Wärmepumpen werden bei der Wärmeversorgung der Zukunft (Stichworte: Wärmewende, Sektorenkopplung, 'bezahlbares Heizen') eine große Rolle spielen. Unter Nutzung von regenerativ erzeugter elektrischer Energie können sie die unterschiedlichsten Wärmequellen (z.B. Abwärme oder Umweltwärme) auf ein nutzbares Temperaturniveau heben. Sogenannte 'kalte' Netze (Wärmenetze der neuesten Generation) können insbesondere in neu zu erschließenden Gebieten als Quelle dienen. Dezentral können dann Raumwärme und Warmwasserbereitung getrennt voneinander und sehr energieeffizient 'erzeugt' werden. Geplant ist die Entwicklung einer für unterschiedliche Anwendungen flexibel einsetzbaren Wärmepumpe (Flex-WP) auf Basis natürlicher zeotroper Kältemittelgemische mit einem mittleren bis hohen Temperaturgleit sowohl auf der kalten als auch auf der warmen Seite im Leistungsbereich von ca. 50 kW. Damit können große Spreizungen zwischen Vor- und Rücklauf sowohl auf der Wärmequellen- als auch -senkenseite genutzt bzw. erzeugt werden. Durch den Temperaturgleit bei der Wärmeübertragung passt sich die Wärmepumpe sehr energieeffizient an die Temperaturen der externen Medien an. Im Vergleich zu Wärmepumpen mit Einstoffkältemitteln bzw. azeotropen Gemischen sind Effizienzsteigerungen von bis zu 20% möglich. Allerdings ist die technische Umsetzung insbesondere in den Wärmeübertragern ein seit Jahrzehnten bekanntes, aber ungelöstes Problem. Die Entwicklung einer grundsätzlichen, technischen Lösung ist ein wesentlicher Schwerpunkt und stellt ein hohes Risiko dar. Entsprechend dem weltweit anvisierten Ausstieg aus fluorierten Kältemitteln (auch europäische 'F-Gase-Verordnung') sollen natürliche Kältemittel zum Einsatz kommen. Die geplante Verwendung von brennbaren Kohlenwasserstoffen erfordert dabei die Erarbeitung von Sicherheitskonzepten für die Innen- und Außenaufstellung. Dies reicht von der Begrenzung der Füllmenge über die Vermeidung von Leckagen und Zündquellen bis hin zur Detektion von Undichtheiten (Text abgebrochen)
Wärmepumpen werden bei der Wärmeversorgung der Zukunft (Stichworte: Wärmewende, Sektorenkopplung, 'bezahlbares Heizen') eine große Rolle spielen. Unter Nutzung von regenerativ erzeugter elektrischer Energie können sie die unterschiedlichsten Wärmequellen (z.B. Abwärme oder Umweltwärme) auf ein nutzbares Temperaturniveau heben. Sogenannte 'kalte' Netze (Wärmenetze der neuesten Generation) können insbesondere in neu zu erschließenden Gebieten als Quelle dienen. Dezentral können dann Raumwärme und Warmwasserbereitung getrennt voneinander und sehr energieeffizient 'erzeugt' werden. Geplant ist die Entwicklung einer für unterschiedliche Anwendungen flexibel einsetzbaren Wärmepumpe (Flex-WP) auf Basis natürlicher zeotroper Kältemittelgemische mit einem mittleren bis hohen Temperaturgleit sowohl auf der kalten als auch auf der warmen Seite im Leistungsbereich von ca. 50 kW. Damit können große Spreizungen zwischen Vor- und Rücklauf sowohl auf der Wärmequellen- als auch -senkenseite genutzt bzw. erzeugt werden. Durch den Temperaturgleit bei der Wärmeübertragung passt sich die Wärmepumpe sehr energieeffizient an die Temperaturen der externen Medien an. Im Vergleich zu Wärmepumpen mit Einstoffkältemitteln bzw. azeotropen Gemischen sind Effizienzsteigerungen von bis zu 20% möglich. Allerdings ist die technische Umsetzung insbesondere in den Wärmeübertragern ein seit Jahrzehnten bekanntes, aber ungelöstes Problem. Die Entwicklung einer grundsätzlichen, technischen Lösung ist ein wesentlicher Schwerpunkt und stellt ein hohes Risiko dar. Entsprechend dem weltweit anvisierten Ausstieg aus fluorierten Kältemitteln (auch europäische 'F-Gase-Verordnung') sollen natürliche Kältemittel zum Einsatz kommen. Die geplante Verwendung von brennbaren Kohlenwasserstoffen erfordert dabei die Erarbeitung von Sicherheitskonzepten für die Innen- und Außenaufstellung. Dies reicht von der Begrenzung der Füllmenge über die Vermeidung von Leckagen und Zündquellen bis hin zur Detektion von Undichtheiten (Text abgebrochen)
Wärmepumpen werden bei der Wärmeversorgung der Zukunft (Stichworte: Wärmewende, Sektorenkopplung, 'bezahlbares Heizen') eine große Rolle spielen. Unter Nutzung von regenerativ erzeugter elektrischer Energie können sie die unterschiedlichsten Wärmequellen (z.B. Abwärme oder Umweltwärme) auf ein nutzbares Temperaturniveau heben. Sogenannte 'kalte' Netze (Wärmenetze der neuesten Generation) können insbesondere in neu zu erschließenden Gebieten als Quelle dienen. Dezentral können dann Raumwärme und Warmwasserbereitung getrennt voneinander und sehr energieeffizient 'erzeugt' werden. Geplant ist die Entwicklung einer für unterschiedliche Anwendungen flexibel einsetzbaren Wärmepumpe (Flex-WP) auf Basis natürlicher zeotroper Kältemittelgemische mit einem mittleren bis hohen Temperaturgleit sowohl auf der kalten als auch auf der warmen Seite im Leistungsbereich von ca. 50 kW. Damit können große Spreizungen zwischen Vor- und Rücklauf sowohl auf der Wärmequellen- als auch -senkenseite genutzt bzw. erzeugt werden. Durch den Temperaturgleit bei der Wärmeübertragung passt sich die Wärmepumpe sehr energieeffizient an die Temperaturen der externen Medien an. Im Vergleich zu Wärmepumpen mit Einstoffkältemitteln bzw. azeotropen Gemischen sind Effizienzsteigerungen von bis zu 20% möglich. Allerdings ist die technische Umsetzung insbesondere in den Wärmeübertragern ein seit Jahrzehnten bekanntes, aber ungelöstes Problem. Die Entwicklung einer grundsätzlichen, technischen Lösung ist ein wesentlicher Schwerpunkt und stellt ein hohes Risiko dar. Entsprechend dem weltweit anvisierten Ausstieg aus fluorierten Kältemitteln (auch europäische 'F-Gase-Verordnung') sollen natürliche Kältemittel zum Einsatz kommen. Die geplante Verwendung von brennbaren Kohlenwasserstoffen erfordert dabei die Erarbeitung von Sicherheitskonzepten für die Innen- und Außenaufstellung. Dies reicht von der Begrenzung der Füllmenge über die Vermeidung von Leckagen und Zündquellen bis hin zur Detektion von Undichtheiten (Text abgebrochen)
Sowohl die Energieeffizienz von Kälteanlagen (KA) und Wärmepumpen (WP) als auch der Einsatz alternativer Kältemittel (KM) sind beeinflusst durch die Wahl des Schmierstoffes und der Schmierstoffmenge in den jeweiligen Anlagen. Das Öl, welches zur Schmierung des Verdichters benötigt wird, gelangt in den KM-Kreislauf und verschlechtert in den meisten Fällen die Kälte- bzw. Wärmeleistung der Anlage. Zudem können Schaumbildung und Öllöslichkeit im KM zur Viskositätsminderung und folglich zu Mangelschmierung oder Komplettausfällen des Verdichters führen, wodurch wiederum die Energieeffizienz, Lebensdauer und Einsatzgrenzen des Verdichters beeinträchtigt werden. Im Vergleich zu den derzeit üblicherweise verwendeten (fluorierten) Kältemitteln treten insbesondere bei Kohlenwasserstoffen (KW) wie Propan (R290) vermehrt Probleme mit der Verdichter-Mangelschmierung auf. Die Frage nach dem 'richtigen' Öl und KM-Öl-Gemisch (KMÖG) ist derzeit noch nicht ausreichend untersucht als auch in der Praxis erprobt und stellt neben der Kältemittel Brennbarkeit ein weiteres Hemmnis für den flächendeckenden Einsatz von R290 in Kälte- und Wärmepumpenanlagen dar. Ziel des Vorhabens ist es, die betriebssichere Öl-KM Kombination für ein effizientes Supermarkt Kälte-/Wärmepumpensystem mit R290 zu ermitteln und dadurch die zwei größten Hemmnisse für die Einführung von R290 in der stationären Kältetechnik abzubauen. Eine ganzheitliche, modellhafte Betrachtung des Kältekreislaufes mit den kältetechnischen Komponenten, als auch KM in Kombination mit den Schmierstoffen (Öl) ist daher notwendig. Im Laufe des Projektes müssen zunächst die fehlenden Stoffdaten von KMÖG ermittelt werden. Um die dynamische Kältekreislauf-Simulationssoftware (Modelle, Stoffwerte, KMÖG, Komponenten) validieren als auch den energetischen und Langzeiteinfluss des KMÖG auf Komponenten, speziell Verdichter und System in der Anwendung ermitteln zu können ist der Aufbau einer realen Anlage unter Laborbedingungen notwendig.
Sowohl die Energieeffizienz von Kälteanlagen (KA) und Wärmepumpen (WP) als auch der Einsatz alternativer Kältemittel (KM) sind beeinflusst durch die Wahl des Schmierstoffes und der Schmierstoffmenge in den jeweiligen Anlagen. Das Öl, welches zur Schmierung des Verdichters benötigt wird, gelangt in den KM-Kreislauf und verschlechtert in den meisten Fällen die Kälte- bzw. Wärmeleistung der Anlage. Zudem können Schaumbildung und Öllöslichkeit im KM zur Viskositätsminderung und folglich zu Mangelschmierung oder Komplettausfällen des Verdichters führen, wodurch wiederum die Energieeffizienz, Lebensdauer und Einsatzgrenzen des Verdichters beeinträchtigt werden. Im Vergleich zu den derzeit üblicherweise verwendeten (fluorierten) Kältemitteln treten insbesondere bei Kohlenwasserstoffen (KW) wie Propan (R290) vermehrt Probleme mit der Verdichter-Mangelschmierung auf. Die Frage nach dem 'richtigen' Öl und KM-Öl-Gemisch (KMÖG) ist derzeit noch nicht ausreichend untersucht als auch in der Praxis erprobt und stellt neben der Kältemittel Brennbarkeit ein weiteres Hemmnis für den flächendeckenden Einsatz von R290 in Kälte- und Wärmepumpenanlagen dar. Ziel des Vorhabens ist es, die betriebssichere Öl-KM Kombination für ein effizientes Supermarkt Kälte-/Wärmepumpensystem mit R290 zu ermitteln und dadurch die zwei größten Hemmnisse für die Einführung von R290 in der stationären Kältetechnik abzubauen. Eine ganzheitliche, modellhafte Betrachtung des Kältekreislaufes mit den kältetechnischen Komponenten, als auch KM in Kombination mit den Schmierstoffen (Öl) ist daher notwendig. Im Laufe des Projektes müssen zunächst die fehlenden Stoffdaten von KMÖG ermittelt werden. Um die dynamische Kältekreislauf-Simulationssoftware (Modelle, Stoffwerte, KMÖG, Komponenten) validieren als auch den energetischen und Langzeiteinfluss des KMÖG auf Komponenten, speziell Verdichter und System in der Anwendung ermitteln zu können ist der Aufbau einer realen Anlage unter Laborbedingungen notwendig.
Sowohl die Energieeffizienz von Kälteanlagen (KA) und Wärmepumpen (WP) als auch der Einsatz alternativer Kältemittel (KM) sind beeinflusst durch die Wahl des Schmierstoffes und der Schmierstoffmenge in den jeweiligen Anlagen. Das Öl, welches zur Schmierung des Verdichters benötigt wird, gelangt in den KM-Kreislauf und verschlechtert in den meisten Fällen die Kälte- bzw. Wärmeleistung der Anlage. Zudem können Schaumbildung und Öllöslichkeit im KM zur Viskositätsminderung und folglich zu Mangelschmierung oder Komplettausfällen des Verdichters führen, wodurch wiederum die Energieeffizienz, Lebensdauer und Einsatzgrenzen des Verdichters beeinträchtigt werden. Im Vergleich zu den derzeit üblicherweise verwendeten (fluorierten) Kältemitteln treten insbesondere bei Kohlenwasserstoffen (KW) wie Propan (R290) vermehrt Probleme mit der Verdichter-Mangelschmierung auf. Die Frage nach dem 'richtigen' Öl und KM-Öl-Gemisch (KMÖG) ist derzeit noch nicht ausreichend untersucht als auch in der Praxis erprobt und stellt neben der Kältemittel Brennbarkeit ein weiteres Hemmnis für den flächendeckenden Einsatz von R290 in Kälte- und Wärmepumpenanlagen dar. Ziel des Vorhabens ist es, die betriebssichere Öl-KM Kombination für ein effizientes Supermarkt Kälte-/Wärmepumpensystem mit R290 zu ermitteln und dadurch die zwei größten Hemmnisse für die Einführung von R290 in der stationären Kältetechnik abzubauen. Eine ganzheitliche, modellhafte Betrachtung des Kältekreislaufes mit den kältetechnischen Komponenten, als auch KM in Kombination mit den Schmierstoffen (Öl) ist daher notwendig. Im Laufe des Projektes müssen zunächst die fehlenden Stoffdaten von KMÖG ermittelt werden. Um die dynamische Kältekreislauf-Simulationssoftware (Modelle, Stoffwerte, KMÖG, Komponenten) validieren als auch den energetischen und Langzeiteinfluss des KMÖG auf Komponenten, speziell Verdichter und System in der Anwendung ermitteln zu können ist der Aufbau einer realen Anlage unter Laborbedingungen notwendig.
Sowohl die Energieeffizienz von Kälteanlagen (KA) und Wärmepumpen (WP) als auch der Einsatz alternativer Kältemittel (KM) sind beeinflusst durch die Wahl des Schmierstoffes und der Schmierstoffmenge in den jeweiligen Anlagen. Das Öl, welches zur Schmierung des Verdichters benötigt wird, gelangt in den KM-Kreislauf und verschlechtert in den meisten Fällen die Kälte- bzw. Wärmeleistung der Anlage. Zudem können Schaumbildung und Öllöslichkeit im KM zur Viskositätsminderung und folglich zu Mangelschmierung oder Komplettausfällen des Verdichters führen, wodurch wiederum die Energieeffizienz, Lebensdauer und Einsatzgrenzen des Verdichters beeinträchtigt werden. Im Vergleich zu den derzeit üblicherweise verwendeten (fluorierten) Kältemitteln treten insbesondere bei Kohlenwasserstoffen (KW) wie Propan (R290) vermehrt Probleme durch Verdichter-Mangelschmierung auf. Die Frage nach dem 'richtigen' Öl und KM-Öl-Gemisch (KMÖG) ist derzeit noch nicht ausreichend untersucht als auch in der Praxis erprobt und stellt neben der Kältemittel-Brennbarkeit ein weiteres Hemmnis für den flächendeckenden Einsatz von R290 in Kälte- und Wärmepumpenanlagen dar. Ziel des Vorhabens ist es, eine optimale, betriebssichere KM-Öl-Kombination für ein effizientes Supermarkt-Kälte-/Wärmepumpen-System mit R290 zu ermitteln und dadurch die zwei größten Hemmnisse für die Einführung von R290 in der stationären Kältetechnik abzubauen. Eine ganzheitliche, modellhafte Betrachtung des Kältekreislaufes inklusive kältetechnischer Komponenten und des KM in Kombination mit den Schmierstoffen (Öl) ist daher notwendig. Im Laufe des Projektes müssen zunächst die fehlenden Stoffdaten von KMÖG ermittelt werden. Um die dynamische Kältekreislauf-Simulationssoftware (Modelle, Stoffwerte, KMÖG, Komponenten) validieren sowie den energetischen und Langzeiteinfluss des KMÖG auf Komponenten, speziell Verdichter und System in der Anwendung ermitteln zu können, ist der Aufbau einer realen Anlage unter Laborbedingungen notwendig.
Sowohl die Energieeffizienz von Kälteanlagen (KA) und Wärmepumpen (WP) als auch der Einsatz alternativer Kältemittel (KM) sind beeinflusst durch die Wahl des Schmierstoffes und der Schmierstoffmenge in den jeweiligen Anlagen. Das Öl, welches zur Schmierung des Verdichters benötigt wird, gelangt in den KM-Kreislauf und verschlechtert in den meisten Fällen die Kälte- bzw. Wärmeleistung der Anlage. Zudem können Schaumbildung und Öllöslichkeit im KM zur Viskositätsminderung und folglich zu Mangelschmierung oder Komplettausfällen des Verdichters führen, wodurch wiederum die Energieeffizienz, Lebensdauer und Einsatzgrenzen des Verdichters beeinträchtigt werden. Im Vergleich zu den derzeit üblicherweise verwendeten (fluorierten) Kältemitteln treten insbesondere bei Kohlenwasserstoffen (KW) wie Propan (R290) vermehrt Probleme durch Verdichter-Mangelschmierung auf. Die Frage nach dem 'richtigen' Öl und KM-Öl-Gemisch (KMÖG) ist derzeit noch nicht ausreichend untersucht als auch in der Praxis erprobt und stellt neben der Kältemittel-Brennbarkeit ein weiteres Hemmnis für den flächendeckenden Einsatz von R290 in Kälte- und Wärmepumpenanlagen dar. Ziel des Vorhabens ist es, eine optimale, betriebssichere KM-Öl-Kombination für ein effizientes Supermarkt-Kälte-/Wärmepumpen-System mit R290 zu ermitteln und dadurch die zwei größten Hemmnisse für die Einführung von R290 in der stationären Kältetechnik abzubauen. Eine ganzheitliche, modellhafte Betrachtung des Kältekreislaufes inklusive kältetechnischer Komponenten und des KM in Kombination mit den Schmierstoffen (Öl) ist daher notwendig. Im Laufe des Projektes müssen zunächst die fehlenden Stoffdaten von KMÖG ermittelt werden. Um die dynamische Kältekreislauf-Simulationssoftware (Modelle, Stoffwerte, KMÖG, Komponenten) validieren sowie den energetischen und Langzeiteinfluss des KMÖG auf Komponenten, speziell Verdichter und System in der Anwendung ermitteln zu können, ist der Aufbau einer realen Anlage unter Laborbedingungen notwendig.
Brennbare natürliche Kältemittel zur Bahnklimatisierung waren bisher ein Tabu für die Bahn. In einem Feldversuch konnte jetzt die Machbarkeit eines solchen Konzeptes aufgezeigt werden. Ein Personenzug mit einer Propan-Klimaanlage verkehrte ein Jahr im Linienverkehr. Die Propan-Anlage ist energetisch mindestens genauso effizient wie die Anlage mit dem herkömmlichen fluorierten Kältemittel. Erstmals weltweit wurde eine Klimaanlage mit dem natürlichen Kältemittel R290 (Propan) für den Einsatz zur Klimatisierung von Zügen und im normalen Fahrgastbetrieb erprobt. Bisher wurden noch keine brennbaren Kältemittel in Zugklimaanlagen verwendet. Propan ist ein natürliches Kältemittel, es enthält kein Fluor oder andere Halogene. Das heißt, dass auch PFAS -Bildungspotential gleich Null ist. Vor dem Projekt wurde das Propan-Klimamodul auf dem Prüfstand getestet und umfangreichen Sicherheitsuntersuchungen unterworfen. Im Projekt wurde ein Propan-Anlagenmodul in einen Regionalzug der Baureihe 440 eingebaut. Parallel dazu wurde die übliche Klimaanlage mit dem fluorierten Kältemittel R134a (Tetrafluorethan) betrieben. Die Gerätearchitektur beider Anlagen war ähnlich. Die beiden Anlagen wurden über ein Jahr im Zug betrieben. In einem Messprogramm wurden ausgewählte Betriebsparameter erfasst und aufgezeichnet. Die Auswertung zeigt, dass die Propan Klimaanlage im regulären Zugbetrieb mindestens so leistungsfähig und energetisch effizient ist wie die R134a-Anlage. Simulationsberechnungen bestätigen die energetische Eignung von Propan. Danach könnte auch eine Wärmepumpenintegration energetisch sinnvoll sein, was jedoch in der Praxis überprüft werden müsste. Mittlerweile ist der ICE 3neo mit einer Propanklimaanlage ausgerüstet, was ohne Probleme verläuft, so dass weitere Züge folgen können. Durch diese Erprobung steht mit Propan nun neben CO2 und Luft ein drittes natürliches Kältemittel für Klimaanlagen in Schienenfahrzeugen zur Auswahl. Die Europäische Kommission soll im Jahr 2027 in der F-Gas Verordnung (EU) 2024/573 eine Regelung für Verbote von fluorierten Treibhausgasen in mobilen Kälte- und Klimaanlagen vorschlagen. Mit diesen drei natürlichen Kältemitteln sollte es für Züge möglich sein, zukünftig auf Lösungen mit natürlichen Kältemitteln umzustellen.
Origin | Count |
---|---|
Bund | 63 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 19 |
Text | 32 |
unbekannt | 11 |
License | Count |
---|---|
geschlossen | 43 |
offen | 20 |
Language | Count |
---|---|
Deutsch | 58 |
Englisch | 19 |
Resource type | Count |
---|---|
Datei | 1 |
Dokument | 15 |
Keine | 27 |
Webseite | 26 |
Topic | Count |
---|---|
Boden | 49 |
Lebewesen & Lebensräume | 41 |
Luft | 48 |
Mensch & Umwelt | 63 |
Wasser | 47 |
Weitere | 57 |