Zentrale Zielsetzung des geplanten Vorhabens ist die Entwicklung eines Verfahrens, welches unter dem Einsatz von Friktionswärme CFK-Produktionsreste in einen teigigen Zustand überführt und im selben Produktionsschritt beigefügte Carbonfaserreste zu einer homogenen Masse compoundiert. Das Ergebnis des Verfahrens soll ein carbonfaserverstärkter Kunststoff in Granulatform sein, welcher hinsichtlich der Materialeigenschaften (u. a. Zug-, Biege-, und Schlageigenschaften) die Einhaltung derzeitiger ISONormen gewährleistet. Zentrale Vorteile gegenüber dem derzeitigen Stand der Technik (Doppelschneckenextruder) aufweisen, und a.: - Energieeinsparung: Erheblich reduzierter Energiebedarf gegenüber dem Einsatz von Extrudern. - Ressourceneinsparung: Verminderung des prozessbedingten Carbonfaserbruchs - Verbesserte CO2-Bilanz Das 24-monatige FuE-Projekt soll in enger Zusammenarbeit der Wipa Maschinenbau GmbH und der Kunststofftechnik Paderborn durchgeführt werden. Hierbei obliegen dem Industriepartner die Integration der erforderlichen Sensorik, die zur Erfassung des Ist-Zustands dient, der Bau einer Laboranlage, einer Vorzerkleinerungsanlage (Schnell-Guillotine) sowie einer Technikumsanlage. Gemeinsam werden Testreihen zur Erfassung des Ist-Zustands durchgeführt (Temperaturverteilung, Leistungsaufnahme, etc.). Die Durchführung von Simulationen zur Analyse der Wirkungsweise maschinenbautechnischer Modifikationen der Scheibengeometrien obliegt der Kunststofftechnik Paderborn, genauso wie die Durchführung von Untersuchungen an der Laboranlage sowie parallel am Doppelschneckenextruder. Anhand der Simulationen und Untersuchungen findet gemeinsam eine Optimierung der Laboranlage statt. Die Ergebnisse aus der Optimierung dienen als Basis für den Bau der Technikumsanlage, an der im Weiteren gemeinsam Untersuchungen durchgeführt werden.
Ziel dieses Forschungshabens ist die Herstellung säurebeständiger Umkehrosmose-Rohrmembranmodule für die Aufbereitung partikelhaltiger Prozesswässer durch neue Beschichtungsverfahren mit maßgeschneiderten polymeren Grenzschichten. Diese werden sowohl generativ als auch in einer reaktiven Grenzflächenpolymerisation aufgebracht. Die neuartigen Membranen ermöglichen in einem einzigen Verfahrensschritt die Abtrennung eines nahezu ionenfreien Permeats zur Wasserkreislaufführung. Durch die neuartige Beschichtung von Rohrmembranen mit einer dichten Umkehrosmose-Trennschicht wird das aus der Mikrofiltration bekannte Cross-flow Prinzip (zur Verringerung von Fouling) neuartig auf die Umkehrosmose übertragen, so dass in einem Verfahrensschritt (ohne zusätzliche Vorreinigung) die gewünschte selektive Trennung erfolgen kann. Eine besondere Motivation der Entwicklung stellt hier - neben der innovativen Beschichtung von Rohrmembranen und der geforderten Säurestabiliät - das Ziel der Wasserkreislaufschließung in Produktionsbetrieben dar. Die Entwicklung von beschichteten säurebeständigen polymeren UO-Rohrmembranen mittels Grenzflächenpolymerisation und die Modulherstellung erfolgt durch den Membranhersteller CUT Membrane Technology GmbH.
Das Ziel des Projektes ist die Weiterentwicklung und Demonstration eines neuartigen Schmelzbad-Injektions-Verfahrens zur reststofffreien Verwertung zinkhaltiger Produktionsrückstände aus den Eisenschmelz- und Gießereibetrieben. Zink, Eisen und Kohlenstoff werden als hochwertige, qualitätsgesicherte Produkte zurückgewonnen und bleiben somit dem Wertstoffkreislauf erhalten. In Demonstrationsversuchen sollen belastbare technisch- wirtschaftliche Kenngrößen für den zukünftigen Einsatz der Schmelzbad-Injektions-Technologie ermittelt werden. Hierzu wird der vorliegende Entwicklungsstand aus der Vorlaufforschung im Rahmen des BMBF-Förderprogramms KMU-Innovativ von TRL 5 auf TRL 8 gehoben. Abschließend soll ein Nutzanwendungskonzept vorliegen, das die Potentiale des neuen Schmelzbad-Injektions-Verfahrens auch für andere Schmelz- und Gießereibetriebe aufzeigt. Das Projekt gliedert sich in die zwei Phasen '1. Technische Vorarbeiten', sowie '2. Demonstrationsvorhaben'. In der 1. Phase erfolgt die Konzeption der erforderlichen anlagentechnischen Modifikationen und Erweiterungen mit abschließender technisch wirtschaftlicher Bewertung (DK, BFI). In Phase 2 erfolgen der Umbau und die Inbetriebnahme der Demonstrationsanlage (DK), sowie die Langzeit-Demonstrationsversuche im betrieblichen Umfeld (DK, BFI). Die Koordination des Projektes sowie die industrielle Implementierung und Umsetzung obliegen DK. Begleitende Forschungsarbeiten zu beiden Phasen werden vom BFI durchgeführt. Diese umfassen die Auswertung und Prozessbilanzierung der Demonstrationsversuche, begleitende Technikumsversuche zur Bewertung der Produkte sowie die Weiterentwicklung eines Prozess-Rechenmodells für die Schmelzbad-Injektion. Die Ergebnisse werden durch Publikationen und Präsentationen über einschlägige Industrieverbände verbreitet.
Das während der Sondierungsphase bearbeitete Projekt soll im Rahmen der Machbarkeitsphase fortgeführt werden. Es befasst sich mit der Wasseraufbereitung und Wertstoffrückgewinnung im Bereich Aquakultur mit einer zu entwickelnden Membrandestillations(MD)-Anlage. Dabei steht neben der Reduktion und Elimination im Haltungsprozess von Indoor-Fischfarmen die Rückgewinnung und Wiedernutzbarmachung des Wert- und Nährstoffes Stickstoff (N) im Untersuchungsfokus. Die große Herausforderung für die Anwendung der MD ist die Verfahrensumsetzung für die dort trotz einer großen N-Fracht vorherrschenden niedrigen NH4-Konzentrationen bei gleichzeitig hohen Durchflussvolumina sowie für die erforderlichen hohen Qualitätsanforderungen in Bezug auf die sensiblen Lebensbedingungen der Zuchttiere.
Im Rahmen des FuE-vorhabens soll ein neuartiges Verfahren zum Recycling von Kohlenstofffasern entwickelt werden. Dabei soll ein Agglomerator zum Einsatz kommen, der aufgrund seines Verfahrensprinzips beträchtliche Energieeinsparungen bei gleichem Massendurchsatz, gegenüber des üblich eingesetzten Doppelschneckenextruders, erzielen soll. Darüber hinaus soll bei diesem Prozess eine deutlich schonendere Verarbeitung der Fasern aufgrund der auftretenden Strömungsbedingungen stattfinden. Eine Geometrische Anpassung der Maschinenkomponenten soll ebenfalls dazu beitragen. Somit sollen sich im Agglomerat bedeutend längere Fasern, als in dem im Doppelschneckenprozess hergestellten Granulat, ergeben. Das 24-monatige FuE-Projekt soll in enger Zusammenarbeit der WIPA Maschinenbau GmbH und der Kunststofftechnik Paderborn durchgeführt werden. Hierbei obliegen dem Industrieunternehmen die Integration der erforderlichen Sensorik, die zur Erfassung des Ist-Zustands dient, der Bau einer Laboranlage, einer Guillotine, sowie einer Technikumsanlage. Gemeinsam werden Testreihen zur Erfassung des Ist-Zustands durchgeführt (Temperaturverteilung, Leistungsaufnahme, etc.). Die Durchführung von Simulationen zur Analyse der Wirkungsweise maschinenbautechnischer Modifikationen der Scheibengeometrien obliegt der Kunststofftechnik Paderborn, genauso wie die Durchführung von Untersuchungen an der Laboranlage sowie parallel am Doppelschneckenextruder. Anhand der Simulationen und Untersuchungen findet gemeinsam eine Optimierung der Laboranlage statt. Die Ergebnisse aus der Optimierung dienen als Basis für den Bau der Technikumsanlage, an der im Weiteren gemeinsam Untersuchungen durchgeführt werden. Abschließend findet eine Auswertung sämtlicher Messergebnisse statt.
Das Gesamtziel des Vorhabens besteht im Aufbau einer intelligenten Anlage zur Verarbeitung rezyklierter Hochleistungsfasern unter Integration von Industrie 4.0-Ansätzen in Hightech-Anwendungen. Im Fokus stehen die Entwicklung und der prototypische Aufbau der Produktionsanlage zur Herstellung von Organoblechen als cyber-physisches Produktionssystem. Die Anlage ist gekennzeichnet durch kontinuierliche Herstellung eines Textilgutes durch mehrere aufeinanderfolgende Prozessschritte, welche prozess- und parameterseitig in gegenseitiger Abhängigkeit stehen. Mit dem Vorhaben werden Lösungen zu definierten Industrie 4.0-Handlungsfeldern an einer semi-industriellen Anlagentechnik umgesetzt. Für das Sächsische Textilforschungsinstitut e.V. liegt der Fokus auf dem Feld der 'Intelligenten Instandhaltung'. Ziel ist die frühzeitige Fehlerdiagnose, noch bevor Störungen oder Maschinenausfälle auftreten, um Schäden und ungeplante Stillstände sowie die damit verbundenen Kosten zu minimieren. Als ein Ergebnis des Vorhabens werden Demonstratoren entstehen, die das Vorgehen zur Integration und den Nutzen der Technologien aufzeigen. Die Lösungen werden Teil des Forschungs- und Versuchsfeldes 'Textilfabrik der Zukunft' am Sächsischen Textilforschungsinstitut e.V. Die Ergebnisse fließen weiterhin in ein Lehr- und Schulungskonzept ein, um den Transfer in die Industrie sicherzustellen.
Im REPLAWA-Verbund werden die zentralen Fragen zum Thema Plastik in der Umwelt in Zusammenhang mit der Abwasserableitung und -behandlung untersucht. Das ISWW entwickelt dabei u.a. eine Analysemethodik für die Mikroplastikdetektion in Klärschlämmen. Darauf aufbauend werden großtechnischen Kläranlagen hinsichtlich ihrer Mikroplastikfrachten v.a. in Bezug auf die Schlammbehandlung bilanziert, sowie der Eintrag in die Landwirtschaft durch die Abwasserverregnung und Schlammverwertung evaluiert. Filtrationstechnologien zur Reduktion der Plastikeinträge werden neben der Schlammfaulung gezielt in dotierten halbtechn. Versuchsanlagen untersucht. Aus den Ergebnissen werden Strategien zur Sensibilisierung von Verbrauchern und Betreibern sowie zur Verminderung des Eintrags über das Abwasser abgeleitet. Die sozialwissenschaftliche Forschung des ISW-IB im Projektverbund ermittelt, inwiefern die internationale Debatte um die Regulierung von Plastik geeignet sind, die technisch möglichen Lösungen zu realisieren. Dabei interessiert insbesondere die internationale Normgenese im Bereich Mikroplastik und Abwasser. Es wird untersucht, inwiefern politische Lösungen mit den technischen Problemen und Herangehensweisen korrespondieren, sowie das mögliche Verhältnis von konsumentenorientierten Lösungen zu technischen 'End-of-pipe-Lösungen', die im REPLAWA-Verbund untersucht werden. ISWW: AP1: Methodenentwicklung Schlammaufschluss für Mikroplastikanalyse und Dotierung halbtechn. Versuche AP2: Untersuchung Einträge in Landwirtschaft und Grundwasser im Verregnungsgebiet Braunschweig AP3: Bilanzierung Mikroplastikfrachten auf Kläranlage Braunschweig, Unterstützung der TU Berlin bei Beprobung weiterer Kläranlagen AP4: Durchführung halbtechn. Versuche zur weitergehenden Mikroplastikabscheidung sowie Schlammfaulung AP6: Entwicklung Handlungsempfehlungen Verbund AP7: Verbundworkshops ISW-IB: AP5: Sozialwissenschaftliche Analyse AP6: Entwicklung Handlungsempfehlungen Verbund AP7: Verbundworkshops.
Mit dem Verbundprojekt werden zur Herausforderung Kunststoffe in der Umwelt die zentralen Fragestellungen und Aufgaben zum Schutz der Ressource Wasser in Zusammenhang mit der Abwasserableitung und Abwasserbehandlung untersucht. Die Eintragspfade ins Gewässer durch Kläranlagen, Niederschlagswassereinläufe- und Mischwasserentlastungen sowie die Senken bei der Abwasserbehandlung und im Klärschlamm werden ermittelt und quantitativ beurteilt. Verfahren zur Reduktion und Elimination des Eintrags von Plastik bei der Abwasserbehandlung werden praktisch erprobt und bewertet. Daraus werden Strategien zur Regulierung von Plastikeinträgen und Sensibilisierung von Verbrauchern und Betreibern sowie zu Verminderung des Eintrags über das Abwasser abgeleitet. In dem vorliegenden Teilprojekt liegt der Schwerpunkt auf der Filtration aus den Abwasserströmen durch Sand- und Scheibenfilter Die Arbeitsplanung des Verbundprojekts sieht folgende Arbeitspakete vor: 1) Weiterentwicklung der Probenahme-, Analysenmethodik, 2) Untersuchung der Eintragspfade in Gewässer, Grundwasser und Landwirtschaft, 3) Untersuchungen an großtechnischen Kläranlagen, 4) Halbtechnische Untersuchungen zur Abscheidung von Plastik, 5) Sozialwissenschaftliche Analyse zu Regulierung, 6) Handlungsempfehlungen zur Strategieentwicklung, 7) Koordination des Verbundprojekts. Das vorliegende Teilprojekt fokussiert neben der halbtechnischen Untersuchung zur Abscheidung von Plastik durch Sand- und Scheibenfilter auf der Erstellung von Einsatzempfehlungen aus der Sicht eines Anlagenbauers.
Das REPLAWA-Projekt untersucht innerhalb der umweltpolitisch aktuellen Thematik des Plastiks in der Umwelt den Schutz der Ressource Wasser vor Mikroplastikeinträgen über die Abwasserableitung und Abwasserbehandlung. Dazu werden die Eintragspfade in Gewässer durch Kläranlagen, Niederschlagswassereinläufe und Mischwasserentlastungen sowie die Senken bei der Abwasserbehandlung und im Klärschlamm ermittelt und quantitativ beurteilt. Verschiedene Filtrationsverfahren zur Reduzierung von Mikroplastikemissionen bei der Abwasserbehandlung werden praktisch erprobt und bewertet. Basierend auf den Untersuchungsergebnissen und Auswertungen internationaler Regulierungsansätze werden Strategien zur Reduzierung von Plastikeinträgen und zur Sensibilisierung von Entscheidungsträgern und Anlagenbetreibern sowie zu Verminderung des Eintrags über das Abwasser abgeleitet. Als Grundlage des Projekts werden standardisierte Methoden zur Probenahme, Probenvorbereitung und Analyse von Mikroplastikpartikeln entwickelt. Die Arbeitsplanung des Verbundprojekts sieht folgende Arbeitspakete vor: 1) Weiterentwicklung der Probenahme-, Analysenmethodik, 2) Untersuchung der Eintragspfade in Gewässer, Grundwasser und Landwirtschaft, 3) Untersuchungen an großtechnischen Kläranlagen, 4) Halbtechnische Untersuchungen zur Abscheidung von Plastik mittels Sand-, Scheiben-, Tuch- und Membranfiltration, 5) Sozialwissenschaftliche Analyse zu Regulierungsansätzen weltweit, 6) Handlungsempfehlungen zur Strategieentwicklung, 7) Koordination des Verbundprojekts. Mit dem vorliegenden Teilprojekt übernimmt die Emscher Wassertechnik GmbH die Koordination des Verbundprojektes und ist als Praxisakteur für Ingenieurdienstleistungen bei der exemplarischen Bestandsaufnahme und die Beprobung am Gewässer Lippe, bei der Datenerhebung und Auswertung zu unterschiedlichen Kläranlagen sowie bei der Verschneidung der Ergebnisse und federführend bei der Erarbeitung von Handlungsempfehlungen zur Strategieentwicklung involviert. Das REPLAWA-Verbundprojekt ist Teil des BMBF-Forschungsschwerpunkts 'Plastik in der Umwelt'.
Das SIMON-Projekt knüpft an das erfolgreiche SITEF-Projekt an. In SITEF wurde die Anwendbarkeit des silicon-basierten Wärmeträgerfluids (SHTF) HELISOL® 5A im Zusammenspiel mit den für den Betrieb erforderlichen Komponenten (vor allem Receiver und Rotation and Expansion Performing Assembly, REPA) in der Größenordnung eines Parabolrinnen-Loops bei Temperaturen von 425 °C demonstriert. Während das SITEF-Projekt auf die Demonstration der Machbarkeit ausgerichtet war, zielt das SIMON-Projekt auf die Unterstützung und Beschleunigung der Markteinführung durch die Absenkung identifizierter Hindernisse. SIMON demonstriert neben der Fluidstabilität des neu entwickeltem SHTFs HELISOL® XA auch die Langzeitstabilität von Komponenten wie REPAs mittels zyklischer Lebensdauertests in einem spezifischen REPA-Teststand sowie der von Receiver Rohren und Pumpe im technischen Maßstab mit der PROMETEO Anlage (auf der Plataforma Solar de Almería, Spanien). Ferner werden für den Betrieb der Fluide erforderliche Pflege- und Aufarbeitungskonzepte demonstriert, um einerseits einen Betrieb über 25 Jahre bei begrenztem Anstieg der Viskosität von HELISOL® 5A und HELISOL® XA bei 425 °C zu ermöglichen. Andererseits soll eine für die silicon-basierten Wärmeträger geeignete Leichtsiederabtrennung entwickelt und demonstriert werden, um die sich langsam bildenden unerwünschten Zersetzungsprodukte wie Wasserstoff, Methan und alkylierte Silane in geeigneter Form abzutrennen. Im Rahmen von SIMON sollen die neuen Fluide weitergehend charakterisiert und die Untersuchungsmöglichkeiten der physikalisch-chemischen Eigenschaften der Wärmeträger bei hohen Temperaturen erweitert werden. Für die Wärmeleitfähigkeitsmessung bei hohen Temperaturen soll ein Laborgerät und für die Viskosität eine Sonde weiterentwickelt werden, die auch zum Monitoring des Alterungsverhaltens eingesetzt werden könnte. Ziel ist jeweils die Bereitstellung zuverlässiger Daten, die zur Auslegung von Kraftwerken und zur wirtschaftlichen Optimierung benötigt werden.
| Origin | Count |
|---|---|
| Bund | 149 |
| Type | Count |
|---|---|
| Förderprogramm | 149 |
| License | Count |
|---|---|
| offen | 149 |
| Language | Count |
|---|---|
| Deutsch | 149 |
| Englisch | 1 |
| Resource type | Count |
|---|---|
| Keine | 34 |
| Webseite | 115 |
| Topic | Count |
|---|---|
| Boden | 111 |
| Lebewesen und Lebensräume | 101 |
| Luft | 85 |
| Mensch und Umwelt | 149 |
| Wasser | 99 |
| Weitere | 149 |