nutzungsgraden bereitstellen. Innerhalb des Verbundvorhabens ist renergie Allgäu e.V. dafür zuständig, die rechtlichen und insbesonderen genehmigungsrechtliichen Rahmenbedigungen zu analysieren und wesentlich dazu beizutragen die Genehmigungsfähigkeit zu erreichen. Außerdem ist renergie Allgäu e.V. als Praxispartner dafür zuständig, die spätere Übertragbarkeit in die landwirtschaftliche Praxis sicherzustellen und zu verbessern.
In Deutschland ist die Landwirtschaft für über 59 % der Methan- und 95 % der Ammoniakemissionen verantwortlich . Methan hat ein etwa 84-mal höheres kurzfristiges Treibhauspotenzial als CO2 (IPPC), weshalb der schnellen Reduzierung von Methanemissionen zur Verlangsamung des Klimawandels Priotität eingeräumt werden muss. Zusätzlich ist es eine Vorläufersubstanz bei der Bildung von bodennahem Ozon, das Pflanzen schädigt, indirekt zum Klimawandel beitragen kann und zusätzlich zu Beeinträchtigungen der menschlichen Gesundheit führt. Die wichtigsten Quellen von Methan sind Emissionen während des tierischen Verdauungsprozesses von Wiederkäuern und Emissionen durch die Lagerung von Festmist und Gülle. Zielsetzung des Projektes ist die Entwicklung einer digitalisierten Biogasanlage zur Vergärung von Flüssigmist für landwirtschaftliche Betriebe mit einem Tierbestand ab ca. 170 Großvieheinheiten (GV). Diese Güllekleinanlagen verwenden eine einstufige Güllevergärung und basieren auf einem kostengünstigen, vollständig recyclierbaren Rührkesselreaktor. Innerhalb der Verbundvorhabens wird die Professur Sensorik der TU Dortmund neuartige, mikrostrukturierte Prozesssensorik entwickeln und zur vollständigen Digitalisierung des Anlagentyps nutzen. Damit wird insbesondere ein automatischer Betrieb der Anlagen sowie die Internet-basierte Zustandsüberwachung der Anlagen möglich. Hierzu wird die Gesamtanlagensteuerung basierend auf hochselektiver und hochempfindlicher, resonatorverstärkter direkter Multigassensorik realisiert.
In verschiedenen Anwendungsbereichen der Klimamodellierung, z.B. Paläoklimatologie oder Sensitivitätsstudien, besteht Bedarf nach einem besonders effizienten Atmosphärenmodul. Niedrigdimensionale Modelle, basierend auf empirisch-orthogonalen Funktionen (EOF), mit einer empirischen linearen Parametrisierung der nicht aufgelösten Subgitterskalen (SGS), können viele Aspekte der Dynamik eines klassischen allgemeinen Zirkulationsmodells reproduzieren. Sie bieten sich somit in diesem Zusammenhang als interessantes Werkzeug an. Ein verbleibendes Problem war bisher die Klimasensitivität der empirischen SGS-Parametrisierung. In dem Projekt sollen zwei eng miteinander verwobene Ansätze verwendet werden, um dieses Thema anzugehen: (1) Neuere Ergebnisse zeigen, dass das Fluktuations-Dissipations-Theorem (FDT) Potential für die Vorhersage der Reaktion einer empirischen SGS-Parametrisierung auf variable externe Bedingungen hat, insbesondere wenn das betroffene System ausreichend viele schnelle Komponenten hat. Die barotrope Vorticitygleichung in dieser Untersuchung gestattet aber nur vergleichsweise langsame barotrope Rossbywellen. Es ist deshalb zu erwarten, dass der FDT-Ansatz in einem realistischeren Zusammenhang noch besser funktioniert. Darum, und auch mit der direkten Absicht, sukzessive den Realismus der Anwendung zu erhöhen, ist es geplant, die FDT-Strategie auf niedrigdimensionale Modelle der quasigeostrophischen Dreischichtendynamik (QG3S) anzuwenden, die synoptisch-skalige barokline Wellen zulässt. Dazu soll eine empirische linear-stochastische (Ornstein-Uhlenbeck, OU) Parametrisierung betrachtet werden. (2) Noch mehr als der obige Ansatz mit einer empirischen OU-Parametrisierung basiert die stochastische Modenreduktion (SMR) auf ersten Prinzipien. Die darin gegebene explizite Ableitung des Einflusses der nichtaufgelösten schnellen Moden, mit multiplikativem Rauschen und nichtlinearen deterministischen Beiträgen als Ergänzung zu Antrieb und additivem Rauschen wie in einer OU-Parametrisierung, sollte zu einem robusteren Verhalten eines entsprechend entwickelten niedrigdimensionalen Modells führen als die mehr datenbasierte OU-Parametrisierung der SGS. Da SMR-basierte Modelle allerdings zu einem Klimafehler neigen, die oben beschriebenen empirischen Ansätze andererseits sehr gut funktionieren, ist es vorgesehen, die Leistungsfähigkeit von SMR-Modellen zu verbessern, indem die konstante und lineare Komponente ihrer SGS-Parametrisierung empirisch ergänzt wird. Wiederum im QG3S-Zusammenhang soll das FDT verwendet werden, um die Reaktion der empirischen Komponenten der so modifizierten SMR-Parametrisierung auf externe Störungen vorherzusagen. Das übergeordnete Ziel dieser Anstrengungen ist ein effizientes Atmosphärenmodell, das soweit wie nach dem heutigen Stand der Wissenschaft möglich auf ersten Prinzipien basiert, das darüber hinaus aber das FDT verwendet, um die Klimaabhängigkeit der verbleibenden empirischen Elemente zu beschreiben.
Schwefelhexafluorid (SF6) und Stickstofftrifluorid (NF3) gehören zu den Stoffen mit dem höchsten Treibhauspotential (SF6-GWP= 23500, NF3-GWP= 16.100). Da SF6 im Focus der Politik ist (Verordnung (EU) 517/2014), wird häufig auf NF3 ausgewichen. Das Vorhaben soll eine Strategie entwickeln für den deutschen, europäischen und globalen Ausstieg aus der Verwendung von SF6 und NF3 bzw. die Anwendungen eingrenzen für die es derzeit und evtl. bis 2050 keine Alternativen geben wird. Neben den, bis zum Beginn des Vorhabens, noch nicht geregelten Bereichen bei den elektrischen Betriebsmitteln sind der Einsatz von SF6 und NF3 in der Aluminium- und Magnesiumindustrie, der Halbleiterproduktion, der Solarzellenproduktion und in Teilchenbeschleunigern in Industrie und Medizin zu betrachten. Basierend auf den Ergebnissen früherer Forschungsvorhaben des UBA, intensiver Literaturrecherche sowie Interviews und Workshops mit Branchenexperten und Verbänden soll der aktuelle Stand des Einsatzes beider Stoffe in Deutschland, Europa und weltweit, Alternativen, Emissionsminderungsmaßnahmen, End-of-Life-Maßnahmen und Recyclingmöglichkeiten diskutiert werden. Darauf aufbauend sind Projektionen für Verwendung und Emissionen von SF6 und NF3 national und für Europa bis 2100 zu erarbeiten. In einer Konferenz zu 'SF6 und NF3 als vergessene Treibhausgase' sollen die Ergebnisse beider Teilvorhaben mit Anwendern, Berichterstattern und Atmosphärenchemikern diskutiert und anschließend in einer peer reviewed Publikation in Zusammenarbeit mit den FG II 4.5 und V I.6 veröffentlicht werden.
<p>Flugreisen möglichst vermeiden und Alternativen nutzen</p><p>Wie Sie Flugreisen vermeiden können</p><p><ul><li>Nutzen Sie Alternativen zu Flugreisen: Andere Verkehrsmittel, nähere Urlaubsziele oder Videokonferenzen an Stelle von Dienstreisen.</li><li>Kompensieren Sie Ihre Flugreisen mittels Spenden an hochwertige Klimaschutzprojekte freiwillig, um die hohen Klimabelastungen durch Flugreisen auszugleichen.</li></ul></p><p>Gewusst wie</p><p>Fliegen ist die klimaschädlichste Art sich fortzubewegen. Ein Flug von Deutschland auf die Malediven und zurück verursacht zum Beispiel pro Person eine Klimawirkung von rund 2,8 Tonnen CO2-Äquivalenten. Mit einem Pkw können Sie mehr als 13.000 km und damit mehr als die durchschnittliche Jahresleistung eines Pkw in Deutschland fahren, bis Sie die Treibhausgaswirkung einer solchen Flugreise erreichen (bei einem Verbrauch von 7 l/100 km, siehe<a href="http://www.uba.co2-rechner.de/de_DE/">UBA-CO2-Rechner</a>).</p><p><strong>Alternativen nutzen:</strong>Weit entfernte Reiseziele lassen sich nur in Ausnahmefällen ohne Flugzeug erreichen. Innerhalb Deutschlands oder auch Europas gibt es aber häufig umweltfreundlichere Alternativen mit Bahn oder Bus (z.B. Schnellverbindungen oder Nachtzüge). Im Beruf können Sie mit Videokonferenzen in der Regel mehr Flugreisen überflüssig machen, als gemeinhin vermutet wird. Häufig sind bisherige Routinen oder fehlende technische Vertrautheit die Ursachen dafür, dass weiterhin das Flugzeug benutzt wird. Nicht zuletzt können auch die Reisewünsche selbst hinterfragt werden. Auch in Europa gibt es mehr spannende Sehenswürdigkeiten und Reiseziele, als wir in unserem Leben jemals entdecken können.</p><p><strong>Freiwillige</strong><strong>Kompensation:</strong>Es gibt verschiedene Anbieter für sogenannte CO2-Kompensationsdienstleistungen. Dabei zahlt der Reisende einen zusätzlichen Betrag zum Flugticket und unterstützt damit konkrete Klimaschutzprojekte in Form eines Klimabeitrags. Achten Sie bei Ihrer Wahl darauf, dass die Klimawirkung realistisch berechnet und die Klimaschutzprojekte von hoher Qualität sind. Orientierung bietet der "Gold Standard" (siehe Abbildung). Es spricht natürlich nichts dagegen, Klimaschutzprojekte auch ohne Flugreisen finanziell zu unterstützen. Weitere Informationen erhalten Sie im <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-Umwelttipp<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/uebergreifende-tipps/kompensation-von-treibhausgasemissionen">Kompensation von Treibhausgasemissionen</a>.</p><p><strong>Was Sie noch tun können:</strong></p><p>Wie wirken sich Flugreisen auf das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a> aus und welche Alternativen gibt es? Hier finden Sie ein<a href="https://www.umweltbundesamt.de/transkription-erklaerfilm-flugreisen-klimawirkung">Text-Transkript</a>des Videos im Sinne der Barrierefreiheit.</p><p>Hintergrund</p><p>Die Klimawirksamkeit von Flugreisen beruht nicht nur auf dem Ausstoß von CO2. Auch andere bei der Verbrennung von Kerosin entstehenden Substanzen wie Stickoxide, Aerosole und Wasserdampf tragen zur Erwärmung der Erdatmosphäre bei. Diese Stoffe wirken sich in typischen Reiseflughöhen von etwa 10 Kilometern stärker aus als am Boden und vergrößern den Treibhauseffekt entsprechend:</p><p>Der Luftverkehr belastet jedoch nicht nur das globale Klima, er hat auch lokale Auswirkungen. So leiden fast 40 Prozent der deutschen Bevölkerung unter Fluglärm. Dauernder Fluglärm erhöht das Risiko für Herz-Kreislauf-Erkrankungen und Herzinfarkt. Bei Kindern im Umkreis von Flughäfen wurden Konzentrations- und Lernschwierigkeiten festgestellt. Auch verschlechtert sich die lokale Luftqualität durch den Ausstoß von z.B. Stickoxiden. Weitere Umweltbelastungen ergeben sich durch den Flächenverbrauch beim Bau und Betrieb von Flughäfen.</p><p>Weitere Informationen finden Sie unter folgenden Links:</p><p>Bezugsjahr 2023</p><p>Bezugsjahr 2023</p>
Der Datensatz für das INSPIRE Thema Annex 1 Gewässernetz Hydro - Physische Gewässer wurde aus dem ATKIS DLM50 nach der INSPIRE Produktspezifikation der AdV abgeleitet.
Origin | Count |
---|---|
Bund | 464 |
Europa | 3 |
Land | 33 |
Wissenschaft | 6 |
Zivilgesellschaft | 3 |
Type | Count |
---|---|
Daten und Messstellen | 16 |
Ereignis | 2 |
Förderprogramm | 289 |
Text | 145 |
unbekannt | 53 |
License | Count |
---|---|
geschlossen | 188 |
offen | 310 |
unbekannt | 7 |
Language | Count |
---|---|
Deutsch | 422 |
Englisch | 142 |
andere | 3 |
Resource type | Count |
---|---|
Archiv | 2 |
Bild | 4 |
Datei | 22 |
Dokument | 69 |
Keine | 273 |
Unbekannt | 1 |
Webdienst | 4 |
Webseite | 186 |
Topic | Count |
---|---|
Boden | 410 |
Lebewesen und Lebensräume | 429 |
Luft | 401 |
Mensch und Umwelt | 505 |
Wasser | 396 |
Weitere | 504 |