API src

Found 63 results.

Related terms

13 Sonstige emittierende Anlagen >> Verarbeitung / Herstellung von Energierohstoffen / -produkten

In folgenden, unter dem Projekttyp subsumierten Anlagen werden konventionelle oder regenerative Kraft- und Brennstoffe erzeugt: in Brikettieranlagen: Briketts aus Kohle oder allgemein brennbarem Material; in Kokereien: Koks aus Kohle; in Mineralöl- und Erdgasraffinerien: flüssige und gasförmige Treibstoffe, Heizöl sowie Erdgas für Gaskraftwerke; in Gaswerken: Heizgas aus Kohle, Koks, Kohlenwasserstoffen oder Biomasse; in Anlagen zur Kohlevergasung und -verflüssigung: gasförmige und flüssige Kohlenwasserstoffe als Kraftstoffe und Heizöl; in Ölmühlen: Pflanzenöl aus Ölsaaten; in Biodieselanlagen: Biodiesel aus Ölen und Fetten; in Pyrolyseanlagen: Kohlenwasserstoffe, z. B. Synthesegas als Kraftstoffe sowie Biokohle aus Biomasse; in Anlagen zur hydrothermalen Karbonisierung: Biokohle aus Biomasse und Synthesegas; in Anlagen zur Hydrolyse: Grünzucker und Ethanol aus pflanzlicher Biomasse; in Pelletieranlagen: Holzpellets; in Biogasanlagen/Fermentations- und Vergärungsanlagen: Biogas (Methan, Ethanol) aus Biomasse; in Bioraffinerien: Biokraftstoffe, Strom und Wärme aus nachwachsenden Rohstoffen; in (wenig verbreiteten) Anlagen zur Wasserstoffgewinnung, z. B. aus dem Methan des Erdgases, aus Alkoholen oder durch Vergasung von Biomasse mit Wasserdampf. Zu den möglichen anlagebedingten Vorhabensbestandteilen zählen z. B. die Infrastruktur zur Anlieferung, Beschickung, Tanklager, Bunker, Gruben, Silos, Kugelgasbehälter, Rohrleitungen (in manchen Anlagen mehrere 100 km oberirdische Leitungen), Förder- und Verteilsysteme, Zerkleinerungsmühlen, Koksbrecher und -mahlanlagen, Störstoffabtrennung, Reifebehälter bei der Pelletierung, Kohle- und Entstaubungsanlagen, Öfen, Reaktoren, Fermenter, Kolonnen, Gas-Trennapparaturen, Kondensationsanlagen für Gas, Wäscher, Abscheider, Trockner, Kühler, Kühltürme, Wärmeüberträger, Verdampfer, Mischstationen, Pressengebäude bei der Brikettierung, Komprimierung in Druckbehältern, Einrichtungen zur Konditionierung, Konfektionierung, Verpackung und Verladung, Schornsteine, Anlagen zur Abfackelung, Abgasaufbereitung, betriebseigenes Kraftwerk und Heizwerk, bei regenerativen Energierohstoffen ggf. ein Blockheizkraftwerk, Wasserwerk, Abwasserbehandlung, Abfallentsorgung, Prozessleitsysteme, Verwaltung, Wirtschaftsgebäude, Werkstätten, Labor, Werksfeuerwehr u. a. Zu den möglichen baubedingten Vorhabensbestandteilen zählen u. a. Baustelle bzw. Baufeld, Materiallagerplätze, Erdentnahmestellen, Bodendeponien, Maschinenabstellplätze, Baumaschinen und Baubetrieb, Baustellenverkehr und Baustellenbeleuchtung. Der Betrieb der Anlagen umfasst v. a. die Herstellung der Energierohstoffe/-produkte sowie innerbetriebliche und Zulieferverkehre. Hiermit sind insbesondere stoffliche Emissionen (Nähr- und Schadstoffe über Luft- oder Wasserpfad) verbunden, außerdem treten akustische und optische Störwirkungen sowie ggf. Barriere- oder Fallenwirkungen / Individuenverluste auf.

Hydrothermale Karbonisierung (HTC) zur Behandlung von Klärschlamm im Sinne von Biochar/Sewchar

Das Projekt "Hydrothermale Karbonisierung (HTC) zur Behandlung von Klärschlamm im Sinne von Biochar/Sewchar" wird vom Umweltbundesamt gefördert und von TerraNova Energy GmbH durchgeführt. Durch die HTC von Klärschlamm sollen Schadstoffe abgebaut und ein hochwertiger Bodenhilfsstoff und Dünger hergestellt werden

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH durchgeführt. Ziel des Projektes ist es, biogene kommunale Reststoffe und Reststoffe aus der Bioökonomie für eine Nutzung als Energieträger und zur Produktion von Grundchemikalien zu erschließen. Der Kern hierbei ist die gekoppelte Erzeugung von phenol- und furanhaltigen Lösungen und einer für die Monoverbrennung geeigneten Kohle durch hydrothermale Umwandlung. Dieser integrierte Umwandlungsprozess ist ebenso neu wie die Nutzung der Reststoffe aus der Bioökonomie, die Monoverbrennung von HTC-Kohle und eine auf das Prozesswasser zugeschnittene Abtrenntechnik. Damit wird es möglich, aus den Reststoffen hochwertige grüne Produkte zu generieren. Diese können in weiteren Bereichen der Bioökonomie genutzt werden. Die Koppelung der Produktion führt zu wesentlichen ökonomischen wie ökologischen Vorteilen, da die Ausgangsstoffe besser ausgenutzt und bisherige Abfallströme einer Nutzung zugeführt werden. Ebenfalls erstmalig wird eine Monoverbrennungsanlage für diese Kohle neu errichtet, welche dezentralisierbar und komplett unabhängig von fossilen Energieträgern sind. Das DBFZ übernimmt die wissenschaftlichen Untersuchungen des angestrebten Verfahrens in der Theorie und im Labormaßstab. Dabei erfolgen, ausgehend von der Optimierung der Menge an abtrennbarem Phenol und Furan für den derzeitigen HTC-Prozess, die Übertragung der Technologie auf neuartige Edukte sowie die Maximierung der Chemikalienausbeute. Das gewonnene Know-how ist Basis für die Erstellung eines Gesamtkonzeptes und die Erprobung an der Demonstrationsanlage.

AVA cleanphos

Das Projekt "AVA cleanphos" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrartechnik (440), Fachgebiet Konversionstechnologie und Systembewertung nachwachsender Rohstoffe (440f) durchgeführt. Das Verfahren AVA cleanphos bietet die Option, die vom Bundesministerium für Umwelt in der neuen Klärschlammverordnung geforderte Phosphor-Rückgewinnung zeitnah und kosten-effizient umzusetzen. Hierfür ist die Erprobung und technische Umsetzung des Säureaufschlussverfahrens in einer geschlossenen Prozesskette von der Herstellung der HTC-Kohlen bis hin zur Herstellung eines vermarktungsreifen Düngemittels erforderlich Im HTC-Prozess wird aus Klärschlamm ein Kohle slurry erzeugt. Der im Slurry enthaltene Feststoff(HTC-Kohle)enthält 99%des gesamten durch die Phosphateliminierung in der Abwasserreinigung im Klärschlamm festgelegten Phosphors. Durch sauren Aufschluss ('Acid Leaching') der HTC-Kohle in wässriger Suspension ('Slurry') bei pH kleiner als 2 kann das Orthophosphat aus den schwer löslichen Phosphatverbindungen herausgelöst und in die flüssige Phase überführt werden. Nach einer Fest-flüssig-Trennung durch Filtration, inklusive eines Spülschritts, liegt der enthaltene Orthophosphat-Phosphor ('PO4-P') zu größer als 90 % in der flüssigen Phase ('Leachwasser') vor. Durch Zugabe von geeigneten Calciumverbindungen kann der enthaltene PO4-P bei pH = 4 bis 8 als lösliche pflanzenverfügbare Calcium-Phosphat-Verbindung gefällt oder auskristallisiert werden. Das Calcium-Phosphat-Produkt kann direkt als Dünger oder zur Herstellung von höherwertigen Mineraldüngern in der Düngemittelindustrie gemäß etablierter Verfahren verwendet werden. Die Rückgewinnungsrate im gesamten Prozess liegt bei über80%.Gegenüber der Phosphor-Rücklösung aus Asche hat der AVA cleanphos Prozess zudem den Vorteil, dass der Phosphor in der HTC-Kohle nicht in einer Glas-Matrix gebunden ist und somit deutlich einfacher und kostengünstiger zurückgelöst werden kann. Zudem verbleiben die Schwermetalle bei der Rücklösung hauptsächlich in der HTC-Kohle was zu einem sehr reinen Phosphor-Produkt führt und dank der Einsparung eines entsprechenden Reinigungsschrittes zu einer weiteren Kostenreduktion führt. Im Rahmen des zu fördernden Projekts soll das Verfahren AVA cleanphos, nach erfolgreichen Laborversuchen, im halbtechnischen Maßstab pilotiert werden. Zu diesem Zweck soll eine entsprechende Pilotanlage detailliert geplant, aufgebaut und betrieben werden, so dass geeignete Apparate, technische und wirtschaftliche Lösungen evaluiert sowie der Einfluss verschiedener Prozessparameter, die Produktqualität sowie allgemeine Upscaling-Effekte bei der Übertragung vom Labormaßstab in den (halb-)technischen Maßstab untersucht werden können. Zudem sollen entsprechende Massen-und Energiebilanzen sowie eine Wirtschaftlichkeitsbetrachtung erstellt werden. In Versuchsreihen bei der Universität Hohenheim soll die Pflanzenverfügbarkeit der gefällten Calcium-Phosphat-Verbindungen nachgewiesen werden. Außerdem wird die Eignung der phosphor-reduzierten HTC Kohle für die Nutzung in Zementwerken bewertet. Das Projekt wird vom Fraunhofer ISC (Bereich IWKS)wissenschaftlich begleitet.

Teilprojekt 2

Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie, Bereich Chemisch-Physikalische Verfahren (ITC-CPV) durchgeführt. Definierte Carbonisierungsprodukte aus Pyrolyse und HTC werden als Technik zur Verbesserung landwirtschaftlicher Böden erprobt. Durch den Vergleich ihrer physikalisch-chemischen Eigenschaften sollen Rückschlüsse auf den Zusammenhang zwischen Biokohlevariante und ihrem Beitrag zum Nährstoffhaushalt, Pflanzenertrag und Ökologie möglich werden. Der Einsatz von Gärresten, zum einen als Verkohlungssubstrat, zum anderen als Nährstoffkomponente, ermöglicht die Beurteilung von Synergien im Biomasse-Biokohle-Nutzungspfad. Anhand pyrolytischer Varianten wird die These der speziellen Wirkung von Biokohle hochporiger Ausgangssubstrate geprüft. Der Nutzen aus dem Aufwand für Bioaktivierung soll für den landwirtschaftlichen Anwenderrahmen bewertet werden. Aus der Erfolgsbilanz der Biokohlevarianten und der Erprobung in praxisnaher Feldanwendung sollen Mindeststandards für Biokohlen, z.B. hinsichtlich des Inkohlungsgrades, und Anwenderoptionen für die Landwirtschaft wie auch Biokohleproduktion abgeleitet werden. Lieferung von unterschiedlich kolonisierten HTC-Kohlen und pyrogener Biokohle aus 2 verschiedene Ausgangmaterialien (AVA-CO2 bzw. Swisschar). 2. Charakterisierung der Kohlen (KIT-ITC-CPV), 3. Bodenbeimischung der Kohlen im Freiland- und Gefäßversuch (LTZ) 4. Probenahme und Bodenanalysen hierzu (LTZ) 5. Chemische Analysen der Böden und wäßrigen Proben (KIT-ITC-CPV) 6. Emissionsmessung der Böden. 7. Ökologische und ökonomische Betrachtung (KIT-DFIU)

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von TerraNova Energy GmbH durchgeführt. Bei der Hydrothermalen Carbonisierung (HTC) von Klärschlamm wird unter Druck und Temperatur innerhalb weniger Stunden eine regenerative Kohle hergestellt. Damit wird gegenüber anderen Klärschlammentsorgungsverfahren eine erhebliche Steigerung der Energieeffizienz und Reduktion der Treibhausgasemissionen erreicht. Die internationale Markteinführung der Technologie ist erfolgt - TerraNova Energy hat 2016 in Jining/China die weltweit erste großtechnische HTC-Anlage in Betrieb genommen, die der Herstellung von HTC-Kohle als Ersatzbrennstoff dient. Beim Verfahren fallen neben der HTC-Kohle große Mengen Prozesswasser an, die dem stark wasserhaltigen Klärschlamm während des Prozesses entzogen werden. Es enthält hohe Konzentrationen an Kohlenstoff und Nährstoffen wie Phosphor und stellt daher einerseits ein großes Nutzungspotential aber ohne weitere Behandlungsschritte andererseits auch eine Rückbelastung des Klärprozesses bei der Integration auf einer Kläranlage dar. Auf Grundlage erfolgsversprechender Voruntersuchungen sollen zur Steigerung der Wettbewerbsfähigkeit Nutzungspfade für das Prozesswasser entwickelt und im Technikumsmaßstab nachgewiesen werden: - Rückgewinnung von mindestens 50% des im Klärschlamm enthaltenen Phosphors aus dem Prozesswasser und Konditionierung zu einem handelbaren Produkt - Fermentation des an P abgereicherten Prozesswassers zur Erzeugung von Biogas und Untersuchungen zur energetischen Kopplung der Verfahren.

Teilprojekt 2

Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH durchgeführt. Bei der Hydrothermalen Carbonisierung (HTC) von Klärschlamm wird unter Druck und Temperatur innerhalb weniger Stunden eine regenerative Kohle hergestellt. Damit wird gegenüber anderen Klärschlammentsorgungsverfahren eine erhebliche Steigerung der Energieeffizienz und Reduktion der Treibhausgasemissionen erreicht. Die internationale Markteinführung der Technologie ist erfolgt - TerraNova Energy hat 2016 in Jining/China die weltweit erste großtechnische HTC-Anlage in Betrieb genommen, die der Herstellung von HTC-Kohle als Ersatzbrennstoff dient. Beim Verfahren fallen neben der HTC-Kohle große Mengen Prozesswasser an, die dem stark wasserhaltigen Klärschlamm während des Prozesses entzogen werden. Es enthält hohe Konzentrationen an Kohlenstoff und Nährstoffen wie Phosphor und stellt daher einerseits ein großes Nutzungspotential aber ohne weitere Behandlungsschritte andererseits auch eine Rückbelastung des Klärprozesses bei der Integration auf einer Kläranlage dar. Auf Grundlage erfolgsversprechender Voruntersuchungen sollen zur Steigerung der Wettbewerbsfähigkeit Nutzungspfade für das Prozesswasser entwickelt und im Technikumsmaßstab nachgewiesen werden: - Rückgewinnung von mindestens 50% des im Klärschlamm enthaltenen Phosphors aus dem Prozesswasser und Konditionierung zu einem handelbaren Produkt - Fermentation des an P abgereicherten Prozesswassers zur Erzeugung von Biogas und Untersuchungen zur energetischen Kopplung der Verfahren.

Teilvorhaben 2: UDE

Das Projekt "Teilvorhaben 2: UDE" wird vom Umweltbundesamt gefördert und von Universität Duisburg-Essen, Institut für Technologien der Metalle, Lehrstuhl Metallurgie der Eisen- und Stahlerzeugung durchgeführt. Überschussenergie in Form von Strom aus regenerativer Produktion, der mit relativ geringer und variierender Verfügbarkeit anfällt, soll flexibel und hoch effizient in einem 'Power to Heat' Prozess wirtschaftlich sinnvoll genutzt werden. Im Rahmen des Projektes E-Power-Konverter soll ein existierendes Konzept im Detail weiterentwickelt, theoretisch validiert und mit Unternehmen der Stahlindustrie und des Anlagenbaus auf die Machbarkeit in der betrieblichen Praxis hin diskutiert werden. Dieses Konzept sieht vor, dass relativ kurzfristig anfallender überschüssiger Strom dazu genutzt wird, das im Abgas eines Hochofens enthaltene CO2 mit Hilfe der umgekehrten Boudouard-Reaktion zu CO umzusetzen. Zu diesem Zweck wird eine Kohleschüttung in einem entsprechenden Reaktor (E-Power-Konverter) mit dem vorhandenen überschüssigen Strom auf Temperaturen größer als 1000 Grad C aufgeheizt und das Abgas des Hochofens über diese Kohleschüttung geleitet. Durch die umgekehrte Boudouard Reaktion wird das CO2 zu einem hochwertigen, für die Einleitung in den Hochofen geeignetem Gas aufgewertet. Das Gas könnte auch in anderen Bereichen eines integrierten Hüttenwerkes verwendet werden. Bei fehlendem Überschussstrom wird der Hochofen in konventioneller Weise betrieben. Neben Kohle soll auch die Verwendung zusätzlicher Reststoffe wir Klärschlamm, hydrothermale Kohle und Bioreststoffe getestet werden. Hierzu wird auf Basis realer Betriebsdaten eine Massen- und Energiebilanz des Hochofenprozesses und des Hochofenprozesses in Kombination mit einem E-Power-Konverter aufgestellt. Im Rahmen von Laborversuchen werden wesentliche Problemfelder bei einer großtechnischen Umsetzung identifiziert.

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Endress Holzfeuerungsanlagen GmbH durchgeführt. Ziel ist es, biogene kommunale Reststoffe und Reststoffe aus der Bioökonomie für eine Nutzung als Energieträger und zur Produktion von Grundchemikalien zu erschließen. Kern ist dabei die gekoppelte Erzeugung von phenol- und furanhaltige Lösungen und einer für die Monoverbrennung geeigneten Kohle durch Hydrothermale Umwandlung. Dieser integrierte Umwandlungsprozess ist ebenso neu wie die Nutzung der Reststoffe aus der Bioökonomie, die Monoverbrennung von HTC-Kohle und eine zugeschnittene Abtrenntechnik. Damit wird es möglich aus den Reststoffen hochwertige grüne Produkte zu generieren. Diese können in weiteren Bereichen der Bioökonomie genutzt werden. Die Kopplung der Produktion führt zu wesentlichen ökonomischen wie ökologischen Vorteilen, da die Ausgangsstoffe besser ausgenutzt werden und bisherige Abfallströme einer Nutzung zugeführt werden. Ebenfalls erstmalig wird eine Monoverbrennungsanlage für diese Kohle neu errichtet, die komplett unabhängig von fossilen Energieträgern und dezentralisierbar sind. DBFZ: theoretische und praktische Untersuchungen zur Optimierung der Ausbeute und Qualität der Kohle und Chemikalien. HWS: Versuchsbetrieb HTC-Demonstrationsanlage, Optimierung Kohlequalität und Chemikalienausbeuten an der Demonstrationsanlage, Aufbau und Betrieb Monoverbrennungsanlage Endress: passt eine Feuerung aus dem Produktprogramm an die Anforderungen der HTC-Kohlenutzung an. Für die Untersuchung der Abtrennung der Phenole und Furane ergeht ein Unterauftrag.

Teilprojekt 3

Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT) - Deutsch-Französisches Institut für Umweltforschung durchgeführt. Forschungsansatz: Definierte Carbonisierungsprodukte aus Pyrolyse und HTC (Hydrothermale Carbonisierung) sollen als Technik zur Verbesserung landwirtschaftlicher Böden erprobt werden. Die Planung umfasst 3-jährige Gefäß- und Feldversuche mit Biokohlen aus Gärresten (hauptsächlich Mais, daneben Gras- und Getreidesilage). Beim pyrolytischen Weg dient neben Gärrest auch Landschaftspflegematerial als Verkohlungssubstrat, wobei die These der speziellen Wirkung von Biokohle hochporiger Ausgangssubstrate geprüft werden soll. Projekt/Hauptziele: Im Vergleich der physikalisch-chemischen Eigenschaften der verschiedenen Biokohlen sollen entscheidende Zusammenhänge zwischen Biokohlevarianten und ihrem Beitrag zum Nährstoffhaushalt und Pflanzenertrag sowie zur Ökologie geklärt werden. So wird das Eigenschaftsprofil von 4 Biokohlen einschließlich Oberfläche, Porosität sowie prozesstechnischer Größen dem Anwendungserfolg gegenübergestellt. Aus der Erfolgsbilanz der Biokohlevarianten, ihrer ökologischen Potentiale und der praxisnahen Erprobung sollen Mindeststandards für Biokohlen, z.B. hinsichtlich des Inkohlungsgrades, und Anwenderoptionen für die Landwirtschaft wie auch Biokohleproduktion abgeleitet werden. Weitere Projektziele: Der Versuchsansatz der gleichzeitigen Bodenanwendung von Biokohle und Gärresten ermöglicht die Beurteilung von Synergien im Biomasse-Biokohle-Nutzungspfad. Risiken und Langfristigkeit werden durch Begleitstoffanalysen, Bio- und Toxizitätstests sowie über Abbau und Auswaschungspotentiale bestimmt. Neben einer ökologischen Bewertung aufgrund ausgewählter Stoff- und Energieflüsse wird die Wertschöpfungskette auch betriebswirtschaftlich bewertet. Auch im Falle einer Bioaktivierung der Biokohlen mit organischer Substanz (Kompost) sollen Aufwand und Nutzen für den landwirtschaftlichen Anwenderrahmen bewertet werden. In Kooperation mit der Universität Freiburg (Institut für Forstliche Bodenkunde und Waldernährung) wird der Einfluss von Biokohle auf verschiedene Boden-Gasemissionen bewertet (CO2, N2O).

1 2 3 4 5 6 7