Die Messstelle obh. Neunkirchen, Strbr. b. Grünhof, oh KA FOELTZ22 (Messstellen-Nr: 14135) befindet sich im Gewässer Ölschnitz in Bayern. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.
This raster dataset shows the main type of crop grown on each field in Germany each year. Crop types and crop rotation are of great economic importance and have a strong influence on the functions of arable land and ecology. Information on the crops grown is therefore important for many environmental and agricultural policy issues. With the help of satellite remote sensing, the crops grown can be recorded uniformly for whole Germany. Based on Sentinel-1 and Sentinel-2 time series as well as LPIS data from some Federal States of Germany, 18 different crops or crop groups were mapped per pixel with 10 m resolution for Germany on an annual basis since 2018. These data sets enable a comparison of arable land use between years and the derivation of crop rotations on individual fields. More details and the underlying (in the meantime slightly updated) methodology can be found in Asam et al. 2022.
Die Messstelle oh Schönbach 720 üNN (Messstellen-Nr: 8261) befindet sich im Gewässer Hochfallbach in Bayern. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.
Die Messstelle 1 km oh. Br. Thierh. - Mutterbett (km 22,25) (Messstellen-Nr: 3108) befindet sich im Gewässer Lech in Bayern. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.
Die Messstelle Str.br. Bughof/Bamberg (Messstellen-Nr: 19230) befindet sich im Gewässer Regnitz in Bayern. Die Messstelle dient der Überwachung des chemischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.
SWIM Water Extent is a global surface water product at 10 m pixel spacing based on Sentinel-1/2 data. The collection contains binary layers indicating open surface water for each Sentinel-1/2 scene. Clouds and cloud shadows are removed using ukis-csmask (see: https://github.com/dlr-eoc/ukis-csmask ) and are represented as NoData. The water extent extraction is based on convolutional neural networks (CNN). For further information, please see the following publications: https://doi.org/10.1016/j.rse.2019.05.022 and https://doi.org/10.3390/rs11192330
Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
This product displays the Cloud Optical Thickness (COT) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud optical thickness is retrieved from the O2-A band using the ROCINN algorithm. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.
Die Messstelle Gemünden oh. Sinnmündung (Messstellen-Nr: 21142) befindet sich im Gewässer Fränkische Saale in Bayern. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.
The Tree Species Germany product provides a map of dominant tree species across Germany for the year 2022 at a spatial resolution of 10 meters. The map depicts the distribution of ten tree species groups derived from multi-temporal optical Sentinel-2 data, radar data from Sentinel-1, and a digital elevation model. The input features explicitly incorporate phenological information to capture seasonal vegetation dynamics relevant for species discrimination. A total of over 80,000 training and test samples were compiled from publicly accessible sources, including urban tree inventories, Google Earth Pro, Google Street View, and field observations. The final classification was generated using an XGBoost machine learning algorithm. The Tree Species Germany product achieves an overall F1-score of 0.89. For the dominant species pine, spruce, beech, and oak, class-wise F1-scores range from 0.76 to 0.98, while F1-scores for other widespread species such as birch, alder, larch, Douglas fir, and fir range from 0.88 to 0.96. The product provides a consistent, high-resolution, and up-to-date representation of tree species distribution across Germany. Its transferable, cost-efficient, and repeatable methodology enables reliable large-scale forest monitoring and offers a valuable basis for assessing spatial patterns and temporal changes in forest composition in the context of ongoing climatic and environmental dynamics.
Origin | Count |
---|---|
Bund | 3594 |
Land | 7805 |
Wissenschaft | 181 |
Zivilgesellschaft | 48 |
Type | Count |
---|---|
Chemische Verbindung | 6 |
Daten und Messstellen | 5699 |
Förderprogramm | 1176 |
Gesetzestext | 3 |
Taxon | 808 |
Text | 150 |
unbekannt | 2337 |
License | Count |
---|---|
geschlossen | 1719 |
offen | 7570 |
unbekannt | 82 |
Language | Count |
---|---|
Deutsch | 9000 |
Englisch | 2718 |
Resource type | Count |
---|---|
Archiv | 80 |
Bild | 5 |
Datei | 4579 |
Dokument | 1724 |
Keine | 2451 |
Multimedia | 2 |
Unbekannt | 2 |
Webdienst | 26 |
Webseite | 2279 |
Topic | Count |
---|---|
Boden | 3741 |
Lebewesen und Lebensräume | 8485 |
Luft | 6813 |
Mensch und Umwelt | 9369 |
Wasser | 9125 |
Weitere | 9321 |